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Graphene with Rashba spin-orbit interaction and coupling to a magnetic layer:
Electron states localized at the domain wall
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Electron states localized at a magnetic domain wall in a graphene with Rashba spin-orbit interaction and
coupled to a magnetic layer are studied theoretically. It is shown that two one-dimensional bands of edge modes
propagating along the domain wall emerge in the energy gap for each Dirac point, and the modes associated
with different Dirac points K and K ′ are the same. The coefficients describing decay of the corresponding wave
functions with distance from the domain wall contain generally real and imaginary terms. Numerical results on
the local spin density and on the total spin expected in the edge states characterized by the wave number ky are
presented and discussed. The Chern number for a single magnetic domain on graphene indicates that the system
is in the quantum anomalous Hall phase, with two chiral modes at the edges. In turn, the number of modes
localized at the domain wall is determined by the difference in Chern numbers on both sides of the wall. These
numbers are equal to 2 and −2, respectively, so there are four modes localized at the domain wall.
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I. INTRODUCTION

It is well known that a two-dimensional electron gas
appears at the interface of two different insulators with
nonequivalent topology of electron bands [1,2]. A typical
example is the interface between an ordinary insulator (or
vacuum) and a three-dimensional topological insulator (for
instance, Bi2Te3) [3] or a crystalline topological insulator
[4,5]. The low-energy spectrum of electron states at the inter-
face can be then described by the massless relativistic Dirac
Hamiltonian.

A characteristic feature of the topological nonequivalence
of two materials in contact is the inversion of energy bands at
the interface. An interesting example is the two-dimensional
Dirac electron gas with perpendicular magnetization that in-
duces the energy gap � in the Dirac spectrum [6–8]. This
spectrum does not depend on the sign of �; however, the
energy bands become inverted at the interface between regions
with � > 0 and � < 0. As a result, an additional one-
dimensional energy band of electron states localized at the
boundary separating the areas of � > 0 and � < 0 appears
in the system. This can be also considered as the appearance
of electron states coupled to the magnetic domain wall. In-
terestingly, such electron states in topological insulators with
a magnetic layer on top are responsible for nondissipative
equilibrium currents along the domain wall [9–11].

It should be noted that the basic idea of electron states
bound to the kink of a static scalar field was formulated
long ago by Jackiw and Rebbi [12], who demonstrated the
existence of zero-energy electron states in the systems of
Dirac and Yang-Mills fermions. Using various realizations of
this idea one can find zero-energy solutions at the contact

of narrow-gap semiconductors with mutually inverted energy
bands [13], at the vortices in chiral superconductors [14],
at hedgehogs in superconductors with coexisting singlet and
triplet pairing [15], and in the spectrum of surface electrons
with a gap inversion in topological insulators [16].

It has been shown recently that the spin-orbit interaction
can play an important role when considering the edge states,
leading, e.g., to spin polarization of the boundary. An example
is a sharp p-n junction in graphene in the presence of spin-
orbit coupling and magnetic field [17]. In such a case electron
zero modes with linear dispersion appear at the p-n junc-
tion, and the corresponding electron states are spin polarized.
In one-dimensional models with Rashba spin-orbit coupling
(Rashba nanowires) and external magnetic field, some unusual
properties (e.g., equilibrium spin currents and localized spin
torque) can appear, which are related to emerging edge states
at the boundaries between magnetic [18] or Rashba-coupling
[19,20] domain walls.

In this paper we consider a graphene-based structure con-
sisting of a graphene monolayer deposited on a substrate that
ensures the Rashba spin-orbit interaction [21,22] and covered
by a magnetic layer with a domain wall, as presented in
Fig. 1(a). The magnetic and spin-orbital proximity effects
induced in graphene are important ingredients of the model,
since both of them modify the energy spectrum substantially.
The magnetization of the capping layer is assumed to be
perpendicular to the graphene plane (i.e., it is along the axis
z in Fig. 1) and coupled to the graphene either by exchange
or stray fields. A uniform proximity-induced magnetization
in graphene (no spin-orbit coupling) shifts the spin up/down
bands upward/downward, respectively, but leaves the two
zero-energy crossing points in the vicinity of the K and K ′
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FIG. 1. (a) Schematic picture of the structure: single layer of
graphene sandwiched between a substrate inducing Rashba spin-
orbit coupling and a magnetic layer with a domain wall. (b)–(f)
Schematic band structure of graphene in the absence of magneti-
zation and Rashba coupling (b); in the presence of magnetization,
M �= 0 (c); in the presence of Rashba coupling, λ �= 0 (d); and in the
presence of both magnetization and Rashba coupling (e),(f). Though
the band structure for M > 0 and M < 0 is the same, the bands on
the two sides are inverted.

points [see Figs. 1(b) and 1(c)]. In turn, the Rashba spin-orbit
interaction induces spin mixing and lifts the fourfold degener-
acy at the K/K ′ points, as presented in Fig. 1(d) [23]. When
both proximity-induced magnetization and Rashba spin-orbit
interaction are present in the system, the bulk energy gap
is opened and all four bands around the Dirac points are
nondegenerate [see Figs. 1(e) and 1(f)]. Thus, both mag-
netic and spin-orbit proximity effects enable controlling the
electronic structure and also electric and magnetic properties
of the graphene-based systems under consideration. Impor-
tantly, when Rashba spin-orbit interaction and magnetization
(Zeeman-like field) are simultaneously present in graphene,
one can observe the quantum anomalous Hall effect phase
with quantized value of the Hall conductance when the Fermi
level is inside the energy gap.

We show that creating a domain wall in the magnetic
layer leads to further possibilities of controlling electronic
and transport properties [24–26]. In particular, we show that
the domain wall generates conductive states inside the bulk
energy gap. These states are localized at the domain wall
and lead to additional functionality of the graphene-based
structure because the magnetic domain wall can be controlled
by current and/or magnetic field [27–30].

It is worth noting that the influence of domain walls on the
electronic spectrum in graphene has been already discussed
in the literature. However, the domain walls were of differ-
ent origin and were related to the possible stacking faults
in bilayer [22] or multilayer [31] graphene. Another type
of domain walls in gapped graphene, which can appear due
to a substrate (like hexagonal boron nitride) with a linear

symmetry-breaking defect, was considered by Semenoff et al.
[32]. They demonstrated the existence of localized states at the
domain walls, and pointed out their importance for possible
applications.

Using the effective model describing low-energy exci-
tations in a magnetized graphene with Rashba spin-orbit
interaction, we calculate the energy and wave functions of
the edge states localized at the magnetic domain wall. These
modes exist in the gap and propagate along the domain wall.
Furthermore, the modes with opposite wave vectors (with
respect to K/K ′ points) have different energy, ε(ky) �= ε(−ky).
We show that two edge modes (referred to also as chiral
modes) appear in the spectrum for each Dirac point, and the
modes associated with different Dirac points K and K ′ are the
same. We also show that the attenuation factors that describe
decay of the wave functions of chiral modes with distance
from the domain wall contain imaginary terms. Accordingly,
the corresponding local values of expected physical quan-
tities include an oscillatory contribution with the amplitude
decaying with the distance from the wall. As an example, we
present numerical results on the local spin density and total
spin expected in the edge states.

In Sec. II we describe the model studied in this paper.
Electronic states localized at the domain wall are calculated
in Sec. III for ky = 0, and in Sec. IV for the case of nonzero
ky. In Sec. IV we also present dispersion curves of the modes
propagating along the wall for both K and K ′ Dirac points.
Numerical results on the local spin density in the edge states
are presented and discussed in Sec. V. Topological aspects
are studied in Sec. VI, whereas the summary and final conclu-
sions are in Sec. VII. Symmetry relations of the model and
scattering processes are discussed in Appendices A and B,
respectively.

II. MODEL OF GRAPHENE WITH A MAGNETIC
DOMAIN WALL

We consider a graphene monolayer deposited on a sub-
strate which generates Rashba spin-orbit interaction [33–37].
In addition, we assume a thin magnetic layer on top of
the graphene [38] with magnetization perpendicular to the
graphene plane. Coupling to the magnetization opens then a
gap in the electronic spectrum of graphene. In this paper we
consider a more general situation, when the magnetization is
not uniform but forms two domains separated by a narrow
domain wall as shown schematically in Fig. 1(a).

Effective Hamiltonian describing low-energy electronic
states near the K point of the Brillouin zone in the system
under consideration can be written in the form [39]

ĤK = −iv (τx∂x + τy∂y) + λ(σyτx − σxτy) + σzM(x), (1)

where v = h̄vF � h̄c/300, τ and σ represent the vectors of
Pauli matrices in the sublattice and spin spaces, respectively,
λ is the Rashba spin-orbit coupling parameter, and M(x) is the
x-dependent gap parameter that is related to the magnetization
in the z direction (perpendicular to the graphene plane). We
assume M(x) in the following form [32]:

M(x) =
{

M0, x < 0
−M0, x � 0,

(2)
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which describes a sharp magnetic domain wall located at
x = 0 and uniform along the y axis, as shown schemati-
cally in Fig. 1(a). We note that such very sharp domain
walls can be created artificially in real systems [40]. The
bulk (two-dimensional) electronic band structure of graphene
corresponding to M > 0 is the same as that for M < 0, as
presented in Figs. 1(e) and 1(f), respectively. However, the
bands become inverted when M changes sign at the domain
wall, which is also indicated in Figs. 1(e) and 1(f).

The energy gap in the electronic spectrum of a uniformly
magnetized graphene (no domain wall) with Rashba spin-orbit
interaction is given by the following formula [41]:

Eg = 2|M0λ|√
M2

0 + λ2
. (3)

This gap is determined by the absolute value of the mag-
netization, |M| = M0, and the absolute value of the Rashba
parameter, |λ|. Note, the gap vanishes when either M0 = 0 or
λ = 0.

Due to the band inversion, electronic states localized at the
domain wall emerge in the energy gap. Using the Schrödinger
equation, (Ĥ − ε) ψ (r) = 0, and taking into account structure
geometry, one can write the wave function in the form ψ (r) =
eikyy ψky (x), where ψky (x) is a bispinor with four components,

ψT
ky

= (ϕ↑
ky
, ϕ

↓
ky
, χ

↑
ky
, χ

↓
ky

). (4)

In the following we will solve the Schrödinger equation and
calculate the energy spectrum of the edge states localized at
the domain wall.

III. STATES LOCALIZED AT THE DOMAIN
WALL FOR ky = 0

Let us consider first the states localized at the domain wall
for ky = 0. Equations for the wave-function components (4)
for x < 0 and x > 0 acquire then the following form:

(M − ε) ϕ
↑
0 − iv ∂xχ

↑
0 = 0,

(M + ε) ϕ
↓
0 − 2iλχ

↑
0 + iv ∂xϕ

↓
0 = 0,

iv ∂xϕ
↑
0 + 2iλϕ

↓
0 − (M − ε) χ

↑
0 = 0,

iv ∂xϕ
↓
0 + (M + ε) χ

↓
0 = 0, (5)

where M = M0 (x < 0) and M = −M0 (x > 0). For states
localized at the domain wall one can write the wave functions
χ

↑,↓
0 and ϕ

↑,↓
0 in the form

ϕ
↑
0 (x) = Aeκx, ϕ

↓
0 (x) = Beκx,

χ
↑
0 (x) = Ceκx, χ

↓
0 (x) = Deκx, (6)

where A, B,C, D are certain constants, while κ describes a
wave-function decay on both sides of the domain wall. Thus,
the real value of κ must be positive, Re κ > 0, for x < 0 and
negative, Re κ < 0, for x > 0. Upon substituting Eq. (6) into
Eq. (5) one obtains a system of linear algebraic equations
for the constants A, B,C, D, which has nonzero solutions if
the corresponding determinant vanishes. This leads to the

following equation for κ:

v4κ4 + 2v2M2
0κ2 + 2v2ε2κ2 + M4

0 − 2M2
0ε2

+ 4M2
0λ2 − 4ε2λ2 + ε4 = 0. (7)

Note, this equation holds for x > 0 and x < 0. From this we
find four solutions denoted as κn (n = 1, 3) and κp (p = 2, 4),

κn = 1

v

(
−M2

0 − ε2 ± 2
√

M2
0ε2 − M2

0λ2 + ε2λ2
)1/2

, (8)

κp = −1

v

(
− M2

0 − ε2 ± 2
√

M2
0ε2 − M2

0λ2 + ε2λ2
)1/2

. (9)

The above solutions for κ are complex in general. However,
we find that Re κ1 = Re κ3 > 0 (so they correspond to x < 0)
and Re κ2 = Re κ4 < 0 (and correspond to x > 0).

Upon determining the coefficients A, B,C, D in Eqs. (6),
one can write two possible solutions of the Schrödinger equa-
tion for x < 0 and x > 0 in the following form:

ψn(p)(x)

= eκn(p)x

⎛
⎜⎜⎜⎜⎝

1

−−k2
y v2+κ2

n(p)v
2+(M±ε)2

2λv(ky+κn(p) )

± i(M±ε)
v(ky+κn(p) )

± i(ky−κn(p) )(κ2
n(p)v

2−k2
y v2+(ε+M )2 )

2λ(ky+κn(p) )(M∓ε)

⎞
⎟⎟⎟⎟⎠, (10)

where the index n and the upper sign correspond to x < 0,
whereas the index p and the lower sign correspond to x > 0.
Since the real part of κn is positive and that of κp is negative,
one can write a general normalized wave function correspond-
ing to the states localized at the domain wall, i.e., the wave
function that exponentially decays with distance from the wall
on both sides (for x < 0 and x > 0) in the form

ψ (x) = N[a1ψ1(x) + a3ψ3(x)], x < 0, (11)

ψ (x) = N[a2ψ2(x) + a4ψ4(x)], x > 0, (12)

where a1, . . . , a4 are certain coefficients, which have to be
determined from the continuity condition of the wave function
at x = 0, and N is a normalization factor. From this condition
one obtains a system of four linear algebraic equations for
a1, . . . , a4 in Eqs. (11) and (11). Vanishing of the correspond-
ing determinant defines the energy of the localized states,
which can be formally presented in the simple analytical form

ε1,2 = 1

3

√
3M0

2 + 4λ2
(√

3 sin γ1,2 − cos γ1,2
) ± 2λ

3
, (13)

where

γ1 =
⎧⎨
⎩

1
3 arctan

(
12

√
3|M0|ξ1

ξ2

)
+ π

3 , ξ2 < 0

1
3 arctan

(
12

√
3|M0|ξ1

ξ2

)
, ξ2 > 0,

(14)

γ2 =
⎧⎨
⎩

1
3 arctan

(
3
√

3|M0|ξ1

−ξ2

)
, ξ2 < 0

1
3 arctan

(
3
√

3|M0|ξ1

−ξ2

)
+ π

3 , ξ2 > 0,
(15)

with ξ1 =
√

4M0
4 + 13M0

2λ2 + 32λ4 and ξ2 = −36M0
2λ +

64λ3.
The localized states described by Eq. (13) exist inside the

energy gap. This is shown explicitly in Fig. 2(a) where the
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FIG. 2. (a) Energy of the electron states (for ky = 0) localized
at the domain wall (red lines) as a function of λ for M0 = 20 meV.
Black lines correspond to the edges of the gap in the bulk spectrum.
Both, the energy ε and Rashba parameter λ are normalized to M0.
The vertical dashed-dot line marks the value of λ/M0 used in the
following figures. (b) Real and imaginary parts of κn,p (normalized
to M0/v) defined by Eqs. (8) and (9) for ky = 0.

two energy levels ε1,2 are presented by the red lines as a
function of the spin-orbit coupling constant λ normalized to
M0. We remind one that these energy levels correspond to
ky = 0. The black lines in this figure describe the valence and
conduction band edges (and thus determine the energy gap).
The corresponding real and imaginary parts of the parameters
κn,p (normalized to M0/v) are shown in Fig. 2(b). This fig-
ure clearly shows that κ1,3 have positive real parts, and thus
describe exponential localization of the wave function on the
left side (x < 0), while the real parts of κ2,4 are negative and
describe exponential localization at the domain wall on the
right side of the wall (x > 0). All the parameters κ also have
imaginary parts.

IV. DISPERSION CURVES OF THE EDGE STATES

Now we determine the modes localized at the domain wall
for nonzero values of ky. All the calculation steps for ky �= 0
are similar to those for ky = 0, but the derived formulas are
cumbersome so they will not be presented here. Instead, we
will show some numerical results. Energy ε1(2) of the lower
(higher) edge mode is presented in Fig. 3(a) as a function of ky

normalized to M0/v [ky/(M0/v) = kyv/M0] and for λ/M0 =
0.5. These modes occur in the energy gap, but when they enter
the conduction or valence bands, they acquire quasilocalized
(or resonant) character due to interaction with the bulk elec-
tron bands. From symmetry (see Appendix A) follows that

FIG. 3. Edge modes (red dotted lines) localized at the domain
wall, presented as a function of ky (normalized to M0/v) for
(a) λ/M0 = 0.5, λ = 10 meV and (b) λ/M0 = 0.1, λ = 2 meV. In
both plots M0 = 20 meV. The solid black lines determine the relevant
conduction and valance bulk bands of graphene with Rashba spin-
orbit coupling and magnetization. The large red and blue dots on the
dispersion curves of the edge states correspond to the modes chosen
in Figs. 4 and 5. The two red points (as well as the blue ones) are
related by symmetry. Dispersion curves of the edge modes in the K
and K ′ points are the same.

the whole spectrum is antisymmetric. This is clearly seen in
Fig. 3(a), where ε1(ky) = −ε2(−ky).

When the Rashba parameter λ decreases, the two localized
modes in each Dirac point close up, as shown in Fig. 3(b) for
a small value of the parameter λ. When λ tends to zero, these
modes become degenerate and their energy tends to zero. In
addition, they acquire the bulk character in the limit λ → 0
since the inverse localization length Re κ tends then to zero
[see also Fig. 2(b)].

Due to the imaginary terms in κn,p, the wave functions have
a nonzero oscillatory contribution, as clearly visible in Fig. 4,
where the probability density p = ψ†(x)ψ (x) (normalized to
M0/v) is shown as a function of the dimensionless parameter
xM0/v (position on the axis x perpendicular to the wall, nor-
malized to v/M0) for the modes indicated by the red and blue
dots on the dispersion curves of the edge modes in Fig. 3(a)
for the point K . This probability density decays on both sides
with the distance from the domain wall. However, this decay
has exponential and oscillatory contributions. Amplitude of
the oscillatory term decreases with increasing distance from
the domain wall as well. As a result, expected values of some
physical quantities in the edge states may behave in a similar
manner. The period of the spatial oscillations is determined by
the imaginary part of κ in Eqs. (8) and (9). For small ε < λ
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FIG. 4. (a) Normalized probability density p as a function of x
for the edge states corresponding to the red (a) and blue (b) points
on the dispersion curves in Fig. 3(a), and described by the energy
ε/M and normalized wave vector ky as indicated. Due to symmetry
relations, these curves describe the probability density for the K and
K ′ Dirac points. Other parameters: λ/M = 0.5 and M0 = 20 meV.

and small λ we get a period ∼v/M0. It is evident that the wave
functions become more extended and the oscillations are more
pronounced when the energy of the edge modes approaches
one of the two gap edges.

We emphasize that all the results presented up to now
correspond to the Dirac point K in the Brillouin zone. Similar
modes exist also in the second Dirac point, K ′. The corre-
sponding Hamiltonian for the K ′ point reads

ĤK ′ = −iv (τx∂x − τy∂y) + λ(σyτx + σxτy) + σzM(x). (16)

Calculations similar to those described above for the point
K show that the edge modes (localized at the domain wall)
associated with the point K ′ are exactly the same as the modes
corresponding to the point K . Accordingly, the results shown
in Figs. 2, 3, and 4 apply also to the point K ′.

V. SPIN DENSITY ASSOCIATED WITH
THE CHIRAL STATES

Now we consider spatial variation of the spin density as-
sociated with individual edge states, s(x) = ψ†(x)τ0 σψ (x),
where τ0 is the unit matrix in the sublattice space of graphene.
In Fig. 5(a) we show the x component of the spin density, sx,
normalized to M0/v as a function of xM0/v for the modes
indicated by the blue points in Fig. 3(a) for the K and K ′
points. Note, the x components of the spin density in these two
symmetry-related points oscillates with increasing distance

FIG. 5. Normalized spin density sx (a) and sz (b) for the Dirac
points K and K ′. The assumed parameters as indicated (they corre-
spond to the blue points in Fig. 3). Other parameters: λ/M = 0.5 and
M0 = 20 meV.

from the wall with opposite phases. Consequently, when both
modes are populated, their contributions cancel each other.
Apart from this, sx is a symmetric function of x. Qualitatively
similar behavior can be observed for the z components of the
spin density, sz. However, now the corresponding x depen-
dence is antisymmetric. In turn, the y component of the spin
density vanishes exactly, sy(x) = 0.

From Fig. 5 follows that (i) the local spin density is ori-
ented in the (x, z) plane and (ii) its magnitude decays in an
oscillatory manner with increasing distance from the domain
wall. The oscillation period depends on the wave vector, as
shown in Fig. 6, where the local density of sx and sz (normal-
ized to M0/v) is shown for both edge modes as a function of
the normalized wave vector and position on the axis x.

Here, it is interesting to note some similarity to the
problem of orthogonal spin polarization at the Rashba-field
domain wall in a homogeneously magnetized nanowire [42].
Even though the Hamiltonian of graphene differs substan-
tially from the one-dimensional Rashba model considered in
Ref. [42], a nonzero sx at the graphene domain wall corre-
sponds to orthogonal spin polarization since the x axis in our
model is orthogonal to M and to the Rashba field when we
consider electrons moving along the axis x (like in the
nanowire problem).

Let us analyze now the total expected spin components Sx

and Sz in the individual edge states considered above, i.e., the
corresponding spin density integrated over x, Sx = ∫

dx sx(x)
and Sz = ∫

dx sz(x). From the above analysis follows that Sx
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FIG. 6. The x and z components of spin density associated with the edge modes of higher (a),(c) and lower (b),(d) energy, presented as a
function of the corresponding normalized wave vector ky and normalized position x on the axis normal to the domain wall.

in a particular chiral state is generally nonzero, while the Sz

component vanishes for all edge states. Therefore, we will
focus now only on the Sx component. For a particular energy
there are two edge states in the gap. For each Dirac point we
define the total spin St

x(ε) associated with edge modes at this
energy as a sum of the contributions from the two states. In
Fig. 7 we show St

x as a function of energy. The total spin
polarization of the edge states is opposite for the points K
and K ′. Thus, the integrated spin polarization, obtained by
integration over energy up to the Fermi level, vanishes due
to compensation of the contributions from both Dirac points.
To get a nonzero value of the integrated polarization one needs
to lift the valley degeneracy.

FIG. 7. Total spin St
x associated with the edge states in the K and

K ′ points, presented as a function of energy for λ/M = 0.5.

VI. BULK-EDGE CORRESPONDENCE AND QUANTUM
ANOMALOUS HALL EFFECT

The effective Hamiltonian describing bulk states on the
right/left part of the system, i.e., of a single magnetic domain,
is given by the extended Kane-Mele model [39],

ĤK,K ′ = v(τxkx + ηzτyky) + λ(ηzσxτy + σyτx ) + σzM, (17)

where we introduced the Pauli matrix ηz acting in the valley
subspace. Adding interaction with the perpendicular magne-
tization to the Hamiltonian of a pristine graphene leads to
splitting of the energy bands, as presented in Fig. 1(c). In
this case spin is still a good quantum number. The accidental
crossing at two points with zero energy can be easily re-
moved by a spin-mixing term, that is, by the Rashba spin-orbit
interaction in our case. In turn, simultaneous action of mag-
netization and Rashba field opens an energy gap in the bulk
spectrum [see Figs. 1(e) and 1(f)]. Thus, the perpendicular
to plane magnetization breaks the time-reversal symmetry,
while the Rashba coupling is a consequence of the inversion
symmetry breaking and leads to the mixing of spin states.
The insulating state, which appears when the energy gap is
open, is topologically nontrivial and is called the quantum
anomalous Hall (QAH) phase [43–45]. Accordingly, when the
Fermi energy is in the energy gap, one may expect the QAH
conductance of the system. Based on the Thouless-Kohmoto-
Nightingale-Nijs ) theory [46,47], the conductance is then
given by the following simple expression:

σxy = e2

h
nCh, (18)
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FIG. 8. Schematic picture of the bulk-edge correspondence for
the structure presented in Fig. 1(a). The graphene domains with op-
posite magnetizations possess opposite Chern numbers. Accordingly,
the two domains possess counterpropagating chiral edge states.

where

nCh = 1

2π

∑
ν

∑
n

∫
d2k �ν

z,n(k) ≡ nK
Ch + nK ′

Ch (19)

is the Chern number, and �ν
z,n(k) is the z component of the

Berry curvature for the nth band in the momentum space (ν
indicates one of the two inequivalent K points in graphene),
whereas the summation over n is the summation over all
occupied bands. For the effective continuum model [Eq. (17)]
describing bulk states in the system with a single magnetic
domain we find nCh = 2 sgn(M ), with the same contributions
from the K and K ′ points, i.e., nK

Ch = nK ′
Ch = 1 sgn(M ) [41,48–

50]. According to the bulk-boundary correspondence, one can
then expect two chiral edge modes (see Fig. 8), at the interface
between graphene and vacuum, that is between two topolog-
ically distinct phases, i.e., between the QAH phase and the
trivial insulator.

The system with a magnetization kink (sharp domain wall)
can be considered as a junction of two QAH insulators with
opposite chiralities of the edge modes (the orientation of
magnetization determines the sign of the Berry curvature)
that have been connected adiabatically. This is reminiscent
of the generalized Jackiw-Rebbi model for Dirac fermions in
graphene with the magnetization kink, M(x) = −M(−x). Ac-
cordingly, we have a pair of topologically different topological
insulators [nCh(x < 0) = 2 and nCh(x > 0) = −2], which be-
long to the same symmetry class [51]. Thus, one can expect
four edge states propagating in the same direction along the
domain wall, as presented in Fig. 8. The quantized anomalous
Hall conductivity at the domain wall is equal to −4e2/h.

However, it should be stressed that the edge states at the
magnetization kink are not protected against scattering as
the interface is not between topologically distinct insulators
[51,52]. More precisely, there are two topologically distinct
regions (phases) defined by different Chern numbers, but
Hamiltonians describing these regions belong to the same
class of topological order. Secondly, for graphene one cannot
limit backward-scattering processes to energy states around a
single Dirac cone (single valley). Note that the time-reversal
symmetry for graphene is defined by the operator � = iηxσyK
[53] where K is a complex conjugation. Due to the last term
in the Hamiltonian (17) the time-reversal symmetry is bro-
ken, i.e., �H (k)�−1 �= H (−k). Consequently, the intervalley
scattering processes are allowed. In Appendix A we provide a
more detailed discussion of the symmetry of the system under
consideration.

The problem of intervalley scattering is an important is-
sue in the context of the realization of QAH effect in real
graphene–based systems. It should be mentioned that the re-
alization of graphene in the presence of the net perpendicular
to plain magnetization and Rashba spin-orbit coupling is pos-
sible in several ways. One of the reported methods relies on
the absorption of magnetic transition-metal adatoms on one
side of the graphene layer. This ensures not only magnetic
proximity effect, but also a charge transfer between graphene
and adatoms, which leads to a sizable Rashba effect [54–58].
This solution is, however, related to the intervalley scattering
and diminishing of the QAH phase. Jiang et al. [59] showed
that the QAH phase can survive when the magnetic adatoms
are distributed in a completely random way. Such a solution
is rather difficult to achieve in realistic samples, as adatoms in
graphene prefer to form clusters that destroy the QAH phase
[60,61]. Another realization is based on the deposition of
graphene on a ferromagnetic insulating substrate like yttrium
iron garnet, RbMnCl3, or LaMnO3 [62–64]. However, the
Rashba spin-orbit coupling in such systems is weak and thus
the energy gap is also rather small.

VII. SUMMARY AND CONCLUSIONS

We have considered the energy spectrum of a system
consisting of a graphene monolayer with spin-orbit Rashba
interaction, which is additionally coupled to a magnetic layer
with a domain wall. The main focus was on the states lo-
calized at the domain wall, which exist in the gap created
by coupling to the ferromagnetic layer in the presence of
Rashba spin-orbit interaction. For each Dirac point we found
two one-dimensional bands of chiral modes, and the modes in
different points are similar. We have also calculated expected
values of the spin density as well as the total spin expected
in the edge states. We have shown that the spin polarization
of the edge states appears when there is an imbalance in the
occupations of the K and K ′ Dirac points.

From symmetry follows that εK (ky) = −εK (−ky) (the
same for the K ′ point), and also εK (ky) = εK ′

(ky). Different
domains correspond to topologically different regions defined
by different Chern numbers (2 and −2 on different sides of
the wall). From this analysis follows that four chiral states
propagate along the domain wall when the Fermi energy is
in the gap, exactly what was found from direct calculations
of the modes localized at the wall. As a consequence, one
can observe quantized anomalous Hall conductance along
the domain wall with four conductance quanta. However, the
chiral states at the domain wall are not protected against
intervalley scattering. Such scattering processes can lead to
a suppression of QAH effect. More details on scattering are
given in Appendix B.

In our considerations we assumed a domain wall with equal
magnitudes |M| = M0 of magnetization on both sides. When
M on one side of the wall is small, the corresponding gap is
narrow, and one can expect that two chiral modes at the wall
are low energy and slowly decay with distance from the wall.
Obviously, when M = 0 on one side, the second part of the
system is then covered by a uniform magnetic domain and
it is in the QAH phase, while the part with M = 0 is in the
metallic phase.
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APPENDIX A: SYMMETRY OF THE SYSTEM

Time-inversion operator for Ĥ (ky) is Tt = τyσyKPky , where
K stands for the complex conjugation and Pky changes ky →
−ky. The Hamiltonian Ĥ0 is invariant with respect to this
transformation, Tt Ĥ0T †

t = Ĥ0. The term σzM in Ĥ breaks this
symmetry, but reversing simultaneously the sign of M leads to
Tt Ĥ (M ) T †

t = Ĥ (−M ).
One can introduce electron-hole inversion operator Tc =

τyσxK. If M is constant, we consider ĤK,K ′ (k) = v(τxkx ±
τyky) + λ(∓σxτy + σyτx ) + σzM. In this case Tc Ĥ (k) T †

c =
−Ĥ (k), which means that if ψk is the eigenfunction of Ĥ (k)
with the eigenvalue ε(k), then Tcψk is also the eigenfunc-
tion of Ĥ (k) with the eigenvalue −ε(k). This corresponds to
electron-hole symmetry for Ĥ (k). When M is not constant,
e.g., for M(x) = −M(−x), this symmetry is broken.

Let us consider now the transformation Tp = τx, for which
we get Tp ĤK (ky) T †

p = ĤK ′ (ky). This indicates that if ψky (x)
is the eigenfunction of ĤK with the eigenvalue ε(ky), then the
function Tp ψky (x) is also the eigenfunction of ĤK ′ with the
same eigenvalue ε(ky).

There is one more transformation Tr = σzPxPky ,
which acts as Tr ĤK,K ′ (ky)T †

r = −ĤK,K ′ (−ky) when
M(x) = −M(−x) (this is the symmetry of our model). It
leads to ε(ky) = −ε(−ky). Thus, the dependence ε(ky) is an
antisymmetric function of ky.

Let us introduce vector R = m(−δ) × m(+δ), where
m(x) = M(x)/M0. This vector determines the chirality. As
one can conclude from Fig. 3, the group velocity of electrons
localized at the domain wall is in the direction of R for both
valleys K and K ′.

APPENDIX B: BACKWARD SCATTERING FROM
IMPURITIES

From the above symmetry considerations follows that for
each Dirac point the Tr symmetry relates the states ky and −ky

with opposite signs of energy. Therefore, such a symmetry
does not impose any restrictions on elastic scattering from
defects as long as there is only one state with certain value
of ky = ky0, for which ε(ky0) = ε(−ky0) = 0. In principle, the
Tr symmetry in this case could be important if the perturba-
tion does not break this symmetry. However, considering the
scattering matrix Ŝ, which relates scattering states in different
channels for the case of functions ψ and Trψ , we found that
Tr does not impose any additional restrictions to the scat-
tering matrix. One should also note that the usual impurity
with potential V (r) located at some point in the domain wall
breaks explicitly the symmetry Tr because the impurity po-
tential is even with respect to x → −x. Correspondingly, such
a symmetry cannot protect the edge states against scattering
between k and −k. Note that this is not a backward scattering
since the electron velocity has the same sign for these states.

A mechanism which can lead to the absence of intravalley
backward scattering is related to the peculiarity of electron
band structure. Let us consider the wave functions of electrons
in the edge states |ky〉 = eikyyψky (x) and |k′

y〉 = eik′
yyψk′

y
(x) cor-

responding to energy ε in the gap. These states belong to
different bands in the same valley (see Fig. 3). Matrix element
〈ky|V (r)|k′

y〉 of the impurity perturbation located at the point
R = 0 (at the domain wall) is

〈ky|V (r)|k′
y〉 =

∫
dqx

2π
V (qx, ky − k′

y)

×
∫ ∞

−∞
dx eiqxxψ

†
ky

(x) ψk′
y
(x), (B1)

where V (qx, qy) is the Fourier transform of the impurity po-
tential. We calculated the wave functions ψky (x) and ψk′

y
(x)

numerically, and using these results we found that ψky (x) and
ψk′

y
(x) are numerically orthogonal (the integral of nonorthog-

onality was negligible for the normalized wave functions).
From this we conclude that the probability of impurity scat-
tering from ky to k′

y is negligible.
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