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Dynamics of interstitial skyrmions in the presence of temperature gradients
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An interstitial skyrmion is the skyrmion state confined in the helical background. While the spin helix naturally
provides the one-dimensional channels in helical magnets, the dynamics of an interstitial skyrmion are different
from that for free skyrmions in a ferromagnetic or conical background. In this paper, we studied the dynamics
of interstitial skyrmions under a temperature gradient numerically and analytically. We show that the interstitial
skyrmion moves from the hot area to the cold area in the presence of temperature gradients, in contrast to
skyrmions in the ferromagnetic background, where they move towards the hot region. Because the interstitial
skyrmion is confined in the one-dimensional channel, it moves in the same direction as the magnon flow induced
by the temperature gradient, where the β-type thermomagnonic torque plays an essential role.
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Magnetic skyrmions are topological spin textures that have
a quantized topological number [1,2] and particlelike prop-
erties [3]. The latter enable the skyrmions to be considered
as promising candidates for spintronic applications, such as
logic devices [4], racetrack memory [5,6], and neuromorphic
computation [7]. One effective mechanism to stabilize the
magnetic skyrmions is the Dzyaloshinskii-Moriya interaction
(DMI) [8–10], which supports the helical states naturally with
a weak external field. Interestingly, the skyrmion also can exist
in the helical background, forming an interstitial skyrmion
[11]. Compared with the skyrmion in the ferromagnetic back-
ground, the interstitial skyrmion has its features. For example,
the one-dimensional channels are naturally provided by the
helical background, which may result in a fast skyrmion mo-
tion [12]. Moreover, the interstitial skyrmion chain can be
formed with attractive interactions due to the repulsive forces
provided by the surrounding helical phase [11].

Magnetic skyrmions show fascinating dynamics in
nonequilibrium environments. For example, ratchet skyrmion
motion emerges in the presence of temperature gradients
where the skyrmions are confined in a round disk [13]. Theo-
retical studies show that the skyrmion will move towards the
high-temperature region [14,15] in the presence of temper-
ature gradients, which is different from the typical particle
diffusion. This prediction is observed experimentally in an
insulating magnet using Lorentz transmission electron mi-
croscopy [16]. Meanwhile, skyrmions moving to the cold
region were observed in multilayer systems [17], implying
subtle skyrmion dynamics in the nonequilibrium environ-
ments [18]. It is interesting to ask which region the interstitial
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skyrmion will move towards in the presence of temperature
gradients.

In this paper, we investigate the dynamics of interstitial
skyrmions in the presence of temperature gradients numer-
ically and analytically. We show that interstitial skyrmions
move towards the cold area, which is contrary to the skyrmion
motion in the ferromagnetic background [14,15].

We consider a classical Heisenberg model on a regular
cubic lattice with nearest-neighbor exchange interaction, the
bulk-type DMI, and a weak uniaxial anisotropy. Accordingly,
the system’s Hamiltonian can be written as

H = − J
∑

〈i, j〉
mi · m j +

∑

〈i, j〉
Di j · [mi × m j]

−
∑

i

K (ex · mi )
2, (1)

where 〈i, j〉 represents a unique pair of lattice sites i and j and
mi is the unit vector of the magnetic moment μi = −h̄γ Si

with Si being the atomic spin and γ (>0) being the gyro-
magnetic ratio. The bulk-type DMI vector Di j can be written
as Di j = Dr̂i j , where D is the DMI constant and r̂i j is the
unit vector between Si and S j . In this paper, we have used
D/J = 0.36 and K/J = 0.009 to speed up the calculation.
We have ignored the external field, which is not essential for
stabilizing the helical structures and interstitial skyrmions.

A system of size N = 600 × 220 × 4 sites with open
boundary conditions is selected to study the dynamics of
the interstitial skyrmion. The micromagnetic package JU-
MAG [19], which is graphics processor unit (GPU) supported,
was used to perform the simulation. Moreover, we have
chosen J = h̄ = γ = kB = S = a = 1 as simulation param-
eters [13,20], and thus the coefficients to convert the time
t , temperature T , and velocity v to SI units are t̂ = h̄S/J ,
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TABLE I. Unit conversion table for J = 50 K, S = 1/2, and a =
0.5 nm.

Conversion Value

Distance x x̂ = a = 0.5 nm
Time t t̂ = h̄S/J ≈76.4 fs
Velocity v v̂ = Ja/(hS) ≈1.04 × 103 m/s
Temperature T T̂ = J/kB = 50 K

T̂ = J/kB, and v̂ = Ja/h̄S, respectively. For typical insulating
Cu2OSeO3, J = 50 K, S = 1/2, we take the lattice spacing
a = 0.5 nm, and the corresponding coefficients are shown in
conversion units in Table I. An interstitial skyrmion in the
helical background is shown in Figs. 1(a) and 1(b), which is
obtained by minimizing the system energy. Figure 1(a) shows
an interstitial skyrmion in the helical background, which is
obtained by minimizing the system energy. Compared with
the skyrmion in the ferromagnetic background in which the
external field is used to stabilize the isolated skyrmion, the
interstitial skyrmion is stabilized by the helix surrounding it.
Therefore a skyrmion chain can also be formed, as shown in
Fig. 1(c), where the chain contains three individual skyrmions.

The dynamics of the magnetic moment in a nonzero-
temperature environment is governed by the Landau-Lifshitz-
Gilbert (LLG) equation with a stochastic field h:

∂mi

∂t
= −γ mi × (Heff + hi ) + αmi × ∂mi

∂t
, (2)

where Heff = −(1/μs)∂H/∂mi is the total effective field and
α is the Gilbert damping. The thermal fluctuation is assumed
to be a Gaussian white noise; that is, the thermal noise obeys
the properties [21,22]

〈hi〉 = 0,
〈
hu

i (t ), hv
j (t

′)
〉 = 2D0δi jδuvδ(t − t ′), (3)

where i and j are Cartesian indices, u and v indicate the
field components, and the average 〈· · ·〉 is taken over dif-
ferent realizations of the stochastic field. The strength of the
thermal fluctuations is determined by D0 = (αkBT )/(γμs) =
(αkBT )/(h̄γ 2S). Although the magnitude of classical spin S
influences the strength of thermal fluctuation fields, it has no
impact on the conversion relation T̂ , as shown in Table I.

We first study the Brownian motion of the interstitial
skyrmions. In the presence of a uniform temperature, the
thermal fluctuation field immediately has two effects. The

x
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FIG. 1. (a) The studied system is a simple cubic lattice with a size
of 600 × 220 × 4 in which an interstitial skyrmion is immersed in the
helical background. (b) A zoom-in plot of the interstitial skyrmion is
shown in (a). (c) A skyrmion chain is composed of three interstitial
skyrmions.

(a) (b)

FIG. 2. (a) Histogram of the X displacements within �t = 25
for the interstitial skyrmion at temperature T = 0.02. A Gaussian
fit (shown as an orange line) is performed with the fitted σ =
1.24a. (b) The mean-square displacement (MSD) as a function of
the elapsed time, where 32 trajectories with length N = 800 and
�t = 25 are used. The Gilbert damping is set to be α = 0.01.

fluctuation field breaks the static standard skyrmion profile,
leading to an effective skyrmion mass. The established typ-
ical skyrmion mass is of the order of 1 × 10−25 kg [22,23].
Meanwhile, the skyrmion performs a random walk which
can be seen by measuring its geometric center (X,Y ). Fig-
ure 2(a) shows a histogram of the displacements of X within
�t = 25 at temperature T = 0.02. The distribution of the dis-
placements can be well described using a Gaussian function,
indicating that the skyrmion feels a white noise “force” collec-
tively. The mean-square displacement (MSD) of the skyrmion
position, defined as 〈X 2〉(t ) = 〈|X (t ) − X0|2〉, is plotted in
Fig. 2(b). Compared with the skyrmion in the ferromagnetic
background, the interstitial skyrmion is confined in the one-
dimensional channel, and thus the skyrmion can only move
freely in the x direction, which agrees with the calculated
MSDs. 〈X 2〉 scales with time linearly, and 〈Y 2〉 reaches a
constant in the long-time limit.

To understand the dynamics of interstitial skyrmion, we
use the approach developed by Thiele [24] and consider the
translational motion m(r, t ) = m[r − R(t )], i.e., ignoring the
skyrmion mass. We obtain

Gez × vd + αD · vd = f − ∇U, (4)

where vd is the skyrmion velocity. The z-component gy-
rovector G = 4πQ, and Q = ∫



m · (∂xm × ∂ym)dxdy = ±1

is the skyrmion number where the integral is taken over
the skyrmion area 
. For the interstitial skyrmion shown in
Fig. 1(b), the skyrmion area can be determined using the con-
tour line with mz = −1 since the spin in the skyrmion’s core is
pointed up (mz = 1). The tensor D represents the shape factor
of spin textures and is given by Di j = ∫



(∂im · ∂ jm) dx dy.

The D can be simplified as Di j = δi jD when the spin textures
have the rotational symmetry and D ∼ 4π for a magnetic
skyrmion. The collective stochastic force fi = −γ

∫



(∂im ·
h)dxdy, and therefore its average over the ensemble reads
〈 fi(t + τ ) f j (t )〉 = (2αD′kBT/μs)δi jδ(τ ). The potential U =
U (Y ) is introduced phenomenologically, which represents the
pushing force imposed by the helical background. By using
the quadratic approximation for the potential U = U (Y ) =
(κ/2)Y 2, we arrive at

dX = a dW1 + b dW2 − c1Y dt, (5)

dY = −b dW1 + a dW2 − c2Y dt, (6)
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FIG. 3. (a) Snapshots of an interstitial skyrmion at time t = 0,
3 × 104, and 5 × 104 in the presence of a temperature gradient
dT/dx = −5 × 10−5, where the Gilbert damping α = 0.008 is used.
(b) The time-dependent positions of the interstitial skyrmion and a
chain with three interstitial skyrmions. Both the interstitial skyrmion
and skyrmion chain move towards the cold region.

where W1 and W2 represent two Wiener processes,
a = αDη/(α2D2 + G2), b = Gη/(α2D2 + G2), c1 =
κG/(α2D2 + G2), c2 = ακD/(α2D2 + G2), and η =√

2αD′kBT/μs. The average 〈X 〉 and 〈Y 〉 can be calculated by
solving d〈X 〉/dt = −c1〈Y 〉 and d〈Y 〉/dt = −c2〈Y 〉, which
gives 〈X 〉 = 0 and 〈Y 〉 = 0 for initial conditions X0 = 0 and
Y0 = 0. Similarly, the average of X 2 and Y 2 can be evaluated
using

d〈X 2〉/dt = −2c1〈XY 〉, (7a)

d〈XY 〉/dt = −c1〈Y 2〉 − c2〈XY 〉, (7b)

d〈Y 2〉/dt = η2 − 2c2〈Y 2〉, (7c)

which results in

〈X 2〉 = (
η2c2

1/2c3
2

)
(2c2t + 4e−c2t − e−2c2t − 3) (8)

and 〈Y 2〉 = (η2/2c2)(1 − e−2c2t ). The simulation results of
〈X 2〉 are fitted using Eq. (8), and the fitted parameters are c2 =
2.65 × 10−4 and η2c2

1/c2
2 = 0.032. In the long-time limit, we

obtain

〈X 2〉 = 2G2D′kBT

αD2
t (9)

and 〈Y 2〉 = 2(α2D2 + G2)kBT/κ . The expression (9) shows
that the diffusion coefficient is inversely proportional to
the Gilbert damping, which is different from the case of a
skyrmion in the ferromagnetic background [15].

The simulation results in the presence of a temperature
gradient are shown in Fig. 3. The temperature of the left
end of the sample is set to 0.03, while the right side is as-

sumed to be 0 K, and thus the constant temperature gradient
is dT/dx = −5 × 10−5. Figure 3(a) shows snapshots of the
interstitial skyrmion at time t = 0, 3 × 104, and 5 × 104. The
interstitial skyrmion moves along the +x direction, i.e., moves
toward the cold region. This phenomenon is different from the
theoretical prediction for the skyrmion dynamics in the fer-
romagnetic background, where the skyrmions move towards
the hot area [14]. The corresponding skyrmion position as a
function of time is illustrated in Fig. 3(b). As a comparison,
the position for a skyrmion chain containing three skyrmions
is also plotted. The skyrmion velocity increases in the first
stage (∼3 × 104), and after that, a steady motion with the
established average velocity ∼5.7 × 10−3 is observed.

The presence of temperature gradients has two effects on
the dynamics of interstitial skyrmions. The first is that the
Brownian diffusion will result in a net skyrmion motion.
Note that the characteristic relations [Eqs. (7a)–(7c)] between
〈X 2〉, 〈XY 〉, and 〈Y 2〉 are the same as those for the standard
Langevin equation of the Brownian particle, where Y plays
the role of velocity and κ is the effective mass. Therefore the
average net velocity due to the Brownian diffusion is [25,26]

〈vB〉 = −G2D′kB

αD2

dT

dx
. (10)

The minus sign shows that the skyrmion moves towards the
colder area under the Brownian diffusion.

The second contribution is that the temperature gradients
break the equilibrium state of thermal magnons. Thus thermal
magnons propagate from the hot region to the cold region,
forming a spin-wave spin current [27,28]. When the thermal
magnons pass through the skyrmion, magnons transfer angu-
lar momentum to the skyrmion and result in the skyrmion
motion. To illustrate the interplay between the spin currents
and the skyrmion, we split the unit vector m into two orthog-
onal components [29,30]: m = √

1 − δm2 m0 + δm, where
the slow component m0 represents the equilibrium profile
of the spin textures and the fast component δm denotes the
small deviation from m0 owing to the thermal fluctuations.
Inserting it back into the LLG equation, and averaging over
the quadratic terms in the fast component δm, one obtains the
total thermomagnonic torque [30]

τ = h̄(J · ∇ )m0 − (h̄A/s)∂iρ(m0 × ∂im0), (11)

where Ji = (A/h̄)[m0 · 〈δm × ∂iδm〉] is the magnon flux
density, A = J/(2a) is the exchange constant, and ρ =
s〈δm2〉/(2h̄) is the magnon number density with s = h̄S/a3

being the spin angular-momentum density [30]. The first
term on the right-hand side of Eq. (11), originating from the
longitudinal component of the spin current (defined as Js

i =
−A〈δm × ∂iδm〉), represents the angular-momentum transfer
between magnons and spin textures. The second term, also
known as β-type torque, results from the gradient of the
magnon number density ρ [30]. The macroscopic variables
J and ρ can be simply expressed as J = −cJ∇T and ∇ρ =
cρ∇T . In the exchange-magnon approximation, the coeffi-
cients of cJ and cρ can be established as [30]

cJ = Id

2dπd/2

kB

αh̄λd−2
, cρ = d Id

2d+1πd/2

skB

Ah̄λd−2
, (12)

214407-3



KONG, CHEN, WANG, SONG, AND DU PHYSICAL REVIEW B 104, 214407 (2021)

where λ = √
h̄A/(skBT ) is the thermal magnon wavelength,

Id ≡ [1/�(1 + d/2)]
∫ ∞

0 dηηd/2eη(eη − 1)−2 is a numerical
constant, and for the three-dimensional case I3 ≈ 2.612. Note
that the ratio of cJ and cρ links J and ∇ρ, which gives
∇ρ = −β(s/A)J, where β ≡ (A/s)cρ/cJ = (d/2)α.

Integrating the torque τ into the Thiele equation, we obtain

Gez × (h̄J + vd ) + D · (αvd − β h̄J) = f − ∇U . (13)

In the ferromagnetic background the skyrmion can move
freely, i.e., the potential U = 0, the velocity for the
steady skyrmion motion reads vx = −[(G2 − D2αβ )/(G2 +
α2D2)]h̄Jx and vy = −[(α + β )DG/(G2 + α2D2)]h̄Jx. Since
Jx represents the magnon flux density from the hot re-
gion to the cold region, the skyrmion will move to-
wards the hot area owing to the thermomagnonic torques
[14]. The skyrmion Hall effect thus is given by tan θh ≡
vy/vx = (α + β )DG/(G2 − D2αβ ). For the case of inter-
stitial skyrmions, the potential imposed by the helical
background restricts the interstitial skyrmion motion in the
x direction, i.e., the skyrmion Hall angle θh ≈ 0. There-
fore the steady motion of the interstitial skyrmions is given
by

vx = β

α
h̄Jx = − h̄dcJ

2

dT

dx
. (14)

The above equation clearly shows that the velocity of
the interstitial skyrmion is parallel to Jx, i.e., the inter-
stitial skyrmion moves towards the cold area, where the
β-type torque plays an essential role in such a direction
reverse.

It is worth mentioning that an alternative theory to describe
the interaction between spin waves and the skyrmion is to
consider it as a magnon-skyrmion scattering problem [31,32].
In the framework of the Thiele equation, the magnons impose
an extra force on the skyrmion, where the force can be written
as [32,33]

F = kσ‖h̄J − Qkσ⊥h̄(ez × J), (15)

where σ‖ = σ‖(ε) and σ⊥ = σ⊥(ε) are longitudinal and trans-
verse transport scattering cross sections of the skyrmion and
ε is the spin-wave energy. It can be seen from Eq. (13) that
the σ‖ and σ⊥ components of the force [Eq. (15)] correspond
to the β-type torque and the spin-current torque in Eq. (11),
respectively. The skyrmion Hall angle predicted by the force
[Eq. (15)] is related to the ratio σ‖/σ⊥, which normally de-
pends on the spin-wave energy. Especially, in the low-energy
limit (krs  1, where rs is the skyrmion radius), σ‖/σ⊥ → ∞
and thus the skyrmion moves approximately perpendicularly
to the magnon current direction. However, the skyrmion Hall
angle predicted by the torque [Eq. (11)] does not depend on
the spin-wave energy. Note that the excited thermal magnons
have a wide frequency range, and thus we add a correction
force F‖ in Eq. (13),

F‖ = ν h̄J, (16)

where ν is a coefficient. This correction force contributes an
extra velocity for the interstitial skyrmions

v′
x = ν

αD
h̄Jx. (17)

FIG. 4. The average velocity of the interstitial skyrmion as a
function of Gilbert damping α. Each data point is computed from ten
trajectories, and the error bar represents the standard deviation of the
ten velocities (20 trajectories are used for α � 0.02). The damping-
velocity relation is fitted using v(α) = a/α2 + b/α with the fitted
parameters a = (3.9 ± 0.4) × 10−7 and b = (4.2 ± 0.9) × 10−6.

Adding all three velocities [Eqs. (10), (14), and (17)] to-
gether, we obtain the overall velocity for interstitial skyrmions
under a temperature gradient

〈vx〉 = − νc′
J

α2D

dT

dx
− dc′

J

2α

dT

dx
− G2D′kB

αD2

dT

dx
, (18)

where c′
J = Id kB/(2dπd/2λd−2). Note that all terms have a mi-

nus sign, indicating similar contributions for thermal magnons
and the Brownian motion—both drive the interstitial skyrmion
from the hot region to the cold region. To check the valid-
ity of Eq. (18), we perform the numerical simulations with
different Gilbert damping at a fixed temperature gradient
dT/dx = −5 × 10−5. The average velocities are calculated,
as shown in Fig. 4, in which the error bar is the standard
deviation of ten velocities obtained from ten trajectories (20
trajectories are used for α � 0.02). The damping-velocity
relation for α � 0.006 is fitted using the function v(α) =
a/α2 + b/α, and the obtained fitting parameters a = (3.9 ±
0.4) × 10−7 and b = (4.2 ± 0.9) × 10−6. The coefficient ν

can be established as ν = (a/b)(d/2)D ≈ 1.2. The last two
terms on the right-hand side of Eq. (18) contribute to the
fitting parameter b. So we have −(dT/dx)c′

Jd/2 ≈ 1 × 10−5

for the d = 2 case and −(dT/dx)c′
Jd/2 ≈ 6 × 10−7 for the

d = 3 case where we simply assumed I2 ∼ I3. Using the fitted
parameter η and c2, the contribution of the Brownian dif-
fusion reads −(dT/dx)G2D′/D2kB = 4 × 10−7. Our studied
system is a quasi-two-dimensional system since it only has
four layers in the z direction and the fitted parameter b is
indeed bounded by the predictions for the d = 2 and d = 3
cases.

In summary, we have studied the dynamics of interstitial
skyrmions in the presence of temperature gradients numeri-
cally and analytically. We show that the interstitial skyrmion
moves from the hot region to the cold region in the pres-
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ence of a temperature gradient, which is different from
the case of a skyrmion in the ferromagnetic background.
The thermomagnonic torques as well as the helical back-
ground, which imposes a pushing force to the interstitial
skyrmion, play essential roles in the moving direction of the
skyrmion.
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