PHYSICAL REVIEW B 104, 214411 (2021)

®

Magnetic properties of chiral Eulr,P,

D. J. Garcia,"? V. Vildosola®,>* A. A. Aligia®,"?* D. G. Franco®,"? and Pablo S. Cornaglia® >4
Centro Atémico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche, Argentina
2Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
3Departamento de Materia Condensada, GIyA, CNEA (1650) San Martin, Provincia de Buenos Aires, Argentina
*Instituto de Nanociencia y Nanotecnologia CNEA-CONICET, Argentina

We present a minimal model that provides a description of the magnetic and thermodynamic properties of
Eulr,P, . The model contains two exchange coupling parameters, which are calculated using density functional
theory, and a local easy-axis magnetic anisotropy term. The classical ground state of the system is a generaliza-
tion of the well known 120° structure observed in triangular antiferromagnets. Monte Carlo simulations show
two phase transitions as a function of the temperature. With increasing temperature, the system transitions from
the ground state into a high-entropy collinear antiferromagnet, which in turn at higher temperatures presents a
second-order transition to a paramagnetic state. A high enough external magnetic field parallel to the anisotropy
axis produces a spin-flop transition at low temperatures. The field also reduces the temperature range of stability
of the collinear antiferromagnet phase and leads to a single-phase transition as a function of the temperature. The
reported behavior of the specific heat, the magnetization, and the magnetic susceptibility is in agreement with
the available experimental data. Finally, we present the magnetic phase diagrams for magnetic fields parallel and
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perpendicular to the easy axis.
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I. INTRODUCTION

A magnetic system is said to be frustrated when it is not
possible to minimize all pairwise interactions simultaneously.
In clean systems, this can occur due to competing interac-
tions, such as coexisting ferromagnetic and antiferromagnetic
couplings. It can also have a geometrical origin of which the
triangular lattice in two dimensions with nearest-neighbour
antiferromagnetic interactions is the most common example.
In the latter case, three nearest-neighbour magnetic moments
forming a triangle in the lattice cannot minimize simultane-
ously their mutual interactions because it is not possible to
make each magnetic moment antiparallel to the other two.
For classical spins the minimal energy is obtained when the
nearest-neighbor spins form a 120° angle [1]. In the presence
of an Ising-like magnetic anisotropy, this two-dimensional
system has no Curie point and no long-range order even
at zero temperature [2]. In three-dimensional pyrochlores
such as Ho,Ti,O7, although the interactions are predomi-
nantly ferromagnetic, geometric frustration leads to a spin-ice
phase and to low-energy exitations that behave as magnetic
monopoles [3-5]

Another interesting frustrated material is Eulr,P, , which
has a chiral crystal structure with the Eu*? ions forming a
triangular array of helical chains [6]. To the best of our knowl-
edge, Eulr,P, is the only intermetallic magnetic compound
known to crystallize in the chiral P3,21 trigonal space group.
It presents two phase transitions as a function of the tem-
perature which have been associated with antiferromagnetic
orderings of local magnetic moments at the Eu*? ions [7]. The
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interest in Eulr, P, is fueled by its chiral structure and signa-
tures of magnetic frustration that make it a likely candidate for
the observation of exotic magnetic textures [8—11].

Magnetic frustration in Eulr,P, is due to both com-
peting interactions (the possitive Curie-Weiss temperature
indicates predominant ferromagnetic interactions) and geo-
metric frustration due to its triangular structure. Additionally,
the lack of inversion symmetry due to the chiral crystal struc-
ture of Eulr,P, allows a Dzyaloshinskii-Moriya interaction
(DMI) term, which can stabilize nontrivial spin textures as
skyrmions [5,12]. For simplicity, we neglect the DMI in this
work.

We present a detailed study of the magnetic properties of
Eulr; P, to determine the nature of the observed antiferromag-
netic phases. A magnetic field-temperature phase diagram is
obtained using Monte Carlo simulations, as done previously
for similar systems [13—15]. To that aim we construct a Hamil-
tonian for the magnetic moments with coupling parameters
estimated using ab initio calculations. In addition to the usual
high-temperature paramagnetic phase, we find a noncollinear
antiferromagnetic ground state, which is a generalization of
the 120° two-dimensional state, and an intermediate tempera-
ture high entropy collinear antiferromagnetic state. This leads
to two phase transitions as a function of temperature (for low
enough external magnetic fields) and a two peak structure in
the specific heat, in agreement with the available experimental
data.

The rest of this paper is organized as follows. In Sec. II,
we present the Hamiltonian for the magnetic moments
of Eulr,P, and determine its magnetic coupling constants

©2021 American Physical Society
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FIG. 1. Crystal structure of Eulr,P; . The thin solid lines indicate
the unit cell containing three Eu atoms.

through Density Functional Theory (DFT) calculations. In
Sec. III, we determine the classical ground state of the
magnetic Hamiltonian and analyze the effect of a magnetic
anisotropy term. We also present Monte Carlo simulations of
the thermodynamic properties. Finally, in Sec. [V, we summa-
rize our main results and conclusions.

II. MODEL FOR THE MAGNETIC INTERACTIONS

In this section, we analyze the magnetic structure of
Eulr,P, . We propose a simple Hamiltonian to describe its
magnetic properties and perform DFT calculations to deter-
mine the model parameters.

A. Crystal structure

The space group of Eulr,P, is the nonsymmorphic one
P3,21, belonging to the trigonal crystal system (see Fig. 1).
The basis vectors a and b have the same magnitude and form
an angle of 120° between them. The third basis vector ¢ is
perpendicular to the other two. The lattice parameters are
a=6.72A and ¢ = 7.12 A. While the rotation in 120° (C3)
and the translation in ¢/3 (f¢/3) are not symmetry operations
of the system, the product Cz%tc /3 s a screw axis operation that
leaves the system invariant.

The lattice of Eu*? ions is similar to the ABC stacking of
hexagonal layers in the face centered cubic lattice. The succes-
sive layers are however shifted away from the high-symmetry
point of the adjacent layers (see Fig. 2).

There are three Eu atoms in the unit cell. Their positions
are

Eu;: r; =0.604a + ¢/6,
Eu, : 1y =0.396a 4 0.396b + ¢/2,
Eusz : 13 = 0.604b + 5¢/6. )

Noting that C3za =Cb=-a—b, C32b = a, it is easy to see
that the screw axis operation C32tc ,3 permutes the Eu atoms
(changing also the unit cell) as Eu;y — Eu; — Eu; — Eu,.

The Eu atoms are expected to be in the Eu™ electronic
configuration with seven electrons on the 4f orbital. Fol-
lowing Hund’s rules, the total spin per Eu*? ion is expected
to be S = 7/2, the angular momentum L = 0, and the total

FIG. 2. Crystal structure of the Eu*? ions in the Eulr,P, com-
pound. The unit cell containing three Eu*? ions (Eu;, Eu,, and Eus
are represented using different colors) is indicated using thin solid
lines. The first (second) nearest neighbors of the Eu, atoms (blue
symbols) are indicated using red (blue) lines. The Eu™? ions inside a
dotted line triangle belong to the same one dimensional spiral chain
of antiferromagnetically coupled magnetic moments (see text).

angular momentum J = 7/2. Since the hybridization of the Eu
4f orbital is negligible, a local magnetic moment u = gugJ
with g = 2 is expected at each Eu™ ion. However, a small
admixture of states with L = 1 is also expected, which can
slightly modify g [16].

B. Hamiltonian

Ab initio calculations (for details see Appendix A) indicate
an insulating state with a band gap A ~ 0.4 eV. Short range
exchange interactions (generated by a superexchange mecha-
nism) are therefore expected between the magnetic moments
on the Eu** ions.! We model these magnetic interactions
using the following effective Hamiltonian that considers ex-
change couplings up to second neighbor magnetic moments:

Ho=—=Y ITi-Tj= Y hdi-T; )
(i.J) (i)

where J; is the total angular momentum at site i, and J;
(/) is the exchange coupling between nearest-neighbor (next-
nearest-neighbor) magnetic moments (see Fig. 2). We use
below units such that kg=gup=1. Because of the large mag-
nitude of | 7;| = J = 7/2, we will treat J; as a classical vector.

"We do not consider here dipolar interactions which, as we discuss
below, contribute to the magnetic anisotropy.
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We obtain the coupling constants of H,, through ab initio
calculations of the total energy of the system with the local
magnetic moments fixed in different configurations. The de-
tails of these calculations are presented in Appendix A. We
obtain a ferromagnetic (FM) first nearest-neighbor interac-
tion (J; = 0.28 K > 0) and an antiferromagnetic (AF) second
nearest-neighbor interaction (J, = —0.45 K < 0).

III. MAGNETIC PROPERTIES
A. Ground state

Each Eu*? has four nearest neighbors (NN), two on each
one of the adjacent layers along the ¢ axis. For example, Eu,
at rp [see Egs. (1)] has two NN Eu; atoms lying at r; and
r; + b and two NN Euj atoms at r3 and r3 + a. The remaining
NN positions can be obtained using screw axis and translation
symmetries.

Each Eu*? has also two next-nearest neighbors (NNN), one
on each of the adjacent layers along the ¢ axis (see Fig. 2).
The NNN distance (5.17 A) is similar to the NN one (4.25
A). The Eus site at r, has a NNN Eu; at positionr] =r; —a
and a NNN Euj; at position rj = r3 — b. Furthermore, it is
easy to see that under the screw axis operation C3t./3, these
positions transform as rj — r, — r; — rj + c. Therefore,
if the NN coupling J; is neglected, retaining only the dom-
inant NNN coupling J,, the system can be seen as formed
by one-dimensional (1D) spiral chains along the ¢ axis with
antiferromagnetic (AF) intrachain couplings J,. To be more
specific, the spin at r} can point in any direction n and the cou-
pling J» is optimized taking Jr, || —n, Jy, | 0, Jrqe | —m,
and so on, so that the magnetic unit cell is doubled in the ¢
direction, with the moments at positions differing in ¢ pointing
in opposite directions.

There are three different of these 1D chains per unit cell
related by the screw axis operation C32tc /3 [see below Eq. (1)].
Each of these 1D chains form a triangular lattice in the a—b
plane, with basis vectors a and b.

Including the ferromagnetic (FM) NN couplings J;, one
realizes that two Eu sites at a distance a are connected by
two paths, each one involving an NNN AF and one NN FM
coupling. This implies an effective AF coupling between 1D
chains at a distance of one lattice parameter a. Therefore
the system is frustrated as the simple two-dimensional (2D)
triangular lattice with AF NN couplings [1,17,18]. With this
picture in mind, to obtain the ground state (GS) configuration,
assuming a classical magnetic moment description and for
large enough AF J,, we can view the system as an effective
2D triangular lattice (each site corresponds to an AF 1D spiral
chain). The classical GS configuration of a triangular lattice
with nearest-neighbor AF couplings is the well known 120°
structure, where the magnetic moments rotate 120° from one
site to the next in a given a-b plane. The magnetic unit cell
increases by a factor three and the basic vectors become a — b
and 2a + b.

To analyze the order among the three 1D chains inside the
nonmagnetic unit cell, we note that for example, as mentioned
at the beginning of this section, Eu, at r, has two NN Eu;
atoms lying at r; and r; 4+ b. The magnetic moments of these
Eu; atoms form an angle of 120° according to the above

2b+a

\ ",

a—b

b

FIG. 3. Magnetic configuration of a unit cell layer of the AF120
(L ¢) state. The orientation of the magnetic moments on the Eu ions
is indicated using arrows. The shape of the magnetic unit cell in the
a-b plane is indicated with solid lines. The color coding is as in Fig. 2.

discussion. Then to optimize the NN FM coupling Jj, it is
convenient that the magnetic moment of the Eu, at r, has the
direction of the sum of the two moments of the Eu; atoms,
forming an angle of 60° with each of them. This completes the
description of this phase that we call AF120. The magnetic
unit cell contains 18 Eu atoms with an energy per Eu™? ion
given by

Enrioo = J*(J2 — ). 3)

Due to the invariance of the Hamiltonian (2) under a global
SU(2) rotation of the magnetic moments, we can construct the
AF120 state with all the magnetic moments perpendicular to
the ¢ axis. The resulting GS configuration is shown in Fig. 3.

The AF120 magnetic moment configuration is the ground
state if the NNN coupling is antiferromagnetic (J, < 0) and
the NN coupling is ferromagnetic (J; > 0) and smaller than
—2J,. For J; > —2J,, the ground state is ferromagnetic, while
for J; < 0 it is a type A antiferromagnet (the magnetic mo-
ments are ferromagnetic on each of the hexagonal layers
stacked along the ¢ axis and the sign of the orientations is
opposite to the one on the nearest neighboring layers).

To complete the description of the magnetic properties we
turn on an effective magnetic anisotropy term:

Hp=—-D) (Ji-&). )

There are two main sources of magnetic anisotropy: the crys-
tal field induced coupling of the L = 0 multiplet to higher
L multiplets and the dipolar interaction [16]. The avail-
able experimental results for this system show a significant
anisotropy in the magnetic susceptibility [7]. As we dis-
cuss below, these properties are consistent with an easy-axis
anisotropy (D > 0). Ab initio calculations for Eulr, P, indicate
a crystal field induced easy-axis contribution to the anisotropy
parameter D when the spin-orbit coupling is turned on (see
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FIG. 4. Magnetic unit cell of the AF120 state. The magnetic
moments are contained in a-c planes and one out of three magnetic
moments is parallel or antiparallel to the ¢ axis. The color coding is
as in Fig. 2.

Appendix A). For completeness we analyze the effect of D
for a wide range of values.

For an easy plane anisotropy (D < 0), the GS order and
energy are not altered and all magnetic moments are perpen-
dicular to the ¢ axis (see Fig. 3).

For an easy-axis anisotropy along ¢ (D > 0) it is energet-
ically favorable to increase the projection of the magnetic
moments along the ¢ axis. The resulting antiferromagnetic
order (which we name AFD) can be constructed from an
AF120 order in the a-b plane (see Fig. 3) rotating all magnetic
moments by 90° around the ¢ x @ axis. Doing so, one out of
three magnetic moments is parallel to the ¢ axis, while the
other two form a m /3 (or 27 /3) angle with it. This is pre-
sented in Fig. 4, where we have used the rotational symmetry
around the ¢ axis of the Hamiltonian to put the magnetic mo-
ments in the a-c plane. For D > 0 it is energetically favorable
to decrease the 7 /3 angle (or increase the 27 /3 angle) by
36 > 0 to enhance the projection of the magnetic moments
along the ¢ axis (see Fig. 5). A three dimensional animation
of the magnetic unit cell in the AFD state is available in
Ref. [19].

The shift 50 does not change the angle between next-
nearest-neighbor magnetic moments, which remain anti-
ferromagnetically ordered. However, the nearest neighbor
interaction is modified by a nonzero §6. In the AF120 config-
uration, each Eu™ ion magnetic moment has three possible
orientations. As a consequence, twelve first neighbor cou-
plings need to be analyzed to determine how the interaction
energy is modified by §6. Eight of the nearest neighbor inter-
actions see a decrease of the relative angle between magnetic
moments by §6 while the remaining four see an increase by
260. The shift in the angle that minimizes the energy therefore
results from the competition between the anisotropy and the
nearest neighbor interaction J; . The magnetic energy per Eu™?

FIG. 5. Magnetic unit cell of the AF120 (thick style arrows) and
the AFD (thin style arrows) states. The magnetic anisotropy term
produces a tilting (by an angle §0) of two out of three magnetic
moments that increases the absolute value of their projection along
the ¢ axis. The color coding is as in Fig. 2.

ion is given by

E(56) = 12[—§D cos? (% _ 59) _ ?— %‘Jl cos (% _ 39)

2 T
— 541 cos (3 + 289) +J2:|. 5)

Minimizing this energy with respect to 56 leads to

3J, — V3BT = D), — D)

B TN v o7 )
and
Eapp = J? (Jz - M) 7
3(D—2Jy)

As D increases, §0* increases and reaches 7 /3 for D = J;,
where the magnetic moments are collinear. For larger values
of D, this is the lowest energy configuration. If D > Jj, the
GS energy is given by

Ecoll=J2<J2_D_%>' (8)
These results are summarized in the phase diagram of Fig. 6.
We focus below on the 0 < D < J; parameter regime
which appears to be the experimentally relevant situation and
consistent with the parameters estimated using DFT calcula-
tions. Although the energy of the collinear state is larger than
that of the AFD one for this range of magnetic anisotropy, the
collinear state has a high degeneracy which can make its free
energy lower than the AFD state at finite temperatures. The
high degeneracy of the collinear state can be understood using
again an effective triangular lattice to describe the system.
The collinear (Ising) state in the antiferromagnetic triangular
lattice has a high configurational degeneracy due to frustration
(see, e.g., Ref. [2]).
We consider below the following Zeeman coupling of the
magnetic moments to an external magnetic field B:

Hy = —gugy  Ji-B. ©)
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FIG. 6. (a) Energy, for J, = —1.68J;, of the different magnetic
moment configurations considered. For negative D the ground state
is the AF120 configuration with all magnetic moments perpendic-
ular to the ¢ axis, while for D > J; it is an antiferromagnetic state
with all magnetic moments parallel to the ¢ axis. (b) Shift angle
80* of the ground state configuration as a function of the magnetic
anisotropy D.

1. External magnetic field parallel to the easy axis (B || ¢)

For a large enough magnetic field applied parallel to the
¢ axis (B = B¢) there is a spin-flop transition. The spin-flop
state can be obtained starting from the AF120 state with all
magnetic moments in the a—b plane and rotating them by
an angle B (see Fig. 7) preserving the 120° angle between
the projections of the magnetic moments on the a-b plane.
Specifically, taking the AF120 state described in detail at the
beginning of Sec. IIT A, in which the 18 magnetic moments .7;
lie in the a-b plane, each of them is rotated an angle 8 around
the axis ¢ xX J;.

The projection of the magnetic moments along the ¢ axis
for a tilting angle 8 is J sin(8) while the a—b plane projection
is reduced to J cos(B). This leads to an energy (per Eu™? ion)

E(B) = J*[—Dsin*(B) — 2J; sin*(B) — J; cos*(B)
+ J> cos(28)] — BJ sin(B). (10)

The angle that minimizes the energy of this state for a given
magnetic field [|B| < Bgol = —2J(D+J, + 2J)]is

B
) an

tan §* = (

VAA(D + Jy 4 21)? — B2

FIG. 7. Schematic representation of the relative orientation of the
magnetic moments in the Eu*? ions. The magnetic field is parallel to
the ¢ axis and produces an increase of the projection of the magnetic
moments along the same axis.

and the corresponding energy:
B2
Ej =+ (= ). (12)
P 4D+ J+2))

For B > B, where

D@3J; — D)(—D —J; —2J,)
Biop > 2J 13
flop ~ \/ 6J, — 3D (13

the spin-flop state becomes the ground state of the system
(see Appendix B). However, it is known that this state has
a low entropy and becomes unstable as the temperature is
increased [13-15].

For |B| > Blllol, the lowest energy configuration is fully
polarized (8* = 7 /2) and has an energy

Epy = —J*(J» + 2J; + D) — JB. (14)

The magnetic field that makes the energies of the spin-flop
and the collinear states equal (this is relevant at finite temper-
atures where the collinear state is favored by entropic effects)
is given by:

2J
Baory = —=+@BD — J))(—D — J; —2J5). 15
flop2 «/5\/( 1)( 1 2) (15)

2. External magnetic field perpendicular to the easy axis (B L ¢)

For a magnetic field applied perpendicular to the ¢ axis, the
ground state can be constructed starting from the AFD con-
figuration in a plane perpendicular to the magnetic field, and
tilting the magnetic moments in the direction of the magnetic
field by an angle y. The ground state configuration is similar
to the spin-flop state and no spin-flop transition is expected
in this case with increasing magnetic field. At high enough
magnetic fields, however, the tilting angle reaches 7 /2 and
the ground state is fully polarized.

The energy per Eu™? ion in the state AFD as a function of
the tilting angle y reads

Exrp(y) = Earp cos?(y) + E; sin*(y) — BJ sin(y), (16)

where E; = —J?(J, +2J;) is the energy per Eu*? ion of a
state fully polarized in a direction perpendicular to the easy
axis. Minimizing with respect to y leads to

. JB
tan(y™) = a7
VA(Earp — E1)? — J2B?
and
3J2B?
EL (B)=E -, 18
AFD( ) AFD 4EAFD —4E1 ( )

for fields below the polarization field Bpiol = 2(Exrp — EN/J,
which sets the threshold value for a fully polarized state with
energy:

Epiol =E, —JB. (19)

B. Finite temperatures

We perform classical Monte Carlo simulations using the
ALPS code library [20,21] to calculate the specific heat, the
magnetization, and the magnetic susceptibility. We present
results for systems with 24 x 24 x 24 crystal unit cells, but
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FIG. 8. Specific heat as a function of the temperature for differ-
ent values of the magnetic anisotropy D and B = 0. The interaction
parameters are J; = 0.28 K and J, = —0.47 K.

we analyzed smaller systems to rule out significant finite size
effects.

Figure 8 presents the magnetic contribution to the spe-
cific heat per Eu*? ion as a function of the temperature
for different values of the magnetic anisotropy coefficient
D. For an easy plane anisotropy D < 0, a single peak in
the specific heat is obtained. It signals the transition from
a high-temperature paramagnetic state to a low-temperature
antiferromagnetic AF120 state with the magnetic moments
lying on the a—b plane. Increasing the absolute value of D
makes the AF120 more stable and suppresses the fluctuations
of the magnetic moments away from the a-b plane, which
leads to an increase in the Néel temperature. An easy-axis
anisotropy (D > 0) has a qualitatively different effect in the
specific heat (see lower panel in Fig. 8). It splits the peak in the
specific heat into high-temperature 7; and low-temperature
T, peaks. These two peaks mark two phase transitions. A
high-temperature transition from a paramagnetic state to a
collinear high-entropy antiferromagnetic state at 7}, and a
low-temperature transition from this state to the AFD state at
T>. The high entropy of the collinear state S reduces its free
energy Feon = Econ — T'Scon below the one of the AFD state
Farp = Eapp — T Sapp in the range of temperatures [73, T1].
The reported specific heat for this compound presents two
peaks at ~3 and ~5 K [7], which is consistent with an easy-
axis anisotropy.

1. External magnetic field parallel to the easy axis (B || ¢)

In what follows, we analyze the effects of an external
magnetic field on the thermodynamic properties of the system
for an easy-axis anisotropy term D = 0.2 K. The specific
heat (per Eu*? ion) is presented in Fig. 9 as a function of
the temperature for different values of the external magnetic
field parallel to the ¢ axis. As expected, the Néel transi-
tion temperature 7; to a collinear antiferromagnet is reduced
monotonically by an increasing magnetic field. The transi-
tion temperature 7, increases slowly with increasing magnetic

12 \

=
L 6 1
4r B =0.75T 1
B=11T
9 | B=13T |
poes"s, B =1.5T
0 ‘ ‘ ‘ ‘ B — 185‘T»—0—< roq
1 2 3 4 5 6

FIG. 9. Specific heat as a function of the temperature for differ-
ent values of the external magnetic field B along the ¢ axis (the curves
are shifted by 1.6kg). The anisotropy parameter is D = 0.2 K. Other
parameters as in Fig. 8.

field. This is caused by a reduction of the energy of the AFD
state with respect to the collinear state as the magnetic field
is increased. While the energy of the collinear state is not
modified by the external magnetic field, the energy of the AFD
state is reduced by it (see Appendix B)

For fields larger than ~1.25 T the two peaks in the specific
heat merge into a single transition. For fields larger than
Bop = 1.2 T and smaller that By, ~ 2.4 T, the transition
at low temperature is to an antiferromagnetic spin-flop state
which is the ground state of the system for those fields. For
B > Byoy >~ 2.4 T, the ground state of the system is fully
polarized but no clear sign of a paramagnetic-ferromagnetic
transition is observed as a function of the temperature. The
magnetization increases monotonically with decreasing tem-
perature and no jumps or kinks are observed.

Figure 10 presents the magnetization as a function of the
magnetic field for different values of the temperature. In-
creasing the magnetic field from zero in the low-temperature
regime T < T, the system is in the AFD state with a small
magnetization which increases with increasing magnetic field.
For fields B > Bgop, the energy of the AFD state is larger

1 T T T
ﬁ“mAMWM
0.8 | ﬂ“,.- 1
g
3 06| /‘,{” %i ?(5)% I
= % T =15K
S : T = 2.0K |
: T =2.5K
02 - |
O .—M I I 1 1
0 0.5 1 15 2 2.5 3 3.5

FIG. 10. Magnetization as a function of the external magnetic
field (parallel to the easy axis ¢) for different values of temperature.
Other parameters as in Fig. 9.
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FIG. 11. Phase diagram for an external magnetic field parallel to
the easy axis ¢. Other parameters as in Fig. 9.

than the energy of the spin-flop state (their entropies are
expected to be similar). This leads to a spin-flop transition
to a state with a larger magnetization. As the magnetic field
is further increased, the magnetization increases linearly, as
the magnetic moments tilt increasingly in the direction of the
field. At a field B ~ 2 T there is a kink in the magnetization
that signals the transition from the spin-flop state to a para-
magnetic state highly polarized by the large magnetic field.
This kink coincides with the peak in the specific heat used
to determine 7. As the temperature is increased approaching
T, the jump in the magnetization at the spin-flop transition
decreases and vanishes at T = T} = T, where the two peaks
in the specific heat merge. For temperatures 7, < T < T, the
zero-field state is a collinear antiferromagnet. No jump in the
magnetization is observed in this case for B = Bpopz ~ 1.15 T
where the energy of the spin-flop state is equal to the energy
of the collinear state. The absence of a spin-flop transition is
due to entropic effects, as the large entropy of the collinear
state makes its free energy lower. We can estimate the field
at which the spin-flop transition is expected to occur: at zero
field and at the temperature 75, the free energy of the collinear
and AFD states are equal which means that

Earp — Econ = T2(Sarp — Scoll)s (20)

where S, is the entropy of state «. The free energies of the
spin-flop state and the collinear state at a temperature 7,
would be equal for a field B*

Epop(B*) — ELy = To(Shop — Scon) @1

Assuming Sapp ~ Spop WeE obtain Efgop(B*) — E.on ~ 0.15K.
Using Eq. (12) and Eq. (8), we obtain B* ~ 1.22 T. For fields
B = B*, the system is however already in the paramagnetic
phase. As a consequence, entropic effects preclude the spin-
flop transition from happening out of the collinear state by
increasing the magnetic field.

The most salient feature in the magnetization as a function
of the magnetic field (for 7, < T < T;) is a maximum in the
slope which coincides with the transition from collinear AF to
paramagnet identified using the specific heat.

The transitions lines obtained from an analysis of the
ground state energies and from the specific heat and magne-
tization data are presented in a phase diagram B versus T of
Fig. 11. A similar phase diagram has been obtained in ABX3
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O 4+ b

3 B =0.0T —=— -~

B =0.75T——

2r B=15T 1

1k B =1.85T g

B =225T
0 L L L L L
1 2 3 4 5 6

FIG. 12. Specific heat as a function of the temperature for dif-
ferent values of the external magnetic field B along the a axis (the
curves are shifted by 1.6kp). Other parameters as in Fig. 9.

compounds were A is an alkali metal, B is a transition metal,
and X is an halogen atom [1,17].

2. External magnetic field perpendicular to the easy axis (B L ¢)

The behavior of the system when the magnetic field is ap-
plied perpendicular to the easy axis differs significantly from
the parallel configuration. In this case, the magnetic moments
tilt in the direction of the magnetic field both in the AFD and
in the collinear AF phases.

The specific heat as a function of the temperature (see
Fig. 12) shows a slower decrease of the position of the high-
temperature peak 77 with increasing magnetic field compared
to the parallel case. This is expected because, contrary to the
parallel situation, a perpendicular field allows a significant
reduction of the energies of the AF phases by tilting the
magnetic moments in the direction of the magnetic field. For
low fields (B < 1 T) the position of the low-temperature peak
T, remains approximately constant but for larger fields it de-
creases at approximately the same rate as 7;. This reduction in
T, is dominated by the decreasing energy difference between
the AFD and the collinear AF phases with increasing magnetic
field:

T = [Expp(B) — Eqoy(B)1/(Sarp — Scon)- ~ (22)

As the magnetic moments tilt in the direction of the mag-
netic field, the projection of the magnetic moments in the
direction perpendicular to the field decreases, and it is this
latter projection which determines the energy difference be-
tween the phases. The entropy difference between the two
phases does not depend significantly on the external magnetic
field.

The magnetization M as a function of the field intensity is
shown in Fig. 13. Note that in contrast to the previous case, the
magnetization lies in the a-b plane and does not show a jump
at low temperatures, which is consistent with the absence of
a spin-flop transition (see Fig. 13). At low temperatures, the
magnetization divided by the magnetic field M/B presents a
maximum at the AFD to collinear AF transition and a kink at
the collinear to paramagnetic transition.

214411-7



D.J. GARCIA et al.

PHYSICAL REVIEW B 104, 214411 (2021)

0.14 ; ‘
T =15K——
T=2K ——
013 L =3K
T = 4K
m@ 012 & M
= T
So11p S0
= = 05 F
=025 [
0.1 r 0 !
0 1
0.09 : :

0 05 1 15 2 25 3 35 4 45
B(T)

FIG. 13. Magnetization as a function of the external magnetic
field perpendicular to the easy axis ¢ for different values of tempera-
ture. Other parameters as in Fig. 9.

The results for a magnetic field perpendicular to the easy
axis are summarized in the phase diagram of Fig. 14.> For a
nonzero magnetic field, the magnetic moments in the collinear
phase are no longer along the ¢ axis, but are tilted in the
direction of the magnetic field. The magnetic order in this
phase can be qualitatively seen as the addition of a uniform
magnetization, parallel to the external magnetic field, and a
collinear antiferromagnetic order with the magnetic moments
parallel to the ¢ axis.

C. Order parameter analysis of the magnetic phases

To analyze the spin configurations in the different phases
identified in Fig. 11, we calculate the structure factor:

1 )
_ iq-Ry
S(q) = N % TeeT™, (23)

where N is the number of Eu'? ions, and R, is the position
of the magnetic moment J;,. We only obtain sizable values
[i.e., O(1)] of |S(q)|?, for q = O (provided B # 0), q = Q =

2We were unable to determine precisely the behavior of the system
at low but finite temperatures and intermediate fields perpendicular
to the easy axis (T <1 Kand B > 5T).

Paramagnetic J

B (T)

(<2

0 05 1 15 2 25 3 35 4 4
T (K)

FIG. 14. Phase diagram for an external magnetic field perpendic-
ular to the easy axis ¢. Other parameters as in Fig. 9.
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FIG. 15. Order parameters (see text) as a function of the temper-
ature at B = 0 (top) and 1.5 T (bottom). The other parameters are as
in Fig. 9. The transition temperatures between the different phases
are indicated with dotted style lines.

2m(L, L, L
3a’ /3a’ 2¢
wave vector Q is consistent with the a-b plane periodicity
of the AF120 structure and with an antiferromagnetic order
along the ¢ axis. For a magnetic field parallel to the ¢ axis we
define (in keeping with the rotational symmetry of the system
around the ¢ axis) the order parameters: s; = | - S(Q)|*> and
51 =|S(Q)* - 5. We also define m = |¢ - S(0)|2, which is
a measure of the degree of polarization of the magnetic mo-
ments along the ¢ axis.

Figure 15 presents the order parameters as a function of the
temperature for two values of the external magnetic field (B =
0 and B = 1.5 T¢). For B = 0 we have no uniform magneti-
zation (m = 0) and at high temperatures, in the paramagnetic
(PM) phase, there is no magnetic order: s; = s; = 0. At the
transition temperature 77 the magnetic moments order in a
collinear structure which is characterized by s # 0 and s, =
0. As the temperature is lowered further across 75, the system
enters the AFD phase in which both s, and s; are finite. The
emergence of a nonzero s; for T < 7T, can be interpreted as
the ordering of the basal plane components of the magnetic
moments.

At low temperatures and B = 1.5 T the system is in the
spin-flop phase which can be characterized by s; # 0, sy =0,
and m # 0 (see lower panel in Fig. 15). The spin-flop state
can be viewed as an AF120 state in the a-b plane (s, # 0)
with an added uniform magnetization along the ¢ axis (m #
0). Increasing the temperature in the spin-flop state leads to a
decrease of §; which vanishes at the spin flop to paramagnetic
phase transition line.

The characterization of the different magnetic phases de-
rived from order parameter analysis is consistent with the one
deduced from the inspection of the different configurations of
the magnetic moments and the analytical results.

), and symmetry related wave vectors. The

IV. SUMMARY AND CONCLUSIONS

We present a detailed description of the magnetic proper-
ties of the chiral material Eulr,P, . We propose a simplified
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-
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FIG. 16. Magnetic configurations evaluated fora 1 x 2 x 1 cell
(with periodic boundary conditions) to obtain the exchange coupling
parameters. The orientation of the magnetic moments on the Eut?
ions is indicated by black arrows. From top to bottom: ferromagnetic
(FM), antiferromagnetic 1 (AF1), and antiferromagnetic 2 (AF2).
The color coding is as in Fig. 2.

model with exchange couplings up to next nearest neighbors
to describe the interactions between the local magnetic mo-
ments on the Eu*? ions. The parameters of the model are
estimated using total energy calculations based on density
functional theory.

We provide analytical expressions for the ground state en-
ergies of the different magnetic phases using a classical spin
description for the J = 7/2 magnetic moments. We perform
classical Monte Carlo simulations to calculate the specific
heat and the magnetization as a function of the temperature
for different values of the model parameters and the external
magnetic field. We obtain a rich phase diagram including
a generalization of the well known 120° structure in two
dimensional systems. A collinear antiferromagnetic phase,
stabilized at finite temperature by entropic effects, is also
observed. This results in two phase transitions as a function
of temperature, as observed experimentally [7].

TABLE I. Relative energy AE (in Kelvin) per Eu™? ion for the
magnetic configurations of Fig. 16.

TABLE II. Calculated exchange couplings (in Kelvin).

Ji 0.28 (FM)
I —0.45 (AF)

An external magnetic field parallel to the easy ¢ axis
reduces the temperature range of stability of the collinear
phase leading to a single-phase transition as a function of
the temperature for high enough magnetic fields. For the
model parameters analyzed in the numerical simulations, the
suppression of the collinear AF phase is concomitant with a
spin-flop transition.

We neglected in our analysis the Dzyaloshinskii-Moriya
interaction. While we do not expect the inclusion of this
term to modify the essential features of the phase diagram,
it might stabilize a spiral order at low temperatures, possibly
incommensurate, with a long wavelength in the ¢ direction
twisting the spin projections in the a-b plane. We expect this
work to trigger further theoretical and experimental studies of
this interesting material.
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APPENDIX A: AB INITIO CALCULATION OF THE
MAGNETIC COUPLING PARAMETERS

We calculated the total energy for different static configu-
rations of the local magnetic moments (see Fig. 16).’

The total-energy calculations were performed using the
generalized gradient approximation (GGA) of Perdew, Burke,
and Ernzerhof for the exchange and correlation functional as
implemented in the WIEN2K code [22,23]. A local Coulomb
repulsion was included in the Eu 4f shell and treated us-
ing GGA+U which is a reasonable approximation for these
highly localized states. Due to the localized character of the
4 f electrons, the fully localized limit was used for the double
counting correction [24]. We described the local Coulomb
and exchange interactions with a single effective local repul-
sion Ugsg = U — Jyg = 6 eV [25,26]. The APW+local orbitals
method of the WIEN2K code was used for the basis func-
tion [22].

3See Ref. [27] for a related calculation.

TABLE III. Relative energy AE (in Kelvin) per Eu*? ion for
the AF1 configuration (see Fig. 16) and different orientations of the
magnetic moments.

Magnetic moment Energy difference with

Order Energy difference with the FM state orientation the ¢ orientation

FM 0 a 239K
AFI1 27K b 246K
AF2 195K ¢ 0
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0 0

0 0

FIG. 17. Schematic representation of the magnetic moment ori-
entations under an external magnetic field parallel to the ¢ axis for an
easy-axis anisotropy on the same axis.

We consider the experimental lattice parameters reported
in Ref. [6] (a = 6.671 A and ¢ = 7.055 A) and relaxed the
internal positions. 1000 k points were used in the full Brillouin
zone for the ionic relaxation in the unit cell, and 500 k points
for the 2 x 1 x 1 supercell total- energy calculations of the
different magnetic configurations.

The total energy, relative to the ferromagnetic state, for
each magnetic configuration and per Eu*? ion is presented in
Table 1.

In the absence of an applied magnetic field and using a
classical magnetic moment description, the contribution per
Eu atom to the total energy due to the magnetic interactions
described in Eq. (2) for the different configurations of Fig. 16
is given by

ER I = =20, — I,
EXey /] = 20 + 1),

Ef /) = %(—211 +J2),
(A1)

where J = 7/2 is the angular momentum of the Eu’*" ion
4 f electrons. The energy differences between magnetic con-
figurations calculated from first principles can be combined
with Eqgs. (A1) to obtain the coupling parameters J; solving
a system of two linear equations. The results for the J; are
presented in Table II.

We also analyzed the crystal field induced magnetic
anisotropy by performing total energy calculations including
the spin-orbit coupling. We considered the AF1 magnetic
moment configuration (see Fig. 16) with all the magnetic
moments parallel (or antiparallel) to the a, b, or ¢ axis. The
energies in Kelvin per Eut? ion are presented in Table III.
The energy difference between the & and b orientations is of
the order of the numerical error in the calculations. The ¢
orientation has a significantly lower energy which is consis-
tent with a ~0.2 K (easy-axis) contribution to the anisotropy
parameter D.

APPENDIX B: ENERGY OF THE AFD STATE FOR A
MAGNETIC FIELD PARALLEL TO THE EASY AXIS

An external magnetic field parallel to the easy axis (¢)
breaks the mirror symmetry (about the a-b plane) of the AFD

—0.85

[ AFD1B  — -
R Spin-flop -
S Collinear
—0.9 v g
= —0.95 - " 1
g .
3 .
=
- .
= -1 s
— ~ N
~
N
' ~
—1.05 | . ~ 1
. N
~11 I I Lt I
0.5 1 1.5 2
B (T)

FIG. 18. Energy of the AFD+B (the AFD state distorted by the
magnetic field), spin-flop, and collinear antiferromagnet states as a
function of the magnetic field. Other parameters as in Fig. 9.

state. Under a magnetic field, the shift angle of the magnetic
moments is different depending on the sign of their projection
along the ¢ axis (see Fig. 17).

The energy as a function of the two possible shift angles
86, and 66, (see Fig. 17) reads

E = —%BJ(COS (% - 91) — Cos (% - 92))

— %DJZ(COSZ (% — 91> + cos? (% — 92> + 1)

2
— §J2J1 [cos (6’1 + 6, + %) + cos (g - 91>

T 1
+ cos (3 — 92)] + /(200801 — 62) + ).

We minimized this energy with respect to 6, and 86, for
different intensities of the external magnetic field. The results
are presented in Fig. 18 and compared to the spin-flop state
energy which allows to determine the spin-flop field. For the
values of the Hamiltonian parameters considered, the mag-
netic field that produces the spin-flop transition differs less
that 10% for the different orders considered (collinear and
AFD). We approximate the spin-flop field for the AFD state
[see Eq. (13)] as the one that makes the energy of the spin-flop
state [see Eq. (12)] equal to Eapp [see Eq. (7)], i.e., neglecting
the shift in the angles produced by the external magnetic field.
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