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Effective field theory approach for the S = 3
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The spin- 3
2 Heisenberg antiferromagnet on the bilayer honeycomb lattice is a minimal model to describe

the magnetic behavior of Bi3Mn4O12(NO3). We study this model with frustrating interlayer second-neighbor
couplings taking into account quantum and thermal fluctuations. We use a path integral formulation in terms
of coherent states to describe the low-energy physics of the model. We show that for a particular point in the
parameter space, close to the experimental estimated couplings, a continuum classical degeneracy is lifted by
both quantum and thermal fluctuations, and a collinear state is then selected by an order by disorder mechanism.
Our results provide a global perspective in the understanding of the experimental observations.
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I. INTRODUCTION

Frustrated magnetism is a prominent area of research with
a broad range of subfields, harboring new quantum states
of condensed matter [1,2], topological ordering [3–5], and
addressing candidates for quantum computing [6–8]. Frus-
trated Heisenberg models on the honeycomb lattice have
become a paradigmatic example for the search of competing
spiral order, lattice nematicity, and plaquette valence bond
states [9–26]. Furthermore, there are materials like the bis-
muth oxynitrate Bi3Mn4O12(NO3) [27], where the Mn4+ ions
of spin 3

2 form honeycomb layers, with both nearest and next-
nearest-neighbor antiferromagnetic exchange, and the Mn4+

ions are grouped into pairs, so the resulting structure is a
bilayer honeycomb lattice. This compound has led research
in bilayer honeycomb systems [28–34]. Most of these studies
have focused on the stability of the semiclassical phases, ex-
tending previous work on the single-layer case. The quantum
phase diagram was partially studied for the S = 1

2 case, em-
phasizing the regions of the phase diagram where the ground
state consists in a product of singlets, or quantum dimers, gen-
uinely related to the bilayer geometry and not present in the
single-layer model [32]. However, a complete understanding
of the quantum phase diagram of the bilayer model is still
missing.

Inelastic neutron-scattering measurements [35] have been
performed in Bi3Mn4O12(NO3) at high magnetic fields, and
more recently [36] the magnetic couplings were estimated
analyzing the magnetic dispersions using the linear spin-
wave theory. The results for the couplings are consistent with
previous results determined by ab initio density functional
theory calculations [37], suggesting that there is no significant
frustration in the honeycomb plane but frustrating interlayer
interactions probably play an important role in destabilizing
magnetic order. The neutron-scattering experiments show the
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presence of a short-range antiferromagnetic order at low tem-
peratures and the presence of a magnetic transition in which
the short-range order expands into a long-range Néel order.
The experimental data indicate that the collinear Néel state
becomes more stable at higher temperatures, i.e., thermal
fluctuations stabilize the long-range Néel order by an order
by disorder mechanism [35].

Motivated by these experimental and ab initio results, in
this paper we study the honeycomb bilayer with in-plane
first-neighbor interactions and competing interlayer first- and
second-neighbor interactions. In Sec. II, we start by intro-
ducing the model and recalling some results in the bilayer
geometry where the ground state can be worked out exactly
and exhibits a singlet product state. In Sec. III we use a path
integral formulation [38,39] in terms of coherent states to
describe the spin- 3

2 model in the presence of a magnetic field.
We study both the weakly frustrated and strongly frustrated
regimes. For the latter, we make the distinction between the
dominant in-plane coupling case, and the dominant inter-
layer coupling case. On one hand, Sec. III B 1 is relevant for
Bi3Mn4O12(NO3), where we discuss how an order by disorder
mechanism selects a staggered state as the one observed ex-
perimentally when the system is magnetized in the presence
of an external magnetic field. Additionally, we argue how
the system may exhibit magnetic short-range order for zero
magnetization. On the other hand, Sec. III B 2 describes the
formation of the valence bond solid studied in Ref. [32] within
the field theory approach.

II. MODEL AND EXACT GROUND STATE

The model of interest consists of quantum spins 3
2 on

a bilayer honeycomb lattice, depicted in Fig. 1. The spins
are coupled through Heisenberg isotropic interactions J1, Jx,
and J0. For Bi3Mn4O12(NO3), experimental and numeric re-
sults [36] show that J1 is the dominant coupling, and J0 is
roughly three times the value of the Jx.

To connect with previous results in this system [32], let
us write the Hamiltonian as a sum of terms over the square
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FIG. 1. The bilayer geometry considered here. Pannel (a) shows
the experimental structure corresponding to Bi3Mn4O12(NO3).
(b) Bilayer honeycomb lattice corresponding to model (1). (c) Four
S = 3

2 spins unit cell. The interactions in the Hamiltonian correspond
to the in-plane nearest-neighbor coupling J1, the interlayer nearest-
neighbor coupling J0, and the interlayer next-nearest-neighbor
coupling Jx .

plaquettes schematized in Fig. 1(c).

H =
∑

r

2∑
i=0

{J0

3
[S1,1(r) · S2,1(r) + S1,2(r) · S2,2(r)]

+ J1[S1,1(ri ) · S1,2(r) + S2,1(ri ) · S2,2(r)]

+ Jx[S1,1(ri ) · S2,2(r) + S2,1(ri ) · S1,2(r)]
}

− h
∑

r

{
Sz

1,1(r) + Sz
1,2(r) + Sz

2,1(r) + Sz
2,2(r)

}
(1)

in which the z axis is oriented in the direction [40] of the
external magnetic field h, i = 0, 1, 2 corresponds to r(0,1,2) =
r + (0, e1, e2), being e1 and e2 the primitive vectors of the
triangular lattice.

When studying the low-energy theory of this model we will
see that for some particular values of the couplings we find
points where the theory presents zero modes. One of these
points corresponds to the case J1 = Jx and J0 large, where
the ground state can be determined exactly and consists in a
product of singlets. In order to see how the fine-tuning works,
it is useful to introduce the bond spin operators

Lη = S1,η + S2,η, Kη = S1,η − S2,η, (2)

with η = 1, 2, where [Lα
η , Lβ

η′ ] = iεαβγ Lγ
η δη,η′ , [Lα

η , Kβ

η′ ] =
iεαβγ Kγ

η δη,η′ , and [Kα
η , Kβ

η′ ] = iεαβγ Lγ
η δη,η′ in the same unit

cell r, being εαβγ the fully antisymmetric Levi-Civita tensor
and εxyz = 1.

The Hamiltonian written in terms of the bond operators is

H = −2NJ0S(S + 1) + 1

2

∑
r,i

{
J0

3

(
L2

1(ri ) + L2
2(r)

)

+ (J1 + Jx )L1(ri ) · L2(r) + (J1 − Jx )K1(ri ) · K2(r)

}

− h
∑

r

{
Lz

1(r) + Lz
2(r)

}
, (3)

with N the number of unit cells in the system and S the spin
quantum number.

From Eq. (3) we can see clearly that for J1 = Jx, the
last term in the Hamiltonian vanishes and the Hamiltonian
depends only on the bond spin Lη(r). Therefore, at J1 =
Jx, the eigenstates of H are multiplets of the total bond
spin. Among those is the product state of bond singlets,
i.e., |ψ〉 = ⊗

r |s1〉r|s2〉r with Lη(r)|sη〉r = 0, and |sη〉r =∑S
m=−S (−1)S−m|m,−m〉/√2S + 1. Here |m,−m〉 labels a

product of eigenstates of Sz
1,η(r) and Sz

2,η(r) on dimer η of
the unit cell located at r.

The preceding is valid for any site spin S, and for J0 �
J1 = Jx the valence bond solid described before is the ground
state of the system both in the absence of a magnetic field
or with an small magnetic field compared to the resulting
magnetic gap. If we increase the value of J1 = Jx there will be
a phase transition at some J∗

1 where the nature of the ground
state, as well as the value of J∗

1 should depend on the spin S.
Below we show that at the semiclassical level, the fine-tuning
J1 = Jx gives rise to a zero mode in the effective theory.

III. SEMICLASSICAL EFFECTIVE FIELD THEORY

We write an effective field theory for the system us-
ing the coherent-state path integral description developed
by Haldane [38] and Tanaka et al. [39]. The spins
are represented by O(3) vectors of modulus S: S =
S(cos φ sin θ, sin φ sin θ, cos θ ), and we consider quantum
fluctuations on top of a lowest-energy configuration of the
classical system. Our parametrization for the classical lowest-
energy configuration in the presence of a magnetic field h
consists in a canted Néel configuration, where for each unit
cell we set

φ0
l,η(r) = π (l + η), θ0

l,η(r) = θ0(h, J0, J1), (4)

for l = 1, 2 and η = 1, 2. This configuration corresponds to
the low-frustration limit Jx � J1, J0. The classical energy
at T = 0 is then minimized by cos θ0 = h/2(J0 + 3J1). In
the continuum limit quantum fluctuations are then added
over the classical ground state changing φ0

l,η(x, y) → π (l +
η) + φl,η(x, y) and θ0

l,η(x, y) → θ0 + δθl,η(x, y). The canon-
ical conjugate fields of the theory are φl,η and a�l,η =
−S(δθ sin θ0 + 1

2 (δθ )2 cos θ0), where a is the distance be-
tween the spins connected by J1 in the unit cell. The spin
operators written to quadratic order in φl,η and �l,η are

Sz
l,η = S cos θ0 + a�l,η,

S±
l,η = (−1)l+ηe±iφl,η

(
S sin θ0 − m

S sin θ0
a�l,η

− 1

2

S2

S2 − m2

1

S sin θ0
(a�l,η )2

)
, (5)

which fulfill the SU(2) algebra replacing the quantum com-
mutator by a classical Poisson bracket. In the last equation we
defined m = S cos θ0. Replacing (5) in the Hamiltonian and
keeping terms up to quadratic order, we obtain the noninter-
acting effective action S given by

S = Scl + SBP, (6)
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where Scl is the classical action of the system, which contains
kinetic terms and mass terms, i.e., Scl = SK + SM . In order
to simplify the notation using a single index for the fields, we
rename the fields as

φi, j → φi(i−1)+ j,

obtaining for the action the following expressions:

SK =
∫

dτ
d2x

ν

K

2a2

2∑
j=1

((e j · ∇φ1)2 + (e j · ∇φ3)2)

=
∫

dτ
d2x

ν

K

2

3

2
(3(∂xφ1)2 + 3(∂xφ3)2

+ (∂yφ1)2 + (∂yφ3)2), (7)

with τ ∈ [0, β] the imaginary time, β the inverse temperature
(where Boltzmann constant is absorbed), ν = (9

√
3a2)/2,

K = (Sa)2(J1 − Jx ) sin2 (θ0), e j = a
√

3
2 [

√
3, (−1) j+1], j =

1, 2, and

SM =
∫

dτ
d2x

ν

(
1

2
φi(Mφ )i jφ j + a2

2
�i(M�)i j� j

)
, (8)

where Einstein’s notation is being used for the repeated in-
dices, and Mφ and M� are symmetric mass matrices. The
second term in (6) is the Berry phase term, which arises
from the nonorthogonality of the coherent-state basis, and is
given by

SBP = −i(S − m)
∫

dτ
d2x

ν

∑
j

∂τφ j

+ i
∫

dτ
d2x

ν

∑
j

(∂τφ j )a� j . (9)

The symmetric mass matrix Mφ is diagonalized by the trans-
formation

W = 1

4

⎛
⎜⎝

1 1 1 1
1 −1 −1 1

−1 −1 1 1
−1 1 −1 1

⎞
⎟⎠, (10)

where φ′
j = ∑4

k=1 Wjkφk , j = 1, . . . , 4 and M ′
φ =

4W MφW −1 = diag(m1, m2, m3, m4), with

m1 = 0, m2 = 8S2 sin2(θ0)(J0 + 3J1),

m3 = 8S2 sin2(θ0)(J0 − 3Jx ),

m4 = 24S2 sin2(θ0)(J1 − Jx ). (11)

The nullity of the first mass is known to prevail to all order
in the development and reflects the protection of the φ′

1 field,
which is the Goldstone field associated to the U (1) symmetry
of the Hamiltonian. The same transformation diagonalizes M�

as well, i.e., M ′
� = 4W M�W −1 = diag(μ1, μ2, μ3, μ4) with

μ1 = 8(J0 + 3J1), μ2 = 8(J0 + 3J1) cot2 (θ0),

μ3 = 8[−J0 + 3J1 + (J0 − 3Jx ) csc2 (θ0)],

μ4 = 8[J0 − 3J1 + 3(J1 − Jx ) csc2 (θ0)]. (12)

The complete effective action after the transformation W takes
the form

S =
∫

dτ
d2x

ν

{
K

2
3(3(∂xφ

′
2 − ∂xφ

′
3)2 + 3(∂xφ

′
1 − ∂xφ

′
4)2

+ (∂yφ
′
2 − ∂yφ

′
3)2 + (∂yφ

′
1 − ∂yφ

′
4)2)

+ 1

2

4∑
j=2

(
mjφ

′2
j

) + 1

2

4∑
j=1

(μ j (a�′
j )

2)

+(−4i)(S − m)(∂τφ
′
1) + 4i

4∑
j=1

(∂τφ
′
j )a�′

j

}
. (13)

In general all mass terms of the �′
j fields are nonzero,

and as so these fields are short ranged. Since they are not
expected to contribute at large scales, we can integrate them
out, obtaining the effective action

S =
∫

dτ
d2x

ν

{
K

2
3(3(∂xφ

′
2 − ∂xφ

′
3)2 + 3(∂xφ

′
1 − ∂xφ

′
4)2

+ (∂yφ
′
2 − ∂yφ

′
3)2 + (∂yφ

′
1 − ∂yφ

′
4)2)

+ 1

2

4∑
j=2

(
mjφ

′2
j

) + 1

2

4∑
j=1

(
16

μ j
(∂τφ

′
j )

2

)

+(−4i)(S − m)(∂τφ
′
1)

}
. (14)

In the following, we will discuss some important regimes
of this theory.

A. Weakly frustrated regime

For Jx � J0, J1 the system is weakly frustrated and we
have a nonvanishing mi, μ j , i = 2, . . . , 4, j = 1, . . . , 4. As
mentioned before, the field φ′

1 has no mass term because
of the U (1) symmetry, and in fact remains long ranged for
4(S − m) 
∈ Z and T = 0.

The factor 1/4 in the transformation (10) is chosen to
give the field φ′

1 the correct periodicity [41]. If the fields
φ′

2, φ′
3, and φ′

4 are gapped, they can be set to zero in the
low-energy limit, meaning φ1 = φ2 = φ3 = φ4. In this case
the action depends only on the gapless field φ′

1 = φ1. Thus,
the action (14) corresponds to a classical XY model with an
additional Berry phase term. If T = 0, the theory is in three
dimensions, whereas for finite temperature 0 � τ � β < ∞,
and the theory is two-dimensional, where the Mermin-Wagner
theorem forbids long-range order.

The condition 4(S − m) 
∈ Z corresponds to the presence
of a nontrivial Berry phase. For a spin in position (x0, y0)
that has a phase winding of 2π when evolving in imagi-
nary time there is a contribution to the effective action of
δS = (−4i)(S − m)2π . The Berry phase forbids vortices to
contribute to the partition function because they enter in the
partition function weighted with an oscillatory phase factor
which leads to destructive interference [39]. For T = 0, these
vortices are the only mechanism available to destroy the long-
range antiferromagnetic order (LRAFO) for the in-plane spin
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FIG. 2. Schematic representation of the zero modes correspond-
ing to (a) Jx = J0/3 and (b) J1 = Jx .

components represented by the φ′
1 field. As vortices are for-

bidden for a generic value of the magnetization, the LRAFO
is preserved at T = 0. For nonzero T , the LRAFO becomes a
quasi-long-range antiferromagnetic order.

If 4(S − m) is an integer the Berry phase term trivial-
izes and can be dropped. This condition is known as the
Oshikawa-Yamanaka-Affleck [42] criterium, and is a well-
known necessary condition for a magnetic plateau to emerge.
Vortices of φ′

1 are able to proliferate if that is energetically
favorable (i.e., if the stiffness is small enough), disordering the
field φ′

1 and opening a gap in the system. The resulting phase
has short-range antiferromagnetic order. Finally, the special
case where 4(S − m) is a rational number can give rise to more
exotic phases, as developed in Ref. [39].

B. Frustrated regime

The situation described above changes when the values
of the couplings promote competition between terms of the
Hamiltonian. Below we discuss those situations in two limits,
where the dominant interaction is the in-plane or the interlayer
coupling.

1. Dominant in-plane coupling

If J1 is the dominant coupling [as expected for
Bi3Mn4O12(NO3)] [36], increasing Jx we find that m3 = 0 at
Jx = J0/3 [see Eq. (11)], whereas μ j > 0, j = 1, . . . , 4. It is
easy to see that the condition Jx = J0/3 leads not only to a
vanishing mass in the effective theory but it corresponds to a
zero mode of the Hamiltonian using the parametrization (4).
Indeed, if we take the Hamiltonian (1) evaluated in Jx = J0/3,
we can make a variation in the classical parametrization (4)
introducing the real parameters αl,η by

φ0
l,η = (l + η)π + αl,η, (15)

where l = 1, 2, η = 1, 2. If we take αl,1 = αl,2, l = 1, 2, then
the Hamiltonian is a function of θ0 only. As a consequence of
the U(1) symmetry of the system we can set α2,1 = 0, leaving
only one free parameter α1,1 ≡ α. The parameter α corre-
sponds to a relative angle between spins in the two hexagonal
layers as we show in Fig. 2(a), and enters in the effective field
theory only through the kinetic term, since it is a zero mode of
the theory for fluctuations that are uniform in space.

Here we make the low-energy approximation φ′
2 = φ′

4 = 0
for the massive fields, which implies φ2 = φ1 and φ4 = φ3,

and we study the massless theory

S =
√

3
∫

dτ d2x

{
K̃

2
((∇φa)2 + (∇φs)2)

+ 1

2μ̃s
(∂τφs)2 + 1

2μ̃a
(∂τφa)2 + (−4i)

(S − m)

ν
(∂τφs)

}
,

(16)

where K̃ = 3
ν

(Sa)2(J1 − Jx cos α) sin2 θ0, μ̃s,a = ν
16μs,a, φs =

(φ1 + φ3)/2, φa = (−φ1 + φ3)/2. Notice that all the α depen-
dence is in the parameter K̃ and we have made a rescaling
x → x/3.

In the following we drop the factor
√

3 outside the integral
in the last equation. The notations φs and φa are chosen to em-
phasize the presence of a symmetrical and an antisymmetrical
combination of the fields. At this order the partition function
is factorized as

Z =
(∫

Dφse
−S[φs]

)(∫
Dφae−S[φa]

)
= ZsZa,

and can be computed analytically. Here we follow the ap-
proach from Ref. [43], and we express φb, b ∈ {s, a} in terms
of the crystalline momentum k and the Matsubara frequencies
ωn = 2πn

β
, n ∈ Z, by

φb(r, τ ) =
∞∑

n=−∞

1

2πβ

∫
d2k eikre−iωnτ φb(k, ωn). (17)

This representation is valid only for fields satisfying
φb(r, 0) = φb(r, β ), i.e., without vorticity, and yields SBP = 0.

The complete action reads

S = 1

β

∑
b

∞∑
n=−∞

1

2

∫
d2k φ∗

b (k, ωn)φb(k, ωn)

(
K̃k2 + ω2

n

μ̃b

)
.

We calculate the Gaussian functional integral in terms of a
dimensionless rescaled field φ′(k, ωn) = φ(k, ωn)�/β, where
� ∝ 1/a2, obtaining

log (Zb) = −1

2

∫
d2k

�

∞∑
n=−∞

log

[
β

�

(
K̃k2 + ω2

n

μ̃b

)]
.

To sum the series, we make use of the identity∫ βK̃k2/�

1

dt2

ω2
n

μ̃b�/β
+ t2

= log

(
β

�
K̃k2 + ω2

n

μ̃b�/β

)

− log

(
1 + ω2

n

μ̃b�/β

)
.

Hence, the Helmholtz free energy is

F = − 1

β
log (Z ) = 1

β

∫
d2k

�

∑
b

log

[
sinh

(
1

2
kβ

√
K̃μ̃b

)]
,

where we have dropped vacuum contributions, i.e., terms
independent of the momentum k and the angle α. The last
equation can be rewritten as

F =
∫

d2k

�

∑
b

{
1

2
k
√

K̃μ̃b + 1

β
log (1 − e−kβ

√
K̃μ̃b )

}
,

214412-4



EFFECTIVE FIELD THEORY APPROACH FOR THE … PHYSICAL REVIEW B 104, 214412 (2021)

FIG. 3. Free energy corresponding to Eq. (18), with J1 = 1,
Jx = 1/10, J0 = 3Jx , θ 0 = π/4, and β = 5. The free energy presents
minimums at α = 0, 2π corresponding to antiparallel configuration
in the vertical bonds. The maximum at α = π corresponds to a
parrallel configuration in the vertical bonds. For the presentation,
we have normalized the free energy such that F (α = 0) = 0 and the
maximum value of F is 1

where first term is the quantum contribution to the free energy,
FQ, and the second one is the thermal contribution, Fβ . The
former is integrated directly, giving

FQ = π

3�

√
K̃�3

∑
b

√
μ̃b,

where � = 2π/a is the momentum cutoff. For Fβ we have

Fβ = 2π

β3�K̃

∑
b

1

μ̃b

∫ �β
√

K̃μ̃b

0
dx x log(1 − e−x ),

where we define the dimensionless variable x = kβ
√

K̃μ̃b.
Here we take the low-temperature limit β�

√
K̃μ̃b � 1 and

we obtain

Fβ = [−ζ (3)]
2π

β3�K̃

∑
b

1

μ̃b
,

where −ζ (3) ≡ ∫ ∞
0 dx x log(1 − e−x ) ≈ −1.2, being ζ (s)

the Riemann zeta function, for Re(s) > 1.
The complete Gaussian (noninteracting) free energy in

terms of the bare microscopic parameters and the angle α is

F = 6
√

2π4
(√

J1 − Jx + √
J1 + Jx

)
sin (θ0)

√
J1 − Jx cos(α)

− 32πJ1ζ (3) csc2(θ0)

81β3
(
J2

1 − J2
x

)
[J1 − Jx cos(α)]

. (18)

Both the thermal and the quantum contribution to the free
energy have a single minimum at α = 0 (Fig. 3), so the
Néel configuration is selected by both thermal and quantum
fluctuations. Additionally, we see in Eq. (18) that in this ap-
proximation, for J1 = Jx the quantum contribution vanishes
and the thermal contribution diverges, suggesting that near
J1 = Jx = J0/3 the thermal contributions dominate against the
quantum ones (Fig. 3). A classical analysis at finite tem-
perature was done for this system with J1 = Jx = J0/3 in
Ref. [44]. For this particular choice of magnetic couplings
our effective field theory is unstable, given that m3 = m4 =
μ3 = μ4 = 0. Nonetheless, the presence of an anisotropy
term HD = ∑

r,l,η D(Sz
l,η )2, with D > 0, would provide a fi-

nite contribution to all four μ j , j = 1, . . . , 4, stabilizing the

magnetization fluctuations. This scenario is beyond the scope
of our present work because the point J1 = Jx = J0/3 is far
away from the experimental and numerical estimations of the
magnetic interactions in Bi3Mn4O12(NO3), where J1 is the
dominant coupling [36]. In addition, our classical ground state
corresponds to the limit of low frustration whereas for J1 =
Jx = J0/3 frustration is dominant and leads to more general
classical ground states [44].

So far the results in this section apply for vorticity-free
fields φs, φa. If instead vortices of φs proliferate the system
enters a short-ranged gapped phase. For this to be allowed the
theory must not have a Berry phase term, i.e., the condition
4(S − m) ∈ Z must hold. In this scenario the symmetric field
φs disorders and consequently the field φa disorders as well,
because both combinations of fields are not independent.

2. Dominant interlayer coupling

If instead in Eq. (14) J0 is the dominant coupling and we
increase the magnitude of Jx, the theory becomes singular
at J1 = Jx. In this case both the mass m4 and the stiffness
K simultaneously vanish. In contrast μ j remains positive for
j = 1, . . . , 4 [see Eq. (12)]. As before, the condition J1 = Jx

corresponds to a zero mode of the Hamiltonian parametrized
by Eq. (4). In this case we can again make a variation in the
parametrization by adding the real parameters αl,η, l = 1, 2,
η = 1, 2 from Eq. (15). If we now set α1,η = α2,η, η = 1, 2,
the classical energy at T = 0 is a function of θ0 only. Again,
because of the U (1) symmetry of the system we can take
α2,1 ≡ α and α1,2 = 0. This zero mode is presented graph-
ically in Fig. 2(b). The parameter α does not enter in the
effective theory this time because the kinetic term vanishes.

For J1 = Jx, in the low-energy limit the two remaining
massive fields φ′

2 and φ′
3 in Eq. (14) may be set to zero,

meaning φ1 = φ3 and φ2 = φ4. If we consider the case m = 0,
then there is no Berry phase and the vortices in φ′

1 may
proliferate if energetically favorable, leading the system to a
gapped short-range phase. In this scenario the gapless field
φ′

4 gets delocalized, and its canonical-conjugate field �′
4 gets

localized. The vanishing of the stiffness produces a flat band
in the dispersion relation of the magnetic excitations, which
imply that they are localized in coordinate space, i.e., do not
propagate through the lattice. Similar magnon-crystal ground
states are present in other frustrated quantum spin systems in
one-, two-, and three-dimensional systems [45]. Our results
are the semiclassical description of the exactly factorized
ground state for general spin S, as has been done in some
frustrated quantum spin chains [46,47]. As a final remark we
can mention a rough estimation for the value of J1 = Jx that
corresponds to the end of the dimer phase. It is easy to see
from Eqs. (12) and (11) that for J1 = Jx > J0/3 the masses
m3, μ3, and μ4 become simultaneously negative. This means
that our noninteracting field theory is unstable with respect to
fluctuations φ3, �3, and �4, and the system should be in a
ground state described by another theory.

IV. CONCLUSIONS

In this work we use a path integral approach to study
the Heisenberg model on the bilayer honeycomb lattice with
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in-plane first-neighbor (J1) and interlayer first-neighbor (J0)
and second-neighbor (Jx) interactions as a model to describe
some of the observed features of Bi3Mn4O12(NO3). Although
we have explored different interesting regimes of field the-
ory, we have paid particular attention to the case where the
values of the magnetic couplings are close to those obtained
experimentally [36] in Bi3Mn4O12(NO3), where the domi-
nant coupling is J1. In this case, we find that the classical
model presents a zero mode parametrized by the relative angle
between the spins of each plane. The low-energy effective
theory of quantum fluctuations can be written in terms of
a symmetric field, related to global magnetization, and an
antisymmetric field related to the spin imbalance between
layers. We show that the presence of quantum and thermal
fluctuations selects the collinear state from the degenerate
manifold of classical ground states. This result holds for
vorticity-free configurations, and coincides with the mag-
netic order observed experimentally [35] when a high enough
magnetic field is applied, validating the scenario that the
experimental observations can be explained with no signif-
icant frustration in the honeycomb plane but with frustrating

intrabilayer interactions and also showing that this mechanism
is only present in the range of parameters corresponding to the
material.

If the magnetization of the system is such that 4(S − m) ∈
Z, then vortices may proliferate if the renormalized stiff-
ness is small enough, driving the system to a gapped phase
with only short-range antiferromagnetic ordering. This mech-
anism could explain the short-range correlations observed
in Bi3Mn4O12(NO3) at low temperatures and low magnetic
fields.

Additionally, we show that if J0 is the dominant coupling,
the known [32] factorized ground state of a valence-bond solid
composed by a singlet array over the J0 bonds is interpreted
in the field theory as a vanishing stiffness and spin-wave
velocity. As was shown for the factorized valence-bond solid
ground state, our approach allows one to also show that the
behavior predicted in the presence of a nonzero magnetiza-
tion for spin 3

2 remains true for a generic value of the spin.
We hope that our results will encourage further experimental
investigations on Bi3Mn4O12(NO3), in particular the ordering
transition triggered by an order by disorder mechanism.
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