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Theory of huge thermoelectric effect based on a magnon drag mechanism:
Application to thin-film Heusler alloy
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To understand the unexpectedly high thermoelectric performance observed in the thin-film Heusler alloy
Fe2V0.8W0.2Al, we study the magnon drag effect, generated by the tungsten-based impurity band, as a pos-
sible source of this enhancement, in analogy to the phonon drag observed in FeSb2. Assuming that the
thin-film Heusler alloy has a conduction band integrating with the impurity band, originated by the tungsten
substitution, we derive the electrical conductivity L11 based on the self-consistent t-matrix approximation
and the thermoelectric conductivity L12 due to magnon drag based on the linear response theory and estimate
the temperature-dependent electrical resistivity, Seebeck coefficient, and power factor. Finally, we compare
the theoretical results with the experimental results of the thin-film Heusler alloy to show that the origin
of the exceptional thermoelectric properties is likely due to the magnon drag related to the tungsten-based
impurity band.
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I. INTRODUCTION

Thermoelectric materials have attracted much attention be-
cause they can directly convert thermal energy to electric
energy [1–3]. Especially, the development of thermoelectric
materials, utilizing magnetism, has been a focus, and many
materials with high thermoelectric performance have been
found [4–8]. The efficiency of the thermoelectric conversion
is expressed by the figure of merit ZT , defined by ZT ≡
S2σT/κ , where S, σ , T , and κ are the Seebeck coefficient,
electrical conductivity, temperature, and thermal conductivity,
respectively. However, it is well known that ZT is usually
much lower than unity because it is difficult to control these
physical quantities independently.

Recently, it was found that a thin-film Heusler alloy,
Fe2V0.8W0.2Al, shows a huge ZT (ZT ∼ 5) at T ∼ 350 K,
deriving from a huge power factor defined as PF ≡ S2σ [9].
The origin of these huge ZT and PF is expected to be related
to the anomalous temperature dependence of the electrical
resistivity and the Seebeck coefficient because the electrical
resistivity changes from a metallic behavior to a semiconduct-
ing behavior at T ∼ 350 K, and the Seebeck coefficient has a
peak structure with a huge value (S ∼ −500 μV/K) around
this temperature.

In a previous study, on the basis of the first-principles
calculation, the origin of this huge Seebeck coefficient was
suggested to be a result of the large mobility due to many
Weyl points and a large logarithmic energy derivative of the
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electronic density of states near the Fermi energy [9]. On the
other hand, it was also claimed [10] that the crystal struc-
ture assumed in Ref. [9] is different from the experimental
one. Then, it was reported that a new alloy model suggested
in Ref. [10] gives rise to only a Seebeck coefficient S ∼
30 μV/K at T ∼ 400 K, which is much smaller than the
experimental value. However, the actual alloy structures of
Fe2V0.8W0.2Al has not been fully explored both theoretically
and experimentally. Furthermore, a contribution of magnetism
related to the thin-film Heusler alloy [9] to the Seebeck co-
efficient has not yet been taken into account. In addition
to recent experimental reports revealing an enhancement of
the Seebeck coefficient of various systems through magnetic
interactions [4,6,8], it was recently experimentally demon-
strated that spin fluctuation enhances the Seebeck coefficient
of a doped itinerant ferromagnetic Fe2VAl system [5].

The temperature dependences of the electrical resistivity
and Seebeck coefficient observed in this thin-film Heusler
alloy are very similar to those in FeSb2: FeSb2 shows a huge
Seebeck coefficient at low temperatures (T ∼ 10 K), and at
the same temperature, the electrical resistivity changes its
temperature dependence to the semiconducting behavior as
the temperature decreases [11]. The origin of this huge See-
beck effect observed in FeSb2 has been suggested to be caused
by phonon drag, in which acoustic phonons couple with large
effective mass electrons in an impurity band [12–14]. From
the analogy with FeSb2, the origin of the huge Seebeck
effect observed in the thin-film Heusler alloy is supposed
to be magnon drag related in the context of an impurity
band and a conduction band with large effective electron
masses.
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FIG. 1. Schematic pictures of the electronic states of (a) bulk
Fe2VAl, (b) thin-film Fe2VAl, and (c) thin-film Fe2(V,W)Al.

The contribution of the magnon drag to the Seebeck effect
has been studied experimentally [15–18] and theoretically
[19–23] from the 1960s. However, it appears that the magnon
drag, related to an impurity band like in the present alloy, is
not sufficiently understood.

In this paper, we study the magnon drag effect with an
impurity state to clarify the origin of the huge Seebeck coef-
ficient and PF observed in the thin-film Heusler alloy. First,
since the electronic state of the thin-film Heusler alloy is
not yet entirely understood, we assume an electronic state
from the view point of a dimensional reduction. Extending
the phonon drag theory studied in FeSb2 [14] to the thin-film
Heusler alloy, we study the temperature dependence of the
electrical resistivity, Seebeck coefficient, and PF related to
such an impurity state. We then compare the obtained theoret-
ical results with experimental results to understand the origin
of the huge thermoelectric effect observed in the thin-film
Heusler alloy.

II. SCHEMATIC PICTURE OF ELECTRONIC STATES

First, we deduce the electronic state of the thin-film
Heusler alloy based on the electronic state of bulk Fe2VAl.
Figure 1(a) shows a schematic picture of the electronic state
of the bulk Fe2VAl near the Fermi level. It is found [9,24,25]
that this electronic state is a typical semimetallic state. In the
thin film, it is expected that the bandwidth decreases due to
the dimensional reduction. Therefore, we suggest that a band
gap appears as a result of the lower dimension in the thin-film
Fe2VAl [Fig. 1(b)]. When vanadium is replaced by tungsten in
this thin film, it is natural to expect impurity states to appear
near the bottom of the conduction band because the energy
level of 5d electrons in W is lower than the 3d energy level
in V. Figure 1(c) shows a schematic picture of the electronic
state of the thin-film Heusler alloy substituted by W. In this
paper, we study the electrical and thermal transports on the
basis of the electronic state shown in Fig. 1(c).

III. MODEL HAMILTONIAN AND FORMULATION
OF ELECTRIC AND THERMAL TRANSPORTS

To study the magnon drag based on the electronic state
shown in Fig. 1(c), we use the following model Hamiltonian

[14,21–23]:

H = H0 + HW + Hmag + He−mag, (1)

where H0, HW, Hmag, and He−mag are Hamiltonians for the
ferromagnetic conduction band, W sites, the ferromagnetic
magnon, and the electron-magnon interaction, respectively.
These Hamiltonians are given as H0 = ∑

k,σ (εkσ − μ)c†
kσ ckσ ,

HW = V0
∑

〈i〉 c†
iσ ciσ , Hmag = ∑

q h̄ωqb†
qbq, and He−mag =

I√
V

∑
k,q[b†

qc†
k↑ck+q↓ + bqc†

k+q↓ck↑], where ckσ or ciσ (c†
kσ or

c†
iσ ) is an annihilation (creation) operator of an electron with

wave number k on the ith site and spin σ =↑↓ and bq (b†
q)

is an annihilation (creation) operator of a magnon with wave
vector q. εkσ is the energy dispersion in the ferromagnetic
state, μ is the chemical potential, V0 is the strength of a
random impurity potential, 〈i〉 is the position of impurities,
and h̄ωq is the energy dispersion of ferromagnetic magnons,
given by h̄ωq = Dq2, where D is the spin wave stiffness
constant. Finally, I = J

√
V is the strength of the electron-

magnon interaction, where J and V are the coupling constant
between the electron and magnon and the volume of the unit
cell, respectively. In this paper, we use the following simple
energy dispersion: εk↑ = h̄2k2

2m∗ − � and εk↓ = h̄2k2

2m∗ , where m∗
is the effective mass of conduction electrons and � is the
energy difference between up-spin and down-spin electrons
to express the ferromagnetic state, which corresponds to d
orbitals of iron in FeV0.8W0.2Al [9]. We assume that � is
independent of temperature for simplicity. Because the Fermi
energy is located near the bottom of the conduction band or in
the impurity band, as shown in Fig. 1(c), the valence band is
neglected, although it will contribute at high temperatures.

To treat the random potential of the W site, we use a self-
consistent t-matrix approximation [14,26–29]. As discussed
in Ref. [14], we define the retarded Green’s function of an
electron with spin σ as

GR
σ (k, ε) = 1

ε − εkσ − �R
σ (ε)

, (2)

where, by the self-consistent t-matrix approximation, the re-
tarded self-energy �R

σ (ε) is given as �R
σ (ε) = niV0

1− V0
V

∑′
k GR

σ (k′,ε)
.

Here, ni is the concentration of W sites. The density
of states (DOS) is obtained by Dσ (ε) = D0Im[yσ ], where

D0 =
√

(m∗ )3εB√
2π2 h̄3 and yσ is determined by solving the cubic

equation: y3
σ − 2yσ +(1 + ε+�δσ,↑

εB
)yσ − ν = 0 [14]. Here, ν ≡

2πnih̄
3/

√
2(m∗)3ε3

B. We assumed that εB (εB + �) is the bind-
ing energy of a single W impurity for down spin (up spin) as a
first step. It should be noted that the first-principles calculation
shows no spin splitting in 5d orbitals of W [9].

The Fermi energy EF and the temperature dependence
of the chemical potential are determined self-consistently
by

∑
σ

∫ ∞
−∞ f (ε)Dσ (ε)dε = ∑

σ

∫ EF

−∞ Dσ (ε)dε = ni, where
f (ε) is the Fermi distribution function, defined as f (ε) =
1/(eβ(ε−μ) + 1).

The electrical current Je, the heat current due to electrons
Jele

Q , and the heat current due to ferromagnetic magnons Jmag
Q

are defined as Je = e
∑

kσ vk,σ c†
k,σ ck,σ , Jele

Q = ∑
kσ (εkσ −
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μ)vk,σ c†
k,σ ck,σ , and Jmag

Q = ∑
q h̄ωq

∂ωq

∂qx
b†

qbq, where vk,σ =
1
h̄

∂εk,σ

∂kx
and e is the electron charge (e < 0).

Under an electric field E and temperature gradient ∇T ,
the electrical current density j is described in the linear re-
sponse theory as j = L11E + L12( − ∇T

T ), where L11 and L12

are electrical conductivity and thermoelectric conductivity,
respectively [30]. These coefficients are calculated from the
correlation function between the electrical currents and that
between the electrical and heat currents derived by Kubo and
Luttinger [31–33]:

Li j = lim
ω→0

i j (ω + iδ) − i j (0)

i(ω + iδ)
, (3)

where ω is the frequency of the external field. In the present
case, L12 contains two components due to Jele

Q and Jmag
Q , which

we refer to as Lele
12 and Ldrag

12 , respectively.
The transport coefficient L11 due to the electrical currents

and Lele
12 due to the electrical current and the heat current due

to electrons are [33]

L11 =
∫

dε

(
−∂ f (ε)

∂ε

)
σ (ε), (4)

Lele
12 = 1

e

∫
dε

(
−∂ f (ε)

∂ε

)
(ε − μ)σ (ε), (5)

where σ (ε) is the function of electrical conductivity, depend-
ing on ε. The relaxation time of electrons is included in σ (ε).
When we use the Green’s function obtained in Eq. (2), σ (ε) is
given by

σ (ε) =
∑

σ

e2
√

m∗

12π2h̄2

[
√

x2
σ + �σ (ε)2 + xσ ]

3
2

�σ (ε)
, (6)

where xσ = ε + �δσ,↑ − Re�R
σ (ε) and �σ (ε) = −Im�R

σ (ε),
respectively. It has to be noted that we consider only the effect
of the random potential, given by the self-consistent t-matrix
approximation and neglect the effect of relaxation due to the
electron-magnon interaction in the calculation of the electrical
conductivity L11.

Next, we study the correlation function between the elec-
trical current and the heat current of magnons defined as
12(τ ) = 1

V 〈Tτ [je(τ )jmag
Q (0)]〉, where τ is imaginary time and

Tτ denotes the imaginary time ordering operator [22,23]. Us-
ing the second-order perturbation on the exchange interaction
based on the Green’s function of electrons, Eq. (2), the corre-
lation function due to the magnon drag is obtained as


drag
12 (ω) = iω

I2e(m∗)2

48π3h̄5�mag(T )

∫ εcut
q

0
dεq

βεqeβεq

(eβεq − 1)2

×
∫

dx f (x)

[
L+

1

�↓(x + εq)
− L+

2

�↓(x)
− L−

1

�↑(x)
+ L−

2

�↑(x − εq)

]
,

(7)

where �mag(T ) and εcut
q are the temperature-dependent

magnon relaxation rate and an energy cutoff of magnons,
respectively; L±

1 = εq ± αεq − � − Re�(R)
↓ (x + εq) +

Re�(R)
↑ (x), and L±

2 = εq ± αεq − � + Re�(R)
↑ (x − εq) −

Re�(R)
↓ (x), where α = h̄2

2m∗D . In the Supplemental Material,

FIG. 2. (a) Density of states (DOS), (b) electrical resistivity,
(c) the Seebeck coefficient due to the magnon drag Sdrag, and (d) the
power factor due to the magnon drag PFdrag for ν̃ ≡ ν/ν0 = 1.1, 2,
and 4 and �/εB = 0.5. The inset in (b) shows the Seebeck coefficient
due to the heat current of the electron Sele.

we show the derivation of Eq. (7) in detail [34]. Using Eq. (3),
the thermoelectric conductivity due to the magnon drag Ldrag

12
is obtained. The vertex corrections, which are neglected in
this paper for simplicity, were discussed in Ref. [23].

IV. NUMERICAL RESULTS

Figure 2(a) shows the density of states for ν̃ ≡ ν/ν0 = 1.1,
2, and 4. We set �/εB = 0.5. For ν̃ = 2 and 4, the impurity
band hybridizes the conduction band naturally, while for ν̃ =
1.1, the impurity band only slightly touches the conduction
band. The Fermi energy is located in EF /εB  −1.20 for
ν̃ = 1.1, −1.16 for ν̃ = 2, and −1.07 for ν̃ = 4.0. It should
be noted that the chemical potential does not show a drastic
temperature dependence.

Figure 2(b) shows the temperature-dependent electrical
resistivity (ρ = 1/L11) for ν̃ = 1.1, 2, and 4. Here, ρ0 =
12π2h̄2/γ e2√m∗εB. It has to be noted that we introduce
the dimensionless phenomenological parameter γ to consider
additional contributions of the valleys and other unspecified
processes to the electrical conductivity. As shown in Fig. 2(b),
the resistivity increases gradually, as the temperature de-
creases from high temperatures, while around kBT/εB  0.5,
the resistivity drastically increases; the resistivity becomes
constant at low temperatures. This behavior is a result of the
impurity band. We also conclude that the constant resistivity
value at low temperatures depends on the impurity concentra-
tion.

Next, let us discuss the Seebeck coefficient due to the
heat current of electrons, i.e., Sele = Lele

12 /T L11, and the
Seebeck coefficient due to the magnon drag, i.e., Sdrag =
Ldrag

12 /T L11. The inset of Figure 2(b) shows the temperature-
dependent Seebeck coefficients Sele for ν̃ = 1.1, 2, and 4.
As the impurity concentration decreases, the Seebeck co-
efficient increases, while the Seebeck coefficient does not
show a peak structure. Figure 2(c) shows the temperature-
dependent term Sdrag for ν̃ = 1.1, 2, and 4 and α = 1.0.
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We assume a temperature-dependent magnon relaxation rate,
�mag =(h̄/2τ0)T , where τ0 is a constant. The factor S0 is
defined by S0 = I2(m∗)3/2k2

Bτ0/2eπ h̄4√εB. Note that the See-
beck coefficient does not depend on γ . As shown in Fig. 2(c),
the Seebeck coefficient increases as the impurity concen-
tration decreases. We also find that a peak structure of the
temperature-dependent Seebeck coefficient appears around
kBT/εB  0.5 for ν/ν0 = 1.1, 0.6 for ν/ν0 = 2, and 0.7
for ν/ν0 = 4. Figure 2(d) shows the temperature-dependent
power factor due to the magnon drag PFdrag, where we define
PF0 = S2

0/ρ0. PFdrag traces closely the temperature-dependent
Seebeck coefficient shown in Fig. 2(c) for several impurity
concentrations, while we find that the peak temperature of
PFdrag is higher than that of the Seebeck coefficient because
of the distinct decrease in the electrical resistivity. It should
be noted that the temperature dependences of Sdrag and PFdrag

are insensitive to α, while these values strongly depend on α

(see the Supplemental Material [34]).

V. DISCUSSION: COMPARISON WITH EXPERIMENTS

Here, we compare the obtained theoretical results with
the experimental results for the thin-film Heusler alloy. Since
there are no experimental data for theoretical parameters, we
have chosen a set of the reasonable values: εB/kB = 300 K,
m∗/m0 = 10, J/kB = 1000 K, V = 10−27 m3, and γ = 10. It
should be noted that the large effective mass is due to the
large density of states of the conduction band, as shown by
the first-principles density functional theory calculations [9];
then, the impurity concentration ni is of the order of 1027 m−3

for ν̃ = 1–4, which is consistent with the concentration of
W in Fe2VAl. Here, we set the lifetime of the magnon as
τ = τ0/T ∼ 10−14 s at T = 300 K. This value is reasonable
for a ferromagnetic metal [35].

Using the parameters, ν/ν0 = 4, and α = 1.0, the
temperature-dependent electrical resistivity and Seebeck co-
efficient due to the magnon drag, as well as the power factor,
are displayed in Fig. 3. We find that the electrical resistivity
attains ρ  1000 μ� cm at T ∼ 300 K; we also find that the
Seebeck coefficient due to the magnon drag exhibits a peak
structure, with Smax ∼ −500 μV/K at T ∼ 300 K. The power
factor reaches PF ∼ 60 mW/m K2 around T ∼ 400 K. Since
these theoretical results are similar to the experimental results,
we presume that the origin of the huge Seebeck coefficient
and the large PF observed experimentally for the thin-film
Heusler alloy is likely due to magnon drag, related to the
tungsten-based impurity band.

Finally, we comment on the lifetime of magnons. In
this paper, we used a simple temperature-dependent lifetime
for magnons. However, the lifetime is expected to be very

FIG. 3. Temperature dependences of the electrical resistivity,
Seebeck coefficient due to the magnon drag, and power factor (PF)
for realistic parameters.

complicated in a real material because it is derived from many
kinds of scattering mechanisms such as impurity scattering,
magnon-electron, magnon-magnon, and magnon-phonon in-
teractions with or without the umklapp process, and so on.
The understanding of these microscopic mechanisms for the
lifetime of a magnon is a future problem.

VI. CONCLUSION

We studied the origin of the large Seebeck coefficient and
unprecedented large PF observed in the thin-film Heusler al-
loy FeV0.8W0.2Al on the basis of the linear response theory.
Assuming that this thin-film alloy has a conduction band
integrating with the impurity band originating from the W
substitution and by extending the microscopic phonon drag
theory observed in FeSb2, we derived L11 based on the self-
consistent t-matrix approximation and L12 due to the magnon
drag. As a result, we found that the theoretical results of the
Seebeck coefficient and PF are in agreement with the experi-
mental ones. Therefore, we conclude that the origin of these
striking thermoelectric properties is likely due to the magnon
drag related to the W-based impurity band.
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