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Polarization-dependent magnetic properties of periodically driven α-RuCl3
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We study magnetic properties of a periodically driven Mott insulator with strong spin-orbit coupling and
show some properties characteristic of linearly polarized light. We consider a t2g-orbital Hubbard model driven
by circularly or linearly polarized light with strong spin-orbit coupling and derive its effective Hamiltonian in
the strong-interaction limit for a high-frequency case. We show that linearly polarized light can change not
only the magnitudes and signs of the exchange interactions, but also their bond anisotropy even without the
bond-anisotropic hopping integrals. Because of this property, the honeycomb-network spin system could be
transformed into weakly coupled zigzag or step spin chains for the light field polarized along the b or a axis,
respectively. Then, analyzing how the light fields affect several magnetic states in a mean-field approximation,
we show that linearly polarized light can change the relative stability of the competing magnetic states, whereas
such a change is absent for circularly polarized light. We also analyze the effects of both the bond anisotropy
of nearest-neighbor hopping integrals and a third-neighbor hopping integral on the magnetic states and show
that the results obtained in a simple model, in which the bond-averaged nearest-neighbor hopping integrals are
considered, remain qualitatively unchanged except for the stability of zigzag states in the nondriven case and the
degeneracy lifting of the zigzag or stripy states.
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I. INTRODUCTION

In periodically driven systems, magnetic properties can
be controlled via a time-periodic field. In the presence of a
time-periodic field, the solution to the Schrödinger equation
satisfies the Floquet theorem and the Floquet Hamiltonian, a
time-independent Hamiltonian, can describe the time evolu-
tion in steps of the driving period T [1–3]. Such a description
may be appropriate if the effects of heating due to the driving
field are negligible; such a situation could be realized be-
fore the system approaches an infinite-temperature state [4,5].
Since the Floquet Hamiltonian usually depends on parame-
ters of the driving field, it is possible to control magnetic
properties of a periodically driven system. For example, in a
single-orbital Mott insulator driven by E (t ) = E0 cos ωt , we
can change the magnitude and sign of the antiferromagnetic
Heisenberg interaction by tuning E0 and ω [6]. This or an
extended method could be used to control magnetic properties
of Mott insulators.

If a periodically driven Mott insulator has strong spin-
orbit coupling (SOC), it may offer possibility for controlling
various exchange interactions and magnetic states. The low-
energy excitations of a Mott insulator with strong SOC can
be described by the spin and orbital entangled degrees of
freedom [7–9] and its effective Hamiltonian has not only
the Heisenberg interaction, but also the anisotropic exchange
interactions [10–14]. Then, various magnetic states appear,
depending on the values of the Heisenberg interaction and
the anisotropic exchange interactions [12,13,15–19]. In our
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previous paper [20], we showed that by applying a circularly
polarized light field E(t ) = t (E0 cos ωt − E0 sin ωt ) to a mul-
tiorbital Mott insulator with strong SOC and tuning ω and
E0, the magnitudes and signs of three exchange interactions
can be changed simultaneously; these interactions are the
Heisenberg interaction J , the Kitaev interaction K , and the
off-diagonal symmetric exchange interaction �.

The aim of this paper is to clarify the polarization depen-
dences of magnetic properties for a periodically driven Mott
insulator with strong SOC. First, it is essential to understand
the similarities and differences between the effects of circu-
larly and linearly polarized light. In general, magnetic proper-
ties of solids depend on the polarization of light [21]. It is also
necessary to clarify how the changes in exchange interactions
due to a light field affect energies of several magnetic states.
These topics are not discussed in our previous paper [20].

In this paper, we study the exchange interactions and the
energies of several magnetic states for a periodically driven
Mott insulator with strong SOC. We consider a t2g-orbital
Hubbard model on the honeycomb lattice with strong SOC
and a field of linearly or circularly polarized light as a model
of periodically driven α-RuCl3. To analyze the effects of both
the bond anisotropy of nearest-neighbor hopping integrals and
a third-neighbor hopping integral, we consider five cases of
our model, including a simple case considered in our previous
paper [20]; the differences among them are about the hopping
integrals. Treating the effects of one of the light fields as
Peierls phase factors and using the Floquet theory [6,20,22],
we derive the effective Hamiltonian of periodically driven
α-RuCl3 in the strong-interaction limit for a high-frequency
case. Evaluating the exchange interactions numerically in the
first two cases of our model, we show that linearly polarized
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light can be used to change not only the magnitudes and signs
of J , K , and �, but also their bond anisotropy even without the
bond anisotropy of the hopping integrals. This property, which
is distinct from the effects of circularly polarized light [20],
could be used to transform the honeycomb-network spin sys-
tem into weakly coupled zigzag or step spin chains. We also
show that the effects of the bond anisotropy of the nearest-
neighbor hopping integrals are just quantitative in the sense
that it only induces weak bond anisotropy of the exchange in-
teractions. Then, by using a mean-field approximation (MFA),
we evaluate the expectation value of our effective Hamilto-
nian. Analyzing the effects of the light fields on the energies of
several magnetic states in the five cases of our model, we show
that linearly polarized light can change the relative stability of
the competing magnetic states, whereas circularly polarized
light does not. Furthermore, we show that the results obtained
in the simple case remain qualitatively unchanged except that
the stability of the zigzag states or the ferromagnetic state
depends on the strength of the bond anisotropy of the hopping
integrals and the value of the third-neighbor hopping integral
and that the degeneracy of the zigzag or stripy states is lifted
not only by the fields of linearly polarized light, but also by
the bond anisotropy of the hopping integrals.

The rest of the paper is organized as follows. In Sec. II,
we introduce the Hamiltonian of our model. It consists of the
hopping integrals of the t2g-orbital electrons on the honey-
comb lattice with a light field E(t ), their LS coupling, and
the t2g-orbital Hubbard interactions. There are three E(t )’s
considered: Ecirc(t ), E linear-b(t ), and E linear-a(t ) [Eqs. (2)–(4)].
We consider five cases of our model, one of which is used in
our previous paper [20]; the others are used to study the effects
of the bond-anisotropic nearest-neighbor hopping integrals
and the third-neighbor hopping integral. In Sec. III A, we
express the effective Hamiltonian of our periodically driven
Mott insulator in terms of the isotropic and the anisotropic
exchange interactions. In Sec. III B, we present the |ui j |(=
eE0/ω) dependences of the exchange interactions estimated
numerically in the first two cases of our model. We compare
the results for the three E(t )’s and discuss the properties
characteristic of the linearly polarized light. In Sec. IV A, by
applying the MFA to our effective Hamiltonian, we derive an
expression of the energy of a magnetic state characterized
by the ordering vector. We also explain the characteristics
of the magnetic states considered. In Sec. IV B, we present
the |ui j | dependences of the numerically evaluated energies
of several magnetic states in the five cases of our model.
Comparing the results for the three E(t )’s, we discuss the
similarities and differences between the effects of the fields of
circularly and linearly polarized light. We also analyze how
the bond anisotropy of the nearest-neighbor hopping integrals
and the third-neighbor hopping integral affect the magnetic
states. In Sec. V, we discuss the validity of our model, the
effects of heating, and an experimental observation of our
results. Furthermore, we remark on a property induced by a
field of circularly polarized light and several directions for
further relevant research. In Sec. VI, we summarize the main
results and their implications.

Throughout this paper, we set h̄ = 1 and aNN = 1, where
aNN denotes the distance between nearest-neighbor sites on
the honeycomb lattice (Fig. 1). This choice of aNN leads

FIG. 1. Structure of the honeycomb lattice. Blue, green, and red
lines represent three nearest-neighbor bonds, i.e., X , Y , and Z bonds,
respectively; blue, green, and red dashed lines represent three third-
neighbor bonds, i.e., X3, Y3, and Z3 bonds, respectively. Black and
white circles denote the A and B sublattices, respectively. This sub-
lattice structure is necessary because the honeycomb lattice, which is
not a Bravais lattice, can be represented as a triangular Bravais lattice
with a two-point basis [23]. The a and b axes of the crystal are also
shown.

to a2nd = √
3 and a3rd = 2, where a2nd and a3rd denote the

distances between second-neighbor and third-neighbor, re-
spectively, sites. For simplicity, we neglect a small difference
between the lengths of a Z bond and of an X or Y bond.

II. MODEL

Our model Hamiltonian consists of three parts:

H = HKE + HSOC + Hint, (1)

where HKE represents the kinetic energy, HSOC represents the
atomic SOC [8], and Hint represents the Coulomb interactions
[24].

The kinetic energy is given by the hopping integrals of
the t2g-orbital electrons on the honeycomb lattice (Fig. 1) in
the presence of a light field E(t ) = t (Eb̄(t ) Ea(t )). Here Eb̄(t )
is the component antiparallel to the b axis and Ea(t ) is that
parallel to the a axis. The E(t ) for circularly polarized light is
given by

Ecirc(t ) = t (E0 cos ωt − E0 sin ωt ), (2)

and that for linearly polarized light is given by

E linear-b(t ) = t (E0 sin ωt 0) (3)

or

E linear-a(t ) = t (0 E0 sin ωt ). (4)

We do not consider the helicity of circularly polarized
light because the magnetic properties shown in this pa-
per for E(t ) = Ecirc(t ) remain unchanged even for E(t ) =
t (E0 cos ωt E0 sin ωt ). Then, we treat the effects of E(t ) as
Peierls phase factors:

HKE =
∑
i, j

∑
a,b

∑
σ

tia jbe−ie(Ri−R j )·A(t )c†
iaσ c jbσ , (5)
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TABLE I. Five cases of our model. Bond anisotropy of the nearest-neighbor hopping integrals is absent in the first and third cases and
present in the other three cases. The third nearest-neighbor hopping integral is neglected in the first two cases and considered in the last three
cases.

Parameter 1st 2nd 3rd 4th 5th

Bond anisotropy Absent Present Absent Present Present
t3rd (meV) 0 0 −40 −40 −60

where A(t ) = t (Ab̄(t ) Aa(t )) for E(t ) = Ecirc(t ), E linear-b(t ), or
E linear-a(t ) is given by

Acirc(t ) = t

(
−E0

ω
sin ωt − E0

ω
cos ωt

)
, (6)

Alinear-b(t ) = t

(
E0

ω
cos ωt 0

)
, (7)

or

Alinear-a(t ) = t

(
0

E0

ω
cos ωt

)
, (8)

respectively. As for tia jb’s, we consider five cases (Table I).
In the first case, tia jb’s are parametrized by three nearest-
neighbor hopping integrals [12,20]: the finite tia jb’s for the Z
bonds (Fig. 1) are

tidyz jdyz = tidzx jdzx = t1, (9)

tidyz jdzx = tidzx jdyz = t2, (10)

tidxy jdxy = t3, (11)

and those for the X and the Y bonds are obtained by replacing
(x, y, z) in Eqs. (9)–(11) by (y, z, x) and (z, x, y), respectively.
This case, which is used also in our previous paper [20],
corresponds to a minimal model of α-RuCl3. In the second
case, the bond anisotropy of t1, t2, and t3 is considered: the
finite tia jb’s for the Z bonds are the same as Eqs. (9)–(11),
whereas those for the X or the Y bonds are

tidzx jdzx = tidxy jdxy = t ′
1, (12)

tidzx jdxy = tidxy jdzx = t ′
2, (13)

tidyz jdyz = t ′
3, (14)

or

tidxy jdxy = tidyz jdyz = t ′
1, (15)

tidxy jdyz = tidyz jdxy = t ′
2, (16)

tidzx jdzx = t ′
3, (17)

respectively. This case is used to study the effects of the weak
bond anisotropy [13] of α-RuCl3 on the magnetic properties.
In the third or the fourth case, we consider not only the
nearest-neighbor hopping integrals considered in the first or
the second case, respectively, but also a third-neighbor hop-
ping integral t3rd. The t3rd for the Z3, X3, or Y3 bonds (Fig. 1) is
the intraorbital hopping integral of the dxy, dyz, or dzx orbital,
respectively. (We consider only this among the third neighbor
hopping integrals because it is the largest [13].) The fifth case
is almost the same as the fourth case except for the value of t3rd

(see the first paragraph of Sec. IV B). The last three cases are

used to analyze the effects of J3rd, the Heisenberg interaction
between third neighbors, on several magnetic states. In Sec. V,
we will compare our choices of tia jb’s with the result obtained
in first-principles calculations [13].

The atomic SOC is given by the LS coupling of the t2g-
orbital electrons [8,9]. Because of its nonperturbative effect,
the t2g-orbital states with spin degrees of freedom are con-
verted into the jeff = 1/2 doublet and the jeff = 3/2 quartet.
(In this argument, we have omitted the components of the LS
coupling between the t2g and the eg orbitals because the crystal
field energy between them is supposed to be sufficiently large;
this is the reason why the total angular momentum is not j, but
jeff.) For α-RuCl3, the low-energy properties can be described
by the jeff = 1/2 doublet [25,26], which is occupied by an
electron (or a hole) per site,

|+〉i = 1√
3

(
c†

idyz↓ + ic†
idzx↓ + c†

idxy↑
)|0〉, (18)

|−〉i = 1√
3

(
c†

idyz↑ − ic†
idzx↑ − c†

idxy↓
)|0〉. (19)

In these states, the spin and the orbital are entangled.
The Coulomb interactions are given by the multiorbital

Hubbard interactions [24] of the t2g-orbital electrons:

Hint =
∑

i

⎧⎪⎨
⎪⎩

∑
a,b

c†
ia↑c†

ia↓[Uδa,b + J ′(1 − δa,b)]cib↓cib↑

+
∑
a,b
a>b

∑
σ,σ ′

c†
iaσ c†

ibσ ′ (U ′cibσ ′ciaσ − JHcibσ ciaσ ′ )

⎫⎪⎬
⎪⎭, (20)

where U , J ′, U ′, and JH are the intraorbital Hubbard
interaction, the pair hopping, the interorbital Hubbard inter-
action, and the Hund’s coupling, respectively. In deriving
the exchange interactions of periodically driven α-RuCl3

(Sec. III A), we use Hint expressed in terms of the irreducible
representations of doubly occupied states [14,20,27]:

Hint =
∑

i

∑
�,g�

U�|i; �, g�〉〈i; �, g�|, (21)

where U�’s are given by

UA1 = U + 2J ′, (22)

UE = U − J ′, (23)

UT1 = U ′ − JH, (24)

UT2 = U ′ + JH, (25)
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and |i; �, g�〉’s are given by

|i; A1〉 = 1√
3

(
c†

idyz↑c†
idyz↓ + c†

idzx↑c†
idzx↓ + c†

idxy↑c†
idxy↓

)|0〉,
(26)

|i; E , u〉 = 1√
6

(
c†

idyz↑c†
idyz↓ + c†

idzx↑c†
idzx↓ − 2c†

idxy↑c†
idxy↓

)|0〉,

(27)

|i; E , v〉 = 1√
2

(
c†

idyz↑c†
idyz↓ − c†

idzx↑c†
idzx↓

)|0〉, (28)

|i; T1, α+〉 = c†
idyz↑c†

idzx↑|0〉, (29)

|i; T1, α−〉 = c†
idyz↓c†

idzx↓|0〉, (30)

|i; T1, α〉 = 1√
2

(
c†

idyz↑c†
idzx↓ + c†

idyz↓c†
idzx↑

)|0〉, (31)

|i; T1, β+〉 = c†
idzx↑c†

idxy↑|0〉, (32)

|i; T1, β−〉 = c†
idzx↓c†

idxy↓|0〉, (33)

|i; T1, β〉 = 1√
2

(
c†

idzx↑c†
idxy↓ + c†

idzx↓c†
idxy↑

)|0〉, (34)

|i; T1, γ+〉 = c†
idxy↑c†

idyz↑|0〉, (35)

|i; T1, γ−〉 = c†
idxy↓c†

idyz↓|0〉, (36)

|i; T1, γ 〉 = 1√
2

(
c†

idxy↑c†
idyz↓ + c†

idxy↓c†
idyz↑

)|0〉, (37)

|i; T2, α〉 = 1√
2

(
c†

idyz↑c†
idzx↓ − c†

idyz↓c†
idzx↑

)|0〉, (38)

|i; T2, β〉 = 1√
2

(
c†

idzx↑c†
idxy↓ − c†

idzx↓c†
idxy↑

)|0〉, (39)

|i; T2, γ 〉 = 1√
2

(
c†

idxy↑c†
idyz↓ − c†

idxy↓c†
idyz↑

)|0〉. (40)

III. EXCHANGE INTERACTIONS

In this section, we study the exchange interactions of peri-
odically driven α-RuCl3. In Sec. III A, we derive an effective
Hamiltonian expressed in terms of the exchange interactions
in the strong-interaction limit for a high-frequency case of the
driving field. This derivation is performed in the first case of
our model, and the changes in the last four cases are also
remarked on. In Sec. III B, we present the dependences of
the exchange interactions on the dimensionless parameter |ui j |
for some nonresonant values of ω. The reason why we use
nonresonant ω’s is that our theory is valid only for such ω’s
[see the derivation of Eq. (57)]. We also discuss the effects of
circularly or linearly polarized light and the similarities and
differences between them.

A. Theory

We derive the exchange interactions of our periodically
driven Mott insulator with strong SOC. Since the derivation
for circularly polarized light has been described in our previ-
ous paper [20], we explain the main points and some changes
for linearly polarized light. Here we derive the expression in

the first case of our model; the expressions in the other four
cases can be obtained from symmetry arguments (see the fifth
paragraph of this section). The derivation consists of three
steps.

First, we derive an effective Hamiltonian for the period-
ically driven Mott insulator with strong SOC. To do this,
we consider the strong-interaction limit in which tia jb’s in
Eq. (5) are much smaller than U�’s in Eq. (21). In this limit,
the solution to Schrödinger’s equation can be approximately
expressed as |	〉t ≈ |	0〉t + |	1〉t with |	0〉t and |	1〉t , the
states without and with, respectively, a doubly occupied site.
Thus, the solution can be obtained by solving a set of simul-
taneous equations,

i∂t |	0〉t = P0HKE|	1〉t + HSOC|	0〉t , (41)

i∂t |	1〉t = HKE|	0〉t + (P1HKEP1 + H̃int )|	1〉t , (42)

where P0 and P1 denote the projections onto the subspaces
without and with, respectively, a doubly occupied site, and
H̃int is defined as

H̃int = Hint + HSOC. (43)

Then, we suppose that ω is much larger than tia jb’s. In this
situation, P1HKEP1 in Eq. (42) could be replaced by its
time-averaged one H̄KE. As derived in Appendix A, H̄KE is
given by

H̄KE = P1

∑
i, j

∑
a,b

∑
σ

tia jbJ0
[
ũ(p)

i j

]
c†

iaσ c jbσP1, (44)

where Jn(x) is the nth Bessel function of the first kind, ũ(p)
i j ’s

for A(t ) = Acirc(t ), Alinear-b(t ), and Alinear-a(t ) are given by

ũ(c)
i j = ui j = eE0

ω
sgn(i − j), (45)

ũ(lb)
i j =

{
1
2 ui j (X or Y bonds),
ui j (Z bonds),

(46)

and

ũ(la)
i j =

{√
3

2 ui j (X or Y bonds),

0 (Z bonds),
(47)

respectively, and sgn(i − j) is 1 for i ∈ A or −1 for i ∈ B.
(Note that i ∈ A or i ∈ B means that i is on the A sublattice
or on the B sublattice, respectively.) By using the replacement
P1HKEP1 → H̄KE, we can write Eq. (42) as

(i∂t − H̄KE − H̃int )|	1〉t = HKE|	0〉t . (48)

This is equivalent to the following equation:

i∂t [e
i(H̄KE+H̃int )t |	1〉t ] = ei(H̄KE+H̃int )t HKE|	0〉t . (49)

As derived in Appendix B, the solution to Eq. (49) can be
expressed as follows:

|	1〉t =
∑

i, j,a,b,σ

∞∑
n=−∞

tia jbJ̃ (p)
−nνi j

(ui j )e−inωt

nω − H̄KE − H̃int
c†

iaσ c jbσ |	0〉t ,

(50)
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where J̃ (p)
−nνi j

(ui j )’s for A(t ) = Acirc(t ), Alinear-b(t ), and
Alinear-a(t ) are given by

J̃ (c)
−nνi j

(ui j ) =
⎧⎨
⎩
J−n(ui j )e−in 5π

3 (νi j = X ),
J−n(ui j )e−in π

3 (νi j = Y ),
J−n(ui j )e−inπ (νi j = Z ),

(51)

J̃ (lb)
−nνi j

(ui j ) =
⎧⎨
⎩
J−n

( ui j

2

)
e+in π

2 (νi j = X ),

J−n
( ui j

2

)
e+in π

2 (νi j = Y ),
J−n(ui j )e−in π

2 (νi j = Z ),

(52)

and

J̃ (la)
−nνi j

(ui j ) =

⎧⎪⎨
⎪⎩
J−n

(√
3

2 ui j
)
e−in π

2 (νi j = X ),

J−n
(√

3
2 ui j

)
e+in π

2 (νi j = Y ),
δn,0 (νi j = Z ),

(53)

respectively. By substituting Eq. (50) into Eq. (41) and omit-
ting the constant term HSOC|	0〉t , we obtain

i∂t |	0〉t = Heff(t )|	0〉t , (54)

where

Heff(t ) =
∑

i, j,i′, j′

∞∑
n,m=−∞

P0Ti′ j′J̃ (p)
mνi′ j′

(ui′ j′ )

× ei(m−n)ωt

nω − H̄KE − H̃int
J̃ (p)

−nνi j
(ui j )Ti jP0, (55)

and

Ti j =
∑
a,b

∑
σ

tia jbc†
iaσ c jbσ . (56)

Furthermore, since in the denominator of Eq. (55) Hint gives
the largest contribution of H̄KE and H̃int(=Hint + HSOC), we
replace nω − H̄KE − H̃int in Eq. (55) by nω − Hint; this re-
placement may be sufficient for nonresonant ω’s (i.e., the ω’s
at which the denominator does not diverge). As a result, we
have

Heff(t ) =
∑
i, j

∞∑
n,m=−∞

P0TjiJ̃ (p)
mν ji

(u ji )

× ei(m−n)ωt

nω − Hint
J̃ (p)

−nνi j
(ui j )Ti jP0. (57)

Second, we derive the leading term of Heff(t ). By express-
ing Heff(t ) as the Fourier series Heff(t ) = ∑

l eilωt Hl and using
a high-frequency expansion of the Floquet theory [3], we can
write Heff(t ) in the form

Heff(t ) = H0 + O

(
J2

ex

ω

)
, (58)

where Jex is of the order of the exchange interactions. If ω is
high enough to satisfy ω � |Jex|, the leading term of Heff(t )
comes from the Floquet Hamiltonian H̄eff(=H0):

H̄eff = ω

2π

∫ 2π/ω

0
dtHeff(t )

=
∑
i, j

∞∑
n=−∞

P0Tji

Jn
[
ũ(p)

i j

]2

nω − Hint
Ti jP0. (59)

Furthermore, by using Eq. (21) and expressing the projection
operators P0’s in terms of the possible states, we can rewrite
Eq. (59) as follows:

H̄eff =
∑
i, j

∞∑
n=−∞

∑
�,g�

P0Tji|i; �, g�〉Jn
[
ũ(p)

i j

]2

nω − U�

× 〈i; �, g�|Ti jP0

=
∑
i, j

∞∑
n=−∞

∑
�,g�

∑
i,f

〈f|Tji|i; �, g�〉Jn
[
ũ(p)

i j

]2

nω − U�

× 〈i; �, g�|Ti j |i〉|f〉〈i|, (60)

where |i〉 and |f〉 are restricted to the jeff = 1/2 subspace.
Equation (60) shows that a light field affects the effec-
tive Hamiltonian through the factor Jn[ũ(p)

i j ]2/(nω − U� )
(i.e., the changes due to the Bessel functions and the en-
ergy shifts of intermediate states). Note that if we replace∑∞

n=−∞ Jn[ũ(p)
i j ]2/(nω − U� ) in Eq. (60) by 1/(−U� ), the re-

sultant equation gives the effective Hamiltonian in the absence
of E(t ).

Third, we express Eq. (60) in terms of exchange inter-
actions. To do this, we calculate the possible terms for the
Z bonds on the honeycomb lattice; the other terms can be
obtained from symmetry arguments. Ti j for the Z bonds, T Z

i j ,
is given by

T Z
i j = t1

∑
σ

(
c†

idyzσ
c jdyzσ + c†

idzxσ
c jdzxσ

)
+ t2

∑
σ

(
c†

idyzσ
c jdzxσ + c†

idzxσ
c jdyzσ

)
+ t3

∑
σ

c†
idxyσ

c jdxyσ . (61)

Then, since Eq. (60) is the sum of two-site terms, we express
|i〉 and |f〉 as the products of the jeff = 1/2 states at two sites:

{|i〉, |f〉} = {|+,+〉, |+,−〉, |−,+〉, |−,−〉}, (62)

where |+,+〉 = |+〉1|+〉2, |+,−〉 = |+〉1|−〉2, |−,+〉 =
|−〉1|+〉2, and |−,−〉 = |−〉1|−〉2; |+〉i and |−〉i have been
defined in Eqs. (18) and (19). Since |i; �, g�〉’s and U�’s are
given by Eqs. (26)–(40) and Eqs. (22)–(25), we can write the
finite terms of Eq. (60) for the Z bonds in the form∑

〈i, j〉Z

[
JZ Si · S j + KZ Sz

i Sz
j + �Z

(
Sx

i Sy
j + Sy

i Sx
j

)]
, (63)

where the summation
∑

〈i, j〉Z
is over all the Z bonds,

JZ =
∞∑

n=−∞

4Jn
(
uZ

i j

)2

27

[
(2t1 + t3)2

U + 2J ′ − nω
+ 6t1(t1 + 2t3)

U ′ − JH − nω

+ 2
[
(t1 − t3)2 − 3t2

2

]
U − J ′ − nω

+ 6t2
2

U ′ + JH − nω

]
, (64)

KZ =
∞∑

n=−∞

4Jn
(
uZ

i j

)2

9

[
4t2

2

U − J ′ − nω
− (t1 − t3)2 + t2

2

U ′ + JH − nω

− 3t2
2 − (t1 − t3)2

U ′ − JH − nω

]
, (65)
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�Z =
∞∑

n=−∞

8Jn
(
uZ

i j

)2

9

[
t2(t1 − t3)

U ′ − JH − nω
− t2(t1 − t3)

U ′ + JH − nω

]
,

(66)

and

uZ
i j =

⎧⎨
⎩

ui j for A(t ) = Acirc(t ),
ui j for A(t ) = Alinear-b(t ),
0 for A(t ) = Alinear-a(t ).

(67)

The derivation of Eq. (63) is described in Appendix C.
Equations (64)–(67) show that for A(t ) = Acirc(t ) and
Alinear-b(t ) JZ , KZ , and �Z can be changed by varying ω,
E0, or both, whereas for A(t ) = Alinear-a(t ) those remain
unchanged due to Jn(0) = δn,0. This means that the ex-
change interactions for the Z bonds are not affected if
the light is polarized along the a axis. Then, replacing
(x, y, z, Z ) in Eq. (63) by (y, z, x, X ) or (z, x, y,Y ), we
obtain the possible terms for the X or the Y bonds, respec-
tively. As a result, H̄eff’s for the X and the Y bonds are
given by∑

〈i, j〉X

[
JX Si · S j + KX Sx

i Sx
j + �X

(
Sy

i Sz
j + Sz

i Sy
j

)]
(68)

and ∑
〈i, j〉Y

[
JY Si · S j + KY Sy

i Sy
j + �Y

(
Sz

i Sx
j + Sx

i Sz
j

)]
, (69)

respectively. Here the summations
∑

〈i, j〉X
and

∑
〈i, j〉Y

are over
all the X and the Y bonds, respectively; JX , JY , KX , KY , �X ,
and �Y are given by

JX = JY

=
∞∑

n=−∞

4Jn
(
uX

i j

)2

27

[
(2t1 + t3)2

U + 2J ′ − nω
+ 6t1(t1 + 2t3)

U ′ − JH − nω

+ 2
[
(t1 − t3)2 − 3t2

2

]
U − J ′ − nω

+ 6t2
2

U ′ + JH − nω

]
, (70)

KX = KY

=
∞∑

n=−∞

4Jn
(
uX

i j

)2

9

[
4t2

2

U − J ′ − nω
− (t1 − t3)2 + t2

2

U ′ + JH − nω

− 3t2
2 − (t1 − t3)2

U ′ − JH − nω

]
, (71)

�X = �Y

=
∞∑

n=−∞

8Jn
(
uX

i j

)2

9

[
t2(t1 − t3)

U ′ − JH − nω
− t2(t1 − t3)

U ′ + JH − nω

]
,

(72)

where

uX
i j =

⎧⎨
⎩

ui j for A(t ) = Acirc(t ),
1
2 ui j for A(t ) = Alinear-b(t ),√

3
2 ui j for A(t ) = Alinear-a(t ).

(73)

Comparing Eqs. (70)–(73) with Eqs. (64)–(67), we see lin-
early polarized light can induce the bond anisotropy of the

exchange interactions, i.e., the differences between the ex-
change interactions for the Z bonds and those for the X or
Y bonds, even without the bond anisotropy of the hopping
integrals. Such light-induced bond anisotropy does not appear
for circularly polarized light. The origin of this light-induced
bond anisotropy is the difference in the argument of the Bessel
function [Eqs. (67) and (73)]. In Sec. III B, we will analyze
the light-induced bond anisotropy quantitatively. Then, by
combining Eqs. (68) and (69) with Eq. (63), we can express
H̄eff as follows:

H̄eff =
∑
〈i, j〉

[
JδSi · S j + KδSγ

i Sγ

j + �δ

(
Sα

i Sβ
j + Sβ

i Sα
j

)]
, (74)

where

(α, β, γ , δ) =
⎧⎨
⎩

(y, z, x, X ) (X bonds),
(z, x, y,Y ) (Y bonds),
(x, y, z, Z ) (Z bonds).

(75)

Before showing the results obtained in numerical calcula-
tions, we comment on the exchange interactions in the other
four cases of our model. In the second case, in which the bond
anisotropy of t1, t2, and t3 is considered [Eqs. (12)–(17)], the
exchange interactions for the X and Y bonds are given by

JX = JY

=
∞∑

n=−∞

4Jn
(
uX

i j

)2

27

[
(2t ′

1 + t ′
3)2

U + 2J ′ − nω
+ 6t ′

1(t ′
1 + 2t ′

3)

U ′ − JH − nω

+ 2
[
(t ′

1 − t ′
3)2 − 3(t ′

2)2
]

U − J ′ − nω
+ 6(t ′

2)2

U ′ + JH − nω

]
, (76)

KX = KY

=
∞∑

n=−∞

4Jn
(
uX

i j

)2

9

[
4(t ′

2)2

U − J ′ − nω
− (t ′

1 − t ′
3)2 + (t ′

2)2

U ′ + JH − nω

− 3(t ′
2)2 − (t ′

1 − t ′
3)2

U ′ − JH − nω

]
, (77)

�X = �Y

=
∞∑

n=−∞

8Jn
(
uX

i j

)2

9

[
t ′
2(t ′

1 − t ′
3)

U ′ − JH − nω
− t ′

2(t ′
1 − t ′

3)

U ′ + JH − nω

]
,

(78)

rather than by Eqs. (70)–(72); those for the Z bonds are given
by Eqs. (64)–(66). Thus, by comparing the results in this case
and the first case, we can understand how the light-induced
bond anisotropy of the exchange interactions is affected by
the bond anisotropy of the nearest-neighbor hopping integrals.
Those results are shown in Sec. III B. In Sec. IV B, we will
analyze the energies of several magnetic states not only in
those cases, but also in the additional three cases. In the latter
three cases, we consider the third-neighbor hopping integral
t3rd, as well as the nearest-neighbor hopping integrals; it leads
to the third-neighbor Heisenberg interaction∑

〈〈〈i, j〉〉〉
J3rd
δ Si · S j, (79)
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FIG. 2. The |ui j |(=| eE0
ω

|) dependences of J , K , and � with Ecirc(t ) at (a) ω = 3, (b) 2.2, and (c) 1.8 eV in the first case of our model. In
this case, there is no bond anisotropy of the exchange interactions: JZ = JX = JY = J , KZ = KX = KY = K , and �Z = �X = �Y = �.

where the summation
∑

〈〈〈i, j〉〉〉 is over all the Z3, X3, and Y3

bonds (Fig. 1), δ is Z , X , or Y for the Z3, X3, or Y3 bonds, re-
spectively, and J3rd

δ is given (in the second-order perturbation
theory) by

J3rd
δ =

∞∑
n=−∞

4Jn
(
2uδ

i j

)2

27

(
t2
3rd

U + 2J ′ − nω
+ 2t2

3rd

U − J ′ − nω

)
.

(80)

[For example, J3rd
Z is obtained by replacing uZ

i j , t3, t1, and t2
in Eq. (64) by 2uZ

i j , t3rd, 0, and 0, respectively.] In the third
case of our model, the effective Hamiltonian consists of the
sum of Eqs. (74) and (79) with Eqs. (64)–(67), (70)–(73), and
(80). In the fourth or the fifth case, the effective Hamiltonian
is the same as that in the third case except that the exchange
interactions for the X and the Y bonds are given by Eqs. (76)–
(78). Analyses of several magnetic states in those three cases
may be useful to clarify the role of J3rd

δ , which is shown to
be important without E(t ) [13], in determining the magnetic
states of periodically driven α-RuCl3.

In our analyses, we do not consider the third-neighbor
Kitaev interaction K3rd

δ , although it is also induced by t3rd.
This is because the value of K3rd

δ is overestimated if the
third-neighbor hopping integrals other than t3rd are omitted
(the value of K3rd

δ is very small in a more realistic situation
[13]). In contrast to K3rd

δ , the value of J3rd
δ is underesti-

mated. For more details about the values of J3rd
δ and K3rd

δ , see
Appendix D.

B. Results

We numerically evaluate the exchange interactions for
some nonresonant ω’s in the first two cases of our model. To
do this, we replace

∑∞
n=−∞’s in the exchange interactions by∑nmax

n=−nmax
’s and set nmax = 500; in the first case the exchange

interactions are given by Eqs. (64)–(66) and Eqs. (70)–(72),
whereas in the second case those are given by Eqs. (64)–
(66) and Eqs. (76)–(78). Furthermore, we set J ′ = JH, U ′ =
U − 2JH, U = 3 eV, and JH = 0.5 eV. We choose the values
of the nearest-neighbor hopping integrals as follows: in the
first case t1 = 47 meV, t2 = 160 meV, and t3 = −129 meV; in
the second case t1 = 51 meV, t2 = 158 meV, t3 = −154 meV,
t ′
1 = 45 meV, t ′

2 = 162 meV, and t ′
3 = −103 meV. The values

in the first case correspond to the averages [20] of the values
obtained in the first-principles calculations (e.g., t1 is the aver-

age of t1, t ′
1a, and t ′

1b of Ref. [13]); and the values in the second
case are consistent with those obtained in the first-principles
calculations [13] except that t ′

1 is the average of t ′
1a and t ′

1b (i.e.,
the tiny difference between them is neglected in our analyses).

First, we present the |ui j | dependences of the exchange
interactions with circularly polarized light. Those in the first
case at ω = 3, 2.2, and 1.8 eV are shown in Figs. 2(a)–2(c).
We see that only the magnitudes of the exchange interactions
are changed at ω = 3 eV, whereas their magnitudes and signs
can be changed at ω = 2.2 and 1.8 eV. This property remains
unchanged in the second case [Figs. 3(a)–3(f)]. The main
difference between the results in these two cases is that there
is no bond anisotropy of the exchange interactions in the first
case (i.e., JZ = JX = JY = J , KZ = KX = KY = K , and �Z =
�X = �Y = �), whereas it is induced by the bond anisotropy
of the nearest-neighbor hopping integrals in the second case.
Note that at |ui j | = 0 in the latter case we have JX /JZ ∼ 0.63,
KX /KZ ∼ 1.7, and �X /�Z ∼ 0.74, which are consistent with
the values obtained in the first-principles calculations [13]
(i.e., JX /JZ ∼ 0.64, KX /KZ ∼ 1.5, and �X /�Z ∼ 0.74).

Before showing the results with linearly polarized light,
we explain the mechanism of the magnitude or sign changes
in the exchange interactions. Here we focus on the |ui j | de-
pendences of J in the first case at ω = 3 and 2.2 eV. This
is enough in understanding the magnitude or sign changes
shown above because of the following three facts: J , K , and �

have the similar |ui j | dependences; the results at ω = 1.8 eV
are essentially the same as those at ω = 2.2 eV; and the |ui j |
dependences of the exchange interactions in the second case
are similar to those in the first case. As we explain below, the
magnitude changes and the difference in the sign changes can
be understood by considering the leading terms of Eq. (64),
the n = 0 and the n = 1 terms. At ω = 3 eV in the first case,
we can express the leading terms of J (=JZ ) as follows:

J ≈ (J1 + J2 + J3)J0(ui j )
2 + (c′

1J1 − c′
2J2)J1(ui j )

2

≈ (J2 + J3)J0(ui j )
2 − c′

2J2J1(ui j )
2, (81)

where J1 = 4(2t1+t3 )2

27(U+2JH ) , J2 = 8(t1−t3 )2

27(U−JH ) , J3 = 8t1(t1+2t3 )
9(U−3JH ) , c′

1 =
U+2JH

δω′
1

, c′
2 = U−JH

δω′
2

, and ω = U − JH + δω′
2 = U + 2JH − δω′

1

(i.e., δω′
2 = 0.5 eV and δω′

1 = 1 eV at ω = 3 eV). In deriving
the second line of Eq. (81), we have used J1 � J2, |J3|, which
is satisfied in α-RuCl3. Because of this property, the |ui j |
dependence of J is similar to those of K and �, as described
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FIG. 3. The |ui j |(=| eE0
ω

|) dependences of JX (=JY ), JZ , KX (=KY ), KZ , �X (=�Y ), and �Z with Ecirc(t ) in the second case of our model.
The value of ω is 3 eV in (a)–(c) and 2.2 eV in (d)–(f). In contrast to the first case with Ecirc(t ) (Fig. 2), the exchange interactions become
bond-anisotropic due to the bond anisotropy of the nearest-neighbor hopping integrals.

in Ref. [20]. Since J2 > 0, J3 < 0, and J2 + J3 < 0 are also
satisfied, Eq. (81) shows that J is always negative, i.e., its sign
remains unchanged, although its magnitude is changed due to
the Bessel functions. Then, at ω = 2.2 eV in the first case, the
leading terms of Eq. (64) are given by

J ≈ (J2 + J3)J0(ui j )
2 + (c2J2 − c3J3)J1(ui j )

2, (82)

where c2 = U−JH
δω2

, c3 = U−3JH
δω3

, and ω = U − 3JH + δω3 =
U − JH − δω2 (i.e., δω3 = 0.7 eV and δω2 = 0.3 eV at ω =
2.2 eV). [We have used J1 � J2, |J3| again in the deriva-
tion of Eq. (82).] In contrast to Eq. (81), the term including
J1(ui j )2 in Eq. (82) gives the positive-sign contribution. Thus,
we can see from Eq. (82) that the competition between the
negative-sign term including J0(ui j )2 and the positive-sign
term including J1(ui j )2 is the origin of the sign changes at
|ui j | ∼ 0.4, 3.5 in Fig. 2(b); and that the magnitude changes
come from the Bessel functions. Since the leading terms at
ω = 1.8 eV is also written in the form of Eq. (82), we can
similarly understand the magnitude and sign changes at ω =
1.8 eV. Note that a similar argument is applicable to Eqs. (65),
(66), (70)–(72), and (76)–(78).

We turn to the |ui j | dependences of the exchange inter-
actions with linearly polarized light. The |ui j | dependences
with E linear-b(t ) are shown in Figs. 4 and 6, and those with
E linear-a(t ) are shown in Figs. 5 and 7. (Note that the results
at ω = 1.8 eV are not shown because they are qualitatively
the same as those at ω = 2.2 eV.) Some properties are sim-
ilar to those with circularly polarized light (Figs. 2 and 3):
the sign changes in the exchange interactions are absent at
ω = 3 eV and present at ω = 2.2 eV; and the results obtained

in the first case remain qualitatively unchanged even in the
second case. The magnitude and sign changes in the exchange
interactions can be understood in a way similar to those with
circularly polarized light. We also see from Figs. 4–7 that
linearly polarized light can change the ratios JX /JZ , KX /KZ ,
and �X /�Z even without the bond anisotropy of the hop-
ping integrals. [As explained below Eq. (73), this property
results from the difference between uZ

i j and uX
i j .] Because of

this property, those ratios can have values which cannot be
realized in nondriven α-RuCl3: although |JX | < |JZ |, |KX | >

|KZ |, and �X < �Z hold in nondriven α-RuCl3, |JX | > |JZ |,
|KX | < |KZ |, and �X > �Z are possible in α-RuCl3 driven by
a field of linearly polarized light. In addition, it is possible
to change the signs of the exchange interactions only for the
Z bonds or only for the X and Y bonds; for example, at
|ui j | ∼ 0.5 in Figs. 4(d)–4(f) we can change the signs for the
Z bonds without changing those for the X and Y bonds. Then,
the honeycomb-network spin system could be transformed
either into weakly coupled zigzag spin chains in the case
of E linear-b(t ) for |ui j | ≈ 0.4−0.42 at ω = 2.2 eV [e.g., see
Figs. 4(d)–4(f) and 6(d)–6(f)] or into weakly coupled step spin
chains in the case of E linear-a(t ) for |ui j | ≈ 0.48−0.5 at ω =
2.2 eV [e.g., see Figs. 5(d)–5(f) and 7(d)–7(f)]. In the weakly
coupled zigzag spin chains [Fig. 8(a)], JX = JY , KX = KY , and
�X = �Y are dominant and JZ , KZ , and �Z give the weak cou-
pling between zigzag chains; in the weakly coupled step spin
chains [Fig. 8(b)], JZ , KZ , and �Z are dominant and JX = JY ,
KX = KY , and �X = �Y give the weak coupling between step
chains. Note that in the first case of our model with E linear-b(t )
for |ui j | ≈ 0.42 at ω = 2.2 eV, JX /JZ ∼ 9.8, KX /KZ ∼ 4.6,
and �X /�Z ∼ 4.6; and that in the first case with E linear-a(t ) for
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FIG. 4. The |ui j |(=| eE0
ω

|) dependences of JX (=JY ), JZ , KX (=KY ), KZ , �X (=�Y ), and �Z with E linear-b(t ) in the first case of our model. The
value of ω is 3 eV in (a)–(c) and 2.2 eV in (d)–(f). In contrast to the first case with Ecirc(t ) (Fig. 2), the light field induces the bond anisotropy
of the exchange interactions even without the bond anisotropy of the hopping integrals.

FIG. 5. The |ui j |(=| eE0
ω

|) dependences of JX (=JY ), JZ , KX (=KY ), KZ , �X (=�Y ), and �Z with E linear-a(t ) in the first case of our model. The
value of ω is 3 eV in (a)–(c) and 2.2 eV in (d)–(f). As well as the first case with E linear-b(t ) (Fig. 4), the bond anisotropy of the exchange
interactions is induced by linearly polarized light; this contrasts with the case with circularly polarized light (Fig. 2). The exchange interactions
for the Z bonds are independent of |ui j | because of Eq. (67).
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FIG. 6. The |ui j |(=| eE0
ω

|) dependences of JX (=JY ), JZ , KX (=KY ), KZ , �X (=�Y ), and �Z with E linear-b(t ) in the second case of our model.
The value of ω is 3 eV in (a)–(c) and 2.2 eV in (d)–(f). The bond-anisotropic |ui j | dependences in this case are similar to those obtained in the
first case with E linear-b(t ) (Fig. 4).

FIG. 7. The |ui j |(=| eE0
ω

|) dependences of JX (=JY ), JZ , KX (=KY ), KZ , �X (=�Y ), and �Z with E linear-a(t ) in the second case of our model.
The value of ω is 3 eV in (a)–(c) and 2.2 eV in (d)–(f). As well as the case with E linear-b(t ), the bond-anisotropic |ui j | dependences in this case
are similar to those obtained in the first case with E linear-a(t ) (Fig. 5).
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FIG. 8. Weakly coupled (a) zigzag and (b) step spin chains with
E linear-b(t ) and E linear-a(t ), respectively. The definitions of blue, green,
and red lines and black and white circles are the same as those
in Fig. 1. Thicker bonds represent the bonds with the exchange
interactions which are larger in magnitude.

|ui j | ≈ 0.48 at ω = 2.2 eV, JX /JZ ∼ 0.1, KX /KZ ∼ 0.2, and
�X /�Z ∼ 0.2.

IV. MAGNETIC STATES

In this section, we study several magnetic states in pe-
riodically driven α-RuCl3. In Sec. IV A, we evaluate the
expectation value of our Floquet Hamiltonian within the MFA
and express it in a quadratic form. Then, we explain how
to obtain the energies and spin configurations of magnetic
states. We also remark on the magnetic states considered in
our analyses. In Sec. IV B, we present the |ui j | dependences
of the energies of the magnetic states for some nonresonant
ω’s and discuss the effects of one of the light fields and the
differences due to the polarization of light. (The reason why
we use nonresonant ω’s has been explained in Sec. III.)

A. Theory

Applying the MFA to our Floquet Hamiltonian, we derive
an expression of its expectation value in a quadratic form.
Since the MFA for Mott insulators with strong SOC has been
explained, for example, in Ref. [14], we explain the main
points here. By using the MFA, we can write the expectation
value of Eq. (74) as

〈H̄eff〉 =
∑
〈i, j〉

∑
μ,ν=x,y,z

Mi j
μν

〈
Sμ

i

〉〈
Sν

j

〉
, (83)

where Mi j
μν is given in the first or second case of our model by

Mi j
μν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jδ + Kδ (μ = ν = γ ),
Jδ (μ = ν = α or β ),
�δ (μ = α, ν = β ),
�δ (μ = β, ν = α),
0 (otherwise).

(84)

[Note that δ, γ , α, and β have been defined in Eq. (75).] In
the third, fourth, or fifth case of our model, the contribution
from Eq. (79) is added to Eq. (83). In the MFA, the expec-
tation value of spin operators should satisfy the hard-spin
constraints:

|〈Si〉|2 = S2, |〈S j〉|2 = S2, (85)

where i and j belong to the A and the B sublattices (Fig. 1),
respectively, and S is 1/2 in the case of α-RuCl3. Since 〈Sμ

i 〉
and 〈Sν

j 〉 are expressed as

〈
Sμ

i

〉 =
√

2

N

∑
q

〈
Sμ

qA

〉
eiq·Ri , (86)

〈
Sν

j

〉 =
√

2

N

∑
q

〈
Sν

qB

〉
eiq·R j , (87)

where N is the total number of sites, we can express Eq. (83)
in the following quadratic form:

〈H̄eff〉 =
∑

q

∑
μ,ν=x,y,z

∑
l,l ′=A,B

〈
Sμ

ql

〉∗
[Mll ′ (q)]μν

〈
Sν

ql ′
〉

=
∑

q

∑
μ,ν=x,y,z

〈
Sμ

−qA

〉
[M(q)]μν

〈
Sν

qB

〉

+
∑

q

∑
μ,ν=x,y,z

〈
Sμ

−qB

〉
[M(q)†]μν

〈
Sν

qA

〉
, (88)

where the μ × ν matrix M(q) is given by the matrix⎛
⎝J (q) + Kx(q) �z(q) �y(q)

�z(q) J (q) + Ky(q) �x(q)
�y(q) �x(q) J (q) + Kz(q)

⎞
⎠, (89)

and J (q), Kμ(q)’s, and �μ(q)’s are defined as

J (q) = JX

2
e−i qx

2 +i
√

3
2 qy + JY

2
e−i qx

2 −i
√

3
2 qy + JZ

2
eiqx

+ J3rd
X

2
eiqx−i

√
3qy + J3rd

Y

2
eiqx+i

√
3qy + J3rd

Z

2
e−2iqx , (90)

Kx(q) = KX

2
e−i qx

2 +i
√

3
2 qy , (91)

Ky(q) = KY

2
e−i qx

2 −i
√

3
2 qy , (92)

Kz(q) = KZ

2
eiqx , (93)

�x(q) = �X

2
e−i qx

2 +i
√

3
2 qy , (94)

�y(q) = �Y

2
e−i qx

2 −i
√

3
2 qy , (95)

�z(q) = �Z

2
eiqx . (96)

The details of the derivation of Eq. (88) are described in
Appendix E. Furthermore, we make some remarks about mo-
mentum in the case of the honeycomb lattice in Appendix F.
Note that the MFA can reproduce the phase diagram ob-
tained in the Luttinger-Tizsa method [28,29] [i.e., Fig. 2(a)
of Ref. [12] except the region surrounded by the dashed white
line [30]].

By using Eqs. (85)–(96), we can obtain the energies and
spin configurations of magnetic states. Since Eq. (88) is
quadratic in spin variables, we obtain six eigenvalues and the
corresponding eigenvectors for each q by diagonalizing the
matrix (

0 M(q)
M(q)† 0

)
, (97)
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FIG. 9. Spin configurations of the magnetic states considered in our analyses: (a) the magnetic states with Q = 0, the ferromagnetic state
and the antiferromagnetic state, (b) the magnetic states with Q = QZZ-X (=K01/2) or Q = QZZ-Z (=K10/2), the zigzag states and the stripy
states, and (c) the magnetic state with Q = Q120, the 120◦ order state. Specific directions of spins, which are represented by the arrows, are
chosen because the relative angles between the neighboring spins are essential for understanding the differences in the spin configurations.

where M(q) has been defined in Eq. (89) and 0 represents the
zero matrix (i.e., the μ × ν matrix of which the components
are all zero). At a certain q, for example q = Q, the eigen-
value which is the smallest of the six ones gives the energy
of a magnetic state characterized by the ordering vector Q.
Then, its spin configuration can be obtained by combining the
corresponding eigenvectors and Eqs. (85)–(87); the obtained
spin configuration is valid only if it is consistent with Eq. (85).

In the analyses of Sec. IV B, we consider several mag-
netic states, which can be classified into three groups. The
first group consists of the magnetic states with Q = 0, which
include a ferromagnetic state and an antiferromagnetic state
[Fig. 9(a)]. Note that the Q of the antiferromagnetic state
becomes 0 in the presence of a sublattice structure (because
of it, the spins on a sublattice are all ferromagnetic, i.e., par-
allel). The second group consists of the magnetic states with
Q = K/2, where K is the reciprocal lattice vector [Eq. (F6)];
they include the zigzag states and the stripy states [Fig. 9(b)].
If we see a unit consisting of one site on the A or B sublattice
and its three neighbors, in the zigzag states three spins are
ferromagnetic (parallel) and the other is antiferromagnetic
(antiparallel); in the stripy states two spins are ferromagnetic
and the others are antiferromagnetic [Fig. 9(b)]. In our analy-
ses, we consider two kinds of Q = K/2, i.e., one is QZZ-X =
K01/2 and the other is QZZ-Z = K10/2 (for the details of K01

and K10, see Appendix F). In the zigzag state with Q = QZZ-X
or Q = QZZ-Z the spins on the X or the Z bonds, respectively,
are antiferromagnetic; in the stripy state with Q = QZZ-X or
Q = QZZ-Z those are ferromagnetic. This difference between
the zigzag (or stripy) states with Q = QZZ-X and QZZ-Z is
partly due to the momentum dependences of Kμ(q)’s. Namely,
since Eqs. (91)–(93) show

Kx(QZZ-X ) = KX

2
eiπ e−iπ/3 = −KX

2
e−iπ/3, (98)

Ky(QZZ-X ) = KY

2
e−iπ/3, (99)

Kz(QZZ-X ) = KZ

2
e−iπ/3, (100)

and

Kx(QZZ-Z ) = KX

2
e−iπ/3, (101)

Ky(QZZ-Z ) = KY

2
e−iπ/3, (102)

Kz(QZZ-Z ) = KZ

2
eiπ e−iπ/3 = −KZ

2
e−iπ/3, (103)

the effective Kitaev interaction of the X bonds for Q = QZZ-X
or of the Z bonds for Q = QZZ-Z has the opposite sign and, as a
result, the spins on the X bonds for Q = QZZ-X or the Z bonds
for Q = QZZ-Z are aligned in the opposite direction compared
with the spins on the other bonds. The third group consists
of the magnetic state with Q = Q120, the 120◦ order state
[Fig. 9(c)]. The magnetic states explained above are realized
in Mott insulators with strong SOC on the honeycomb lattice
[12,15].

B. Results

To study how the light fields affect the magnetic states, we
numerically calculate their energies within the MFA in the
five cases of our model at ω = 3 and 2.2 eV. (The results
at ω = 1.8 eV, which are not shown, are qualitatively the
same as those at ω = 2.2 eV.) As explained in Sec. IV A, the
energy of a magnetic state characterized by Q corresponds to
the lowest eigenvalue obtained by diagonalizing Eq. (97) at
q = Q. Furthermore, the Q’s considered in this study are 0,
QZZ-X (=K01/2), QZZ-Z (=K10/2), and Q120. In the numerical
calculations, we impose the periodic boundary condition and
set N1 = N2 = 120 in Eq. (F5). The parameters of our model
except t3rd are chosen in the way described in Sec. III B. We
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FIG. 10. The |ui j | dependences of the energies of the magnetic states for Q = 0, QZZ-X (=K01/2), QZZ-Z (=K10/2), and Q120 within the
MFA in the first case of our model with Ecirc(t ) [(a) and (d)], E linear-b(t ) [(b) and (e)], and E linear-a(t ) [(c) and (f)]. The value of ω is 3 eV in
(a)–(c) and 2.2 eV in (d)–(f). In this case, the bond-averaged nearest-neighbor hopping integrals are considered.

set t3rd = −40 meV in the third or fourth case and t3rd =
−60 meV in the fifth case. Note that the former value cor-
responds to the average of the intraorbital hopping integral of
the dxy orbital for the Z3 bonds, that of the dyz orbital for the
X3 bonds, and that of the dxz orbital for the Y3 bonds which are
obtained in the first-principles calculations [13]; and that the
latter value is also considered to clarify the effects of J3rd

δ in
detail.

Before discussing the properties for |ui j | �= 0, we comment
on the properties at ui j = 0 in the five cases of our model.
First, the ferromagnetic state, a magnetic state with Q = 0,
has the lowest energy in the first, second, and fourth cases,
whereas the zigzag state for Q = QZZ-Z , a magnetic state with
Q = K10/2, is the lowest-energy state in the third and fifth
cases; the 120◦ order state has the highest energy in all the
cases. This result indicates that the stability of the zigzag or
ferromagnetic state is sensitive to the value of t3rd and the
degree of the bond anisotropy of the hopping integrals. Since
the main effect of t3rd is to induce J3rd

δ , our result is consistent
with the result obtained in a minimal model of α-RuCl3 [13].
Furthermore, the competition between these magnetic states
agrees with the experimental result [31]. The sensitivity to
J3rd
δ can be understood by estimating its energy in the MFA:

since the expectation value of Eq. (79) can be written in the
MFA as

∑
〈〈〈i, j〉〉〉 J3rd

δ 〈Si〉 · 〈S j〉, the corresponding energies
per spin surrounded by three third neighbors for the ferro-
magnetic, zigzag, and 120◦ order states are 3J3rdS2, −3J3rdS2,
and 0, respectively, where J3rd

X = J3rd
Y = J3rd

Z = J3rd. Then, the
zigzag states for Q = QZZ-Z and QZZ-X , ones of the magnetic
states with Q = K10/2 and K01/2, are degenerate in the first
and third cases; in the second, fourth, and fifth cases, this
degeneracy is lifted and the former state is of lower energy.

This lifting is due to the bond anisotropy of the hopping
integrals; in addition, the lower energy of the zigzag state
for Q = QZZ-Z is mainly due to |JX + KX | > |JZ + KZ |, which
makes the ferromagnetic spin alignment of the X bonds more
stable than that of the Z bonds. (As explained in Sec. IV A,
two spins on a X or Z bond are antiferromagnetic in the
zigzag state for Q = QZZ-X or QZZ-Z , respectively.) Note that
the energy difference between these zigzag states is about
0.1 meV per spin.

We now present the |ui j | dependences of the energies
of the magnetic states in the first case of our model with
Ecirc(t ), E linear-b(t ), or E linear-a(t ). These dependences at ω =
3 and 2.2 eV are shown in Fig. 10. The results with Ecirc(t )
[Figs. 10(a) and 10(d)] show that the energies of the magnetic
states with Q = 0, QZZ-X , and QZZ-Z are close even in the
range of 0 < |ui j | � 1 and that the energy of the 120◦ order
state is much higher than them except near the |ui j |’s at which
the exchange interactions are very small in magnitude [see
Figs. 2(b) and 10(d)]. The similar properties hold even in the
results with E linear-b(t ) or E linear-a(t ) at ω = 3 eV [Fig. 10(b)
or 10(c)].

There are several properties characteristic of the linearly
polarized light fields. One is the lifting of the degeneracy of
the magnetic states with Q = QZZ-X and QZZ-Z . For example,
in the case with E linear-b(t ) at ω = 3 eV the magnetic state
with Q = QZZ-X is of lower energy than that with Q = QZZ-Z
[Fig. 10(b)], whereas in the case with E linear-a(t ) at ω = 3 eV
the latter is of lower energy [Fig. 10(c)]. This lifting is due
to the light-induced bond anisotropy of the exchange interac-
tions, one of the characteristics of linearly polarized light. The
property that the magnetic state with Q = QZZ-X is of lower
energy than that with Q = QZZ-Z in the case with E linear-b(t ) at
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FIG. 11. The |ui j | dependences of the energies of the magnetic states for Q = 0, QZZ-X (=K01/2), QZZ-Z (=K10/2), and Q120 within the
MFA in the second case of our model with Ecirc(t ) [(a) and (d)], E linear-b(t ) [(b) and (e)], and E linear-a(t ) [(c) and (f)]. The value of ω is 3 eV
in (a)–(c) and 2.2 eV in (d)–(f). In this case, the bond-anisotropic nearest-neighbor hopping integrals are considered. In contrast to the first
case (Fig. 10), the degeneracy of the magnetic states for Q = K01/2 and K10/2 is lifted even for Ecirc(t ) due to the bond anisotropy of the
nearest-neighbor hopping integrals.

ω = 3 eV comes from the facts that the exchange interactions
for the Z bonds are larger in magnitude than those for the
X or Y bonds and that JZ and KZ are ferromagnetic [see
Figs. 4(a)–4(c) in the range of 0 � |ui j | � 1]; the property
in the case with E linear-a(t ) at ω = 3 eV can be similarly un-
derstood. The other characteristic properties are the changes
in the competing magnetic states. From Fig. 10(e), we see
the competing magnetic states in the range of 0 < |ui j | � 0.4
are the magnetic states with Q = 0 and QZZ-Z , whereas those
in the range of 0.6 � |ui j | � 0.8 become the magnetic states
with Q = QZZ-Z , QZZ-X , and Q120. In addition, from Fig. 10(f),
we see a similar change in the competing magnetic states.
These results are related to the light-induced bond anisotropy
of the exchange interactions because in the range of 0.6 �
|ui j | � 0.8 with E linear-b(t ) or E linear-a(t ) the signs of the ex-
change interactions only for the Z bonds or for the X and Y
bonds, respectively, are changed and their magnitudes become
larger than those for the other bonds [see Figs. 4(d)–4(f) for
E linear-b(t ) and Figs. 5(d)–4(f) for E linear-a(t )].

We turn to the results in the second case of our model.
Figure 11 shows the |ui j | dependences of the energies of
the magnetic states in this case with Ecirc(t ), E linear-b(t ), or
E linear-a(t ). These results are qualitatively the same as those
in the first case except that the degeneracy of the magnetic
states with Q = QZZ-X and QZZ-Z is lifted even for Ecirc(t ). (As
described above, this lifting results from the bond anisotropy
of the hopping integrals, which is absent in the first case and
present in the second case.) Combining this result with the
results at ui j = 0, we find that the main effects of the bond
anisotropy of the hopping integrals are to lift the degeneracy

of the magnetic states with Q = QZZ-X and QZZ-Z and to de-
crease the energy of the ferromagnetic state compared with
those of the zigzag states at ui j = 0.

As well as the results in the second cases, the results in
the third case (Fig. 12) are similar to those in the first case
except for two differences. The two differences are that at
ui j = 0 the energies of the zigzag states are lower than that of
the ferromagnetic state and that the magnetic state with q = 0
becomes of lower energy than those of the magnetic states
with Q = QZZ-X and QZZ-Z above a certain value of |ui j | [e.g.,
see the values at |ui j | = 0.46 in Fig. 12(a)]. These differences
result from the effects of J3rd

δ because the latter difference can
be understood from the |ui j | dependences of J3rd

δ (Fig. 13); for
example, in the case with Ecirc(t ) at ω = 3 eV the blue and
red lines of Fig. 12(a) cross at the value of |ui j | at which J3rd

is small in magnitude [Fig. 13(a)]. Then, as described above,
the former difference can be understood from the difference
in the energies due to J3rd

δ .
The similar effects of J3rd

δ appear in the fourth and fifth
cases (Figs. 14 and 15). However, in the presence of the
bond anisotropy of the nearest-neighbor hopping integrals
t3rd = −40 meV is not sufficient for making the energies of
the zigzag states lower at ui j = 0 than that of the ferromag-
netic state (Fig. 14), although the zigzag states are of lower
energy at ui j = 0 for t3rd = −60 meV (Fig. 15). Nevertheless,
we believe this does not contradict the experimental result
that the zigzag state is stabilized in α-RuCl3 because J3rd

δ is
underestimated in our simplified treatment (see Sec. III A and
Appendix D); a more accurate calculation is beyond the scope
of this paper.

214413-14



POLARIZATION-DEPENDENT MAGNETIC PROPERTIES OF … PHYSICAL REVIEW B 104, 214413 (2021)

FIG. 12. The |ui j | dependences of the energies of the magnetic states for Q = 0, QZZ-X (=K01/2), QZZ-Z (=K10/2), and Q120 within the
MFA in the third case of our model with Ecirc(t ) [(a) and (d)], E linear-b(t ) [(b) and (e)], and E linear-a(t ) [(c) and (f)]. The value of ω is 3 eV in
(a)–(c) and 2.2 eV in (d)–(f). In this case, the bond-averaged nearest-neighbor hopping integrals and the third-neighbor one are considered.
In contrast to the first case (Fig. 10), the magnetic state for Q = K01/2 or K10/2 has the lower energy than that for Q = 0 owing to finite J3rd

δ

induced by the third-neighbor hopping integral.

The most important thing seen from Figs. 11, 12, 14, and
15 is that the characteristic properties found in the first case
remain qualitatively unchanged even in the other four cases.
Thus, we believe the lifting of the magnetic states with Q =
QZZ-X and QZZ-Z and the change in the competing magnetic
states are characteristic of linearly polarized light. Although
the former can be realized by using the bond-anisotropic
nearest-neighbor hopping integrals, the latter is a unique effect
of linearly polarized light.

V. DISCUSSION

First, we discuss the validity of our model. Our model
has the three nearest-neighbor hopping integrals, including
their bond anisotropy, and the third-neighbor one. For the
Mott insulating state, the effective Hamiltonian consists of
the nearest-neighbor Heisenberg, Kitaev, and off-diagonal
symmetric exchange interactions and the third-neighbor
Heisenberg interaction (i.e., Jδ , Kδ , �δ , and J3rd

δ ). We believe
our model is sufficient for describing the magnetic proper-
ties of α-RuCl3 because its first-principles calculations [13]
showed that the leading hopping integrals are t2 and t3, which
are at least an order of magnitude larger than the others, and
suggested that its minimal spin model consists of the bond-
averaged Jδ , Kδ , �δ (=−Kδ ), and J3rd

δ . In addition, the signs
of the exchange interactions of our model are consistent with
those estimated by fitting a magnetization measurement [32].
Note that according to this measurement, another off-diagonal
symmetric exchange interaction �′, which does not appear in
our model, is smaller than these four exchange interactions.

The similar results are obtained in other studies [13,31]. This
is reasonable because �′ is proportional to the other nearest-
neighbor interorbital hopping integral [12], which is small in
the case of α-RuCl3 [13].

We should note that although the effect of SOC on the
coefficients of the exchange interactions is necessary for
discussing their values quantitatively [13], the following ar-
guments indicate that its effect may be not large in the
case of α-RuCl3. In general, HSOC affects the coefficients of
the exchange interactions of Mott insulators, as we can see
from Eq. (55). Since the LS-type SOC induces the onsite
interorbital excitations, it can connect |i; �, g�〉 with |i; �, g′

�〉
for g′

� �= g�; such off-diagonal terms result in the degener-
acy lifting of the states |i; �, g�〉’s for given �. Thus, the
main effect of HSOC on the coefficients of the exchange
interactions is to change the energies of the intermediate
states in the second-order perturbation processes considered
to derive the exchange interactions; the energy for a cer-
tain �, including this effect of HSOC, could be expressed
as E� ± c�λ, where λ is the coupling constant of HSOC

and c� = O(1) or O(0.1). Accordingly, the modulations of
the exchange interactions which come from the interme-
diate states for � are roughly given by E�/(E� ± c�λ) ∼
1 ∓ c� (λ/E� ). Since λ = O(0.1 eV) in α-RuCl3, we have
(λ/E� ) = O(0.1), and thus the corrections due to SOC are
small for α-RuCl3. From the above arguments, we con-
clude that our treatment, in which the effect of SOC on the
coefficients of the exchange interactions is neglected, is suf-
ficient for discussing the exchange interactions of α-RuCl3

qualitatively.
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FIG. 13. The |ui j | dependences of J3rd
δ in the third or fourth case

of our model, in which t3rd = −40 meV, with Ecirc(t ) [(a) and (b)],
E linear-b(t ) [(c) and (d)], and E linear-a(t ) [(e) and (f)]. The value of ω

is 3 eV in (a)–(c) and 2.2 eV in (d)–(f). In (a) and (b), J3rd
X = J3rd

Y =
J3rd

Z = J3rd. The similar |ui j | dependences are obtained in the fifth
case.

Next, we make some remarks about heating effects. Since
the periodic driving field causes the system to heat up, it even-
tually approaches an infinite-temperature state [33]. However,
there are intermediate times t � τ at which the periodically
driven system can be approximately described by the Flo-
quet Hamiltonian [4,5]. Since τ is roughly given by τ ≈
T exp(ω/Jex) [5] and our parameters satisfy ω = O(1 eV)
and Jex = max(Jδ, Kδ, �δ, J3rd

δ ) = O(10 meV), the intermedi-
ate times of our system may be sufficiently large. Note that
because of these values of ω and Jex, the correction to the
Floquet Hamiltonian, the second term of Eq. (58), is negli-
gible. Then, since our ω is nonresonant, the heating effect due
to the doublon creation induced by the driving field is also
negligible [22]. (Since this heating effect is non-negligible
for resonant or nearly resonant ω, we have shown the results
for some nonresonant ω’s in Secs. III B and IV B.) It should
be noted that the effects of the doublon creation due to the
driving field can be described by H̄KE in Eq. (55), and that
they become negligible if ω is nonresonant in the sense that
the denominator of Eq. (55) does not diverge [22]. (If ω is
resonant or nearly resonant, H̄KE induces a non-negligible
imaginary part, resulting in the heating effects [22].) Thus,
we believe our results based on the Floquet Hamiltonian are
meaningful as the properties of periodically driven α-RuCl3.

We also remark on a property induced by the field of
circularly polarized light. It has been shown for a single-

orbital Hubbard model driven by circularly polarized light
[34,35] that when the light frequency is comparable with the
Hubbard interaction, the effective Hamiltonian of the Mott
insulator could acquire a spin scalar chirality, which is non-
negligible compared with the antiferromagnetic Heisenberg
interaction. Note that the spin scalar chirality terms come
from the fourth-order perturbation processes in which the ki-
netic terms are treated as perturbation, whereas the exchange
interactions come from the second-order ones. Although a
similar mechanism might work in more complicated models,
our rough estimate shown below indicates that such contri-
butions may be negligible in our cases. Since the dominant
Bessel functions appearing in the exchange interactions and
the spin scalar chirality terms are J0(ui j ) and J1(ui j ), a ra-
tio of Jchi, one of the spin scalar chirality terms, to Jexch,
one of the exchange interactions, may be roughly given by
|Jchi/Jexch| ∼ t2J1(ui j )2/(Uint|Uint − ω|), where t is of the
order of the hopping integrals and Uint is of the order of the on-
site Coulomb interactions; in some cases of our analyses, our
parameters correspond to t = O(0.1 eV), Uint = O(1 eV), and
|Uint − ω| = O(0.1 eV). (Precisely speaking, our |U� − nω|’s
for any � and allowed n are larger than the hopping integrals.)
In addition, since J1(ui j )2 = O(0.1), we have |Jchi/Jex| ∼
10−2. Although there is another contribution to the spin scalar
chirality terms, J ′

chi, it may be smaller than the above contribu-
tion because of an additional factor |Uint − ω|/ω = O(10−1)
[i.e., |J ′

chi/Jchi| ∼ |Uint − ω|/ω = O(10−1)]. Thus, we believe
the spin scalar chirality terms are negligible and the results
shown in Sec. IV B remain qualitatively unchanged.

We now address an experimental observation of our results.
Controlling the exchange interactions via a light field, in prin-
ciple, is achievable by performing pump-probe measurements.
However, a strong light field is necessary because the ω’s
considered in our study are high. For example, to realize the
periodically driven α-RuCl3 at ω = 2.2 eV for |ui j | ∼ 0.4 or
0.6, the amplitude of a light field, E0, should be E0 ∼ 26 or
39 MV cm−1, respectively [for the relation between ui j and
E0, see Eq. (45)]; in the cases at ω = 1.8 eV for |ui j | ∼ 0.4 or
0.6, we have E0 ∼ 21 or 32 MV cm−1, respectively. In these
estimates, we have used aNN ∼ 3.4 × 10−8 cm, which corre-
sponds to the average of the experimentally observed lengths
of two nearest-neighbor bonds [36]. Then, the properties of
the magnetic states could be observed by using, for example,
neutron scattering measurements. Specifically, the changes in
the competing magnetic states due to linearly polarized light
could be detected as the evolution of short-range correlations
characterized by the corresponding ordering vectors. Since a
light field of the order of 10 MV cm−1 can be realized ex-
perimentally [37], we hope our main results, i.e., the changes
in the exchange interactions, their bond anisotropy, and the
competing magnetic states via linearly polarized light, will be
observed by experiments.

Finally, we comment on several directions for further rele-
vant research. First, our theory can be extended to the cases of
α-RuCl3 with both a light field and an external magnetic field
and of other periodically driven Mott insulators on the hon-
eycomb lattice (e.g., some Ir oxides). Our theory may be also
useful for formulating a theory in the case on another lattice
with strong SOC. The studies in these cases are contained in
the possible research directions. Another research direction is
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FIG. 14. The |ui j | dependences of the energies of the magnetic states for Q = 0, QZZ-X (=K01/2), QZZ-Z (=K10/2), and Q120 within the
MFA in the fourth case of our model with Ecirc(t ) [(a) and (d)], E linear-b(t ) [(b) and (e)], and E linear-a(t ) [(c) and (f)]. The value of ω is 3 eV in
(a)–(c) and 2.2 eV in (d)–(f). In this case, the bond-anisotropic nearest-neighbor hopping integrals and the third-neighbor one are considered.

to study a possibility of Kitaev spin liquids in a more elaborate
method than the MFA. Such recent studies include Ref. [38].
In addition, our results may be useful for realizing a gapped

spin liqud, a toric code phase [39,40], because it could be
stabilized in the presence of strong bond anisotropy of the
exchange interactions. One of the possible situations might be

FIG. 15. The |ui j | dependences of the energies of the magnetic states for Q = 0, QZZ-X (=K01/2), QZZ-Z (=K10/2), and Q120 within the
MFA in the fifth case of our model with Ecirc(t ) [(a) and (d)], E linear-b(t ) [(b) and (e)], and E linear-a(t ) [(c) and (f)]. The value of ω is 3 eV in
(a)–(c) and 2.2 eV in (d)–(f). In this case, the bond-anisotropic nearest-neighbor hopping integrals and the third-neighbor one are considered;
the difference between the parameters in the fourth and fifth cases is in the values of t3rd.
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α-RuCl3 with both an in-plane magnetic field Hab and a lin-
early polarized light field because a gapless spin liquid could
be stabilized for α-RuCl3 in the range of 7.5T < Hab < 16T
[41] and a linearly polarized light field could induce the strong
bond anisotropy. Then, our results about the exchange inter-
actions could be used to control magnetization dynamics and
spintronics phenomena of Mott insulators with strong SOC
because the key quantities to describe them are the exchange
interactions [21,42]. Thus, the extensions to dynamical or
transport properties are ones of the important future research
directions. Another important future research direction is an
extension to the case for small ω, at which the heating effects
are no longer negligible.

VI. CONCLUSION

We have studied the magnetic properties of α-RuCl3 driven
by circularly or linearly polarized light. We showed that, as
well as the magnitudes and signs of the exchange interactions,
their bond anisotropy can be changed by tuning the ampli-
tude and frequency of one of the fields of linearly polarized
light. This is one of the characteristics of linearly polarized
light because the bond anisotropy is not induced by circularly
polarized light. Since the light-induced bond anisotropy can
be used to change the ratios of J , K , and � for the Z bonds
to those for the X or Y bonds, the honeycomb-network spin
system could be transformed into weakly coupled zigzag or
step chains for E linear-b(t ) or E linear-a(t ), respectively. We also
showed that the |ui j | dependences of the exchange interactions
obtained in the first case remain qualitatively unchanged ex-
cept for the degeneracy lifting of the exchange interactions
for the Z bonds and for the X and Y bonds. Then, we showed
that the competing magnetic states can be changed only for
linearly polarized light. Such a situation could be realized
by using the strong field of the order of 10 MV cm−1 in
pump-probe measurements. We also showed that the bond
anisotropy of the nearest-neighbor hopping integrals and the
third-neighbor hopping integral do not change qualitatively
the results obtained in the first case of our model except for the
stability of the zigzag states at |ui j | = 0 and the degeneracy
lifting of the magnetic states with Q = QZZ-X and QZZ-Z . We
believe this paper is useful for further research of α-RuCl3

and the relevant materials such as the honeycomb iridates and
provides an important step towards a comprehensive under-
standing of magnetic properties of periodically driven Mott
insulators with strong SOC.
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APPENDIX A: DERIVATION OF EQ. (44)

We calculate H̄KE’s for A(t ) = Acirc(t ), Alinear-b(t ), and
Alinear-a(t ). H̄KE is given by

H̄KE =P1
ω

2π

∫ 2π/ω

0
dtHKEP1

=P1
ω

2π

∫ 2π/ω

0
dt

∑
i, j

∑
a,b

∑
σ

tia jbe−ie(Ri−R j )·A(t )

× c†
iaσ c jbσP1. (A1)

To perform the time integral, we rewrite the Peierls phase
factor using Eqs. (6)–(8). For A(t ) = Acirc(t ), we write it as
follows [20]:

e−ie(Ri−R j )·A(t ) =
⎧⎨
⎩

eiui j sin(ωt+ 5π
3 ) (X bonds),

eiui j sin(ωt+ π
3 ) (Y bonds),

eiui j sin(ωt+π ) (Z bonds),
(A2)

where ui j is defined in Eq. (45). Similarly, we obtain

e−ie(Ri−R j )·A(t ) =
{

ei 1
2 ui j sin(ωt− π

2 ) (X or Y bonds),
eiui j sin(ωt+ π

2 ) (Z bonds)
(A3)

for A(t ) = Alinear-b(t ), and

e−ie(Ri−R j )·A(t ) =

⎧⎪⎨
⎪⎩

ei
√

3
2 ui j sin(ωt+ π

2 ) (X bonds),

ei
√

3
2 ui j sin(ωt− π

2 ) (Y bonds),
1 (Z bonds)

(A4)

for A(t ) = Alinear-a(t ). By combining Eqs. (A2)–(A4) with
Eq. (A1) and using the relations

eix sin θ =
∞∑

n=−∞
Jn(x)einθ (A5)

and

ω

2π

∫ 2π/ω

0
dteinωt = δn,0, (A6)

we obtain Eq. (44).

APPENDIX B: DERIVATION OF EQ. (50)

We solve Eq. (49). By integrating both sides and choosing
for the initial state the state in which the lower-limit contribu-
tions of the integrals cancel each other out, we have

iei(H̄KE+H̃int )t |	1〉t =
∫ t

dt ′ei(H̄KE+H̃int )t ′
HKE|	0〉t ′ . (B1)

Furthermore, since the time variation of |	0〉t ′ is slow, we
could write Eq. (B1) as

iei(H̄KE+H̃int )t |	1〉t ≈
∫ t

dt ′ei(H̄KE+H̃int )t ′
HKE|	0〉t . (B2)

By combining Eq. (B2) with Eq. (5) and Eqs. (A2)–(A5) and
performing the time integral, we obtain Eq. (50).

APPENDIX C: DERIVATION OF EQ. (63)

We calculate the possible terms of Eq. (60) for the Z bonds.
The calculations consist of two steps.

First, we calculate 〈i; �, g�|Ti j |i〉 for Ti j = T Z
i j . Since

|i〉 = {|+〉1|+〉2, |+〉1|−〉2, |−〉1|+〉2, |−〉1|−〉2}, (C1)

we calculate the finite terms of 〈i; �, g�|T Z
12|i〉; the contribu-

tions from 〈i; �, g�|T Z
21|i〉 to H̄eff can be taken into account
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by multiplying those from 〈i; �, g�|T Z
12|i〉 by two. Using

Eqs. (18), (19), and (61), we have

T Z
12|+,+〉 = 1

3

[
(t3 − t1)c†

1dyz↓c†
1dxy↑ − i(t1 − t3)c†

1dzx↓c†
1dxy↑

+ 2t2c†
1dyz↓c†

1dzx↓ − it2c†
1dyz↓c†

1dxy↑

− t2c†
1dzx↓c†

1dxy↑
]|0〉, (C2)

T Z
12|−,−〉 = 1

3

[
(t1 − t3)c†

1dyz↑c†
1dxy↓ − i(t1 − t3)c†

1dzx↑c†
1dxy↓

+ 2t2c†
1dyz↑c†

1dzx↑ − it2c†
1dyz↑c†

1dxy↓

+ t2c†
1dzx↑c†

1dxy↓
]|0〉, (C3)

T Z
12|+,−〉 = 1

3

[−(t1 − it2)c†
1dyz↑c†

1dyz↓ − (t1 + it2)c†
1dzx↑c†

1dzx↓

− (it1 + t2)c†
1dyz↑c†

1dzx↓ + (it1 − t2)c†
1dzx↑c†

1dyz↓

− (t1 − it2)c†
1dyz↑c†

1dxy↑ + (it1 − t2)c†
1dzx↑c†

1dxy↑

− t3c†
1dyz↓c†

1dxy↓ − it3c†
1dzx↓c†

1dxy↓

− t3c†
1dxy↑c†

1dxy↓
]|0〉, (C4)

T Z
12|−,+〉 = 1

3

[
(t1 + it2)c†

1dyz↑c†
1dyz↓ + (t1 − it2)c†

1dzx↑c†
1dzx↓

+ (it1 + t2)c†
1dyz↑c†

1dzx↓ − (it1 − t2)c†
1dzx↑c†

1dyz↓

+ (t1 + it2)c†
1dyz↓c†

1dxy↓ + (it1 + t2)c†
1dzx↓c†

1dxy↓

+ t3c†
1dyz↑c†

1dxy↑ − it3c†
1dzx↑c†

1dxy↑

+ t3c†
1dxy↑c†

1dxy↓
]|0〉. (C5)

By using Eqs. (C2)–(C5) and Eqs. (26)–(40), we can calculate
〈i; �, g�|T Z

12|i〉’s; as a result, the finite terms are given by

〈i; A1|T Z
12|+,−〉 = −〈i; A1|T Z

12|−,+〉

= − 1

3
√

3
(2t1 + t3), (C6)

〈i; E , u|T Z
12|+,−〉 = −〈i; E , u|T Z

12|−,+〉

= − 2

3
√

6
(t1 − t3), (C7)

〈i; E , v|T Z
12|+,−〉 = 〈i; E , v|T Z

12|−,+〉 = 2

3
√

2
it2, (C8)

〈i; T1, α+|T Z
12|−,−〉 = 〈i; T1, α−|T Z

12|+,+〉 = 2

3
t2, (C9)

〈i; T1, α|T Z
12|+,−〉 = −〈i; T1, α|T Z

12|−,+〉 = − 2

3
√

2
it1,

(C10)

〈i; T2, α|T Z
12|+,−〉 = −〈i; T2, α|T Z

12|−,+〉 = − 2

3
√

2
t2,

(C11)

〈i; T1, β+|T Z
12|+,−〉 = 1

3
(it1 − t2), (C12)

〈i; T1, β+|T Z
12|−,+〉 = 〈i; T1, β−|T Z

12|+,−〉 = − i

3
t3, (C13)

〈i; T1, β−|T Z
12|−,+〉 = 1

3
(it1 + t2), (C14)

〈i; T1, β|T Z
12|+,+〉 = − 1

3
√

2
[i(t1 − t3) + t2], (C15)

〈i; T1, β|T Z
12|−,−〉 = − 1

3
√

2
[i(t1 − t3) − t2], (C16)

〈i; T2, β|T Z
12|+,+〉 = 1

3
√

2
[i(t1 − t3) + t2], (C17)

〈i; T2, β|T Z
12|−,−〉 = − 1

3
√

2
[i(t1 − t3) − t2], (C18)

〈i; T1, γ+|T Z
12|+,−〉 = 1

3
(t1 − it2), (C19)

〈i; T1, γ+|T Z
12|−,+〉 = −〈i; T1, γ−|T Z

12|+,−〉 = −1

3
t3,

(C20)

〈i; T1, γ−|T Z
12|−,+〉 = −1

3
(t1 + it2), (C21)

〈i; T1, γ |T Z
12|+,+〉 = 1

3
√

2
[(t1 − t3) + it2], (C22)

〈i; T1, γ |T Z
12|−,−〉 = − 1

3
√

2
[(t1 − t3) − it2], (C23)

〈i; T2, γ |T Z
12|+,+〉 = 1

3
√

2
[(t1 − t3) + it2], (C24)

〈i; T2, γ |T Z
12|−,−〉 = 1

3
√

2
[(t1 − t3) − it2], (C25)

and the others are zero.
Then, we express Eq. (60) for the Z bonds in terms of the

exchange interactions. By combining Eqs. (C6)–(C25) and
Eqs. (22)–(25) with Eq. (60), we can write H̄eff for the Z
bonds, H̄Z

eff, as follows:

H̄Z
eff = HA1 + HE + HT1 + HT2 , (C26)

where

HA1 =
∑
〈i, j〉Z

∞∑
n=−∞

4(2t1 + t3)2Jn
(
uZ

i j

)2

27(U + 2J ′ − nω)
Si · S j, (C27)

HE =
∑
〈i, j〉Z

∞∑
n=−∞

8Jn
(
uZ

i j

)2

27(U − J ′ − nω)

× {[
(t1 − t3)2 − 3t2

2

]
Si · S j + 6t2

2 Sz
i Sz

j

}
, (C28)

HT1 =
∑
〈i, j〉Z

∞∑
n=−∞

4Jn
(
uZ

i j

)2

9(U ′ − JH − nω)

× { − [
(t1 − t3)2 + t2

2 − 2t2
1 − 4t1t3

]
Si · S j

+ [
(t1 − t3)2 + t2

2

](
Sy

i Sy
j + Sx

i Sx
j

)
+ 2t2(t1 − t3)

(
Sx

i Sy
j + Sy

i Sx
j

)
+ 2

[(
t2
1 + t2

2 + t2
3

) − 2t2
2 − 2t1t3

]
Sz

i Sz
j

}
, (C29)

HT2 =
∑
〈i, j〉Z

∞∑
n=−∞

4Jn
(
uZ

i j

)2

9(U ′ + JH − nω)

× {[
(t1 − t3)2 + t2

2

](
Sx

i Sx
j + Sy

i Sy
j

)
− 2t2(t1 − t3)

(
Sx

i Sy
j + Sy

i Sx
j

)
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− [
(t1 − t3)2 − t2

2

]
Si · S j

}
. (C30)

In deriving these equations, we have used the relations of
operators in the jeff = 1/2 subspace [e.g., |−,+〉〈−,+| =
( 1

2 − Sz
1)( 1

2 + Sz
2) and |−,+〉〈+,−| = S−

1 S+
2 ] and omitted the

constant terms. By using the identity Sx
i Sx

j + Sy
i Sy

j = Si · S j −
Sz

i Sz
j , we can rewrite Eqs. (C29) and (C30). A combination of

the resultant equations and Eqs. (C26)–(C28) gives Eq. (63).

APPENDIX D: ESTIMATES OF THE VALUES
OF J3rd

δ AND K3rd
δ

We estimate J3rd
δ and K3rd

δ at E0 = 0 in two cases. In
the following estimation, we calculate their values for the
Z3 bonds (Fig. 1) because the bond anisotropy of the third-
neighbor hopping integrals is weak [13]; the values of the
third-neighbor hopping integrals used below are consistent
with those of Ref. [13]. Then, we set J ′ = JH, U ′ = U − 2JH,
U = 3 eV, and JH = 0.5 eV.

If we consider only t3rd, the intraorbital hopping integral
of the dxy orbital, among the third-neighbor hopping integrals,
J3rd

Z and K3rd
Z at E0 = 0 are given by

J3rd
Z = 4t2

3rd

27(U + 2JH)
+ 8t2

3rd

27(U − JH)
(D1)

and

K3rd
Z = 4

9
t2
3rd

(
1

U − 3JH
− 1

U − JH

)
, (D2)

respectively. If we set t3rd ∼ −40 meV, we have J3rd
Z ∼

0.25 meV and K3rd
Z ∼ 0.19 meV.

Next, we consider not only t3rd, but also two additional
terms of third-neighbor hopping integrals, t ′

3rd and t ′′
3rd. Here

t ′
3rd represents the intraorbital hopping integral of the dyz or

dzx orbital and t ′′
3rd represents the interorbital hopping integral

between these orbitals. Then, we can write J3rd
Z and K3rd

Z at
E0 = 0 as follows:

J3rd
Z = 4(2t ′

3rd + t3rd)2

27(U + 2JH)
+ 8(t ′

3rd − t3rd)2

27(U − JH)

+ 8t ′
3rd(t ′

3rd + 2t3rd)

9(U − 3JH)
, (D3)

K3rd
Z = 4

9
[(t ′

3rd − t3rd)2 − 3(t ′′
3rd)2]

×
(

1

U − 3JH
− 1

U − JH

)
. (D4)

Setting t3rd ∼ −40 meV, t ′
3rd ∼ −8 meV, and t ′′

3rd ∼ −7 meV,
we have J3rd

Z ∼ 0.65 meV and K3rd
Z ∼ 0.1 meV.

Comparing the estimated values in the above two cases,
we see J3rd

Z and K3rd
Z are underestimated and overestimated,

respectively, if we consider only t3rd among the third-neighbor
hopping integrals. Since K3rd

δ is much smaller than J3rd
δ even

in a more realistic situation [13], we consider only J3rd
δ and

neglect K3rd
δ in our analyses.

APPENDIX E: DERIVATION OF EQ. (88)

We rewrite Eq. (83) using Eqs. (86) and (87). First, we can
rewrite the terms of Jδ’s as∑

〈i, j〉
Jδ〈Si〉 · 〈S j〉

= 1

2

N/2∑
i=1

zNN∑
j=1

Jδ〈Si〉 · 〈S j〉 + 1

2

N/2∑
j=1

zNN∑
i=1

Jδ〈Si〉 · 〈S j〉

=
∑

q

∑
μ=x,y,z

[
J1(q)

〈
Sμ

−qA

〉〈
Sμ

qB

〉 + J1(q)∗
〈
Sμ

−qB

〉〈
Sμ

qA

〉]
,

(E1)

where

J1(q) =
zNN∑
j=1

Jδ

2
e−iq·(Ri−R j )

= JX

2
e−i qx

2 +i
√

3
2 qy + JY

2
e−i qx

2 −i
√

3
2 qy + JZ

2
eiqx , (E2)

and zNN denotes the number of nearest-neighbor sites at a
certain cite on the honeycomb lattice. In Eq. (E2), the first,
second, and third terms correspond to the contributions from
the X , Y , and Z bonds (Fig. 1), respectively. Similarly, we can
express the other terms as follows:∑

〈i, j〉
Kδ

〈
Sγ

i

〉〈
Sγ

j

〉

=
∑

q

[
Kx(q)

〈
Sx

−qA

〉〈
Sx

qB

〉 + Ky(q)
〈
Sy

−qA

〉〈
Sy

qB

〉
+ Kz(q)

〈
Sz

−qA

〉〈
Sz

qB

〉]
+

∑
q

[
Kx(q)∗

〈
Sx

−qB

〉〈
Sx

qA

〉 + Ky(q)∗
〈
Sy

−qB

〉〈
Sy

qA

〉
+ Kz(q)∗

〈
Sz

−qB

〉〈
Sz

qA

〉]
, (E3)∑

〈i, j〉
�δ

(〈
Sα

i

〉〈
Sβ

j

〉 + 〈
Sβ

i

〉〈
Sα

j

〉)

=
∑

q

[
�x(q)

(〈
Sy

−qA

〉〈
Sz

qB

〉 + 〈
Sz

−qA

〉〈
Sy

qB

〉)
+ �y(q)

(〈
Sz

−qA

〉〈
Sx

qB

〉 + 〈
Sx

−qA

〉〈
Sz

qB

〉)
+ �z(q)

(〈
Sx

−qA

〉〈
Sy

qB

〉 + 〈
Sy

−qA

〉〈
Sx

qB

〉)]
+

∑
q

[
�x(q)∗

(〈
Sy

−qB

〉〈
Sz

qA

〉 + 〈
Sz

−qB

〉〈
Sy

qA

〉)
+ �y(q)∗

(〈
Sz

−qB

〉〈
Sx

qA

〉 + 〈
Sx

−qB

〉〈
Sz

qA

〉)
+ �z(q)∗

(〈
Sx

−qB

〉〈
Sy

qA

〉 + 〈
Sy

−qB

〉〈
Sx

qA

〉)]
, (E4)∑

〈〈〈i, j〉〉〉
J3rd
δ 〈Si〉 · 〈S j〉

=
∑

q

∑
μ=x,y,z

[
J3(q)

〈
Sμ

−qA

〉〈
Sμ

qB

〉 + J3(q)∗
〈
Sμ

−qB

〉〈
Sμ

qA

〉]
,

(E5)
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where Kμ(q)’s and �μ(q)’s have been defined in Eqs. (91)–
(96), and J3(q) is given by

J3(q) = J3rd
X

2
eiqx−i

√
3qy + J3rd

Y

2
eiqx+i

√
3qy + J3rd

Z

2
e−2iqx . (E6)

By combining Eqs. (E1)–(E6) and setting J (q) = J1(q) +
J3(q), we obtain Eq. (88).

APPENDIX F: SOME REMARKS ON MOMENTUM

We remark on momentum in the case of the honeycomb
lattice. The remarks are about its expression and the reciprocal
lattice vector with the periodic boundary condition. In the case
of the honeycomb lattice (Fig. 1) a set of primitive vectors, a1

and a2, can be written as

a1 = t

(√
3

2
a2nd

1

2
a2nd

)
= t

(
3

2

√
3

2

)
, (F1)

a2 = t (0 a2nd) = t (0
√

3), (F2)

and thus the primitive vectors for the reciprocal lattice, b1 and
b2, are given by

b1 = t

(
4π

3
0

)
, (F3)

b2 = t

(
−2π

3

2π√
3

)
. (F4)

(As described in the caption of Fig. 1, we can represent the
honeycomb lattice as a triangular Bravais lattice with a two-

sublattice structure [23].) By imposing the periodic boundary
condition [23], we can express momentum q as

q = l1
N1

b1 + l2
N2

b2, (F5)

where the integers l1 and l2 satisfy 0 � l1 < N1 and 0 �
l2 < N2 with N1N2 = N . As described in Sec. IV B, we set
N1 = N2 = 120 in our analyses. The values of l1 and l2 for the
magnetic states considered in Sec. IV B are given as follows:
for q = QZZ-X l1 = N1/4 and l2 = N1/2; for q = QZZ-Z l1 =
N1/2 and l2 = 0; and for q = Q120 l1 = l2 = (2N1/3). Then,
the reciprocal lattice vector K can be written as

K = t (Kx Ky) = m1b1 + m2b2, (F6)

where

Kx = 2π

3
(2m1 − m2), Ky = 2π√

3
m2, (F7)

and m1 and m2 are integers. From these equations, we see that
K for (m1, m2) = (0, 1), K01, equals 2QZZ-X , and that K for
(m1, m2) = (1, 0), K10, equals 2QZZ-Z . Namely, we have

QZZ-X = K01

2
, (F8)

QZZ-Z = K10

2
. (F9)

In contrast to QZZ-X and QZZ-Z , Q120 is not equal to K/2 for
any allowed m1 and m2.
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