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Competing magnetic states in transition metal dichalcogenide moiré materials
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Small-twist-angle transition metal dichalcogenide (TMD) heterobilayers develop isolated flat moiré bands
that are approximately described by triangular lattice generalized Hubbard models [F. Wu, T. Lovorn, E.
Tutuc, and A. H. MacDonald, Phys. Rev. Lett. 121, 026402 (2018)]. In this paper we explore the metallic
and insulating states that appear under different control conditions at a density of one electron per moiré
period and the transitions between them. By combining fully self-consistent Hartree-Fock theory calculations
with strong-coupling expansions around the atomic limit, we identify four different magnetic states and one
nonmagnetic state near the model phase diagram’s metal-insulator phase transition line. Ferromagnetic insulating
states, stabilized by nonlocal direct exchange interactions, are surprisingly prominent.
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I. INTRODUCTION

Moiré materials, formed by stacking layered two-
dimensional (2D) van der Waals semiconductors or semimet-
als with small differences in lattice constant or orientation,
have attracted attention recently as a highly tunable plat-
form to study strong correlation phenomena. The low-energy
physics of a moiré material is accurately described by
an emergent periodic Hamiltonian [1–3] that is insensi-
tive to commensurability between the moiré pattern and the
underlying lattice. Stimulated by the recent experimental re-
alization [4–6] of magic angle physics in twisted bilayer
graphene, experimental attention has expanded to include
other graphene-based multilayers with twists [7–14] and
also twisted transition metal dichalcogenide (TMD) bilayers
[15–25]. The valence bands of TMD heterobilayers and �-
valley homobilayers [26] are described by emergent models
in which interacting spin-1/2 electrons experience an external
potential with triangular lattice periodicity and therefore map
directly to models of electrons on triangular or honeycomb
lattices. This paper is devoted to a study of the properties of
triangular lattice moiré materials and focuses on the case of
one hole per moiré period, in which correlations are strongest.
We examine the crossover from the narrow-band regime at
small twist angles, where the system maps to a one-band Hub-
bard model with dominant on-site interactions, to the regime
closer to the metal-insulator phase transition, where important
differences appear.

Our discussion is based mainly on a mean-field Hartree-
Fock approximation used to address the interplay between
periodic modulation and Coulomb interactions that control
the hybridization between orbitals centered on different sites
and therefore exchange interactions of spins on the system’s
triangular lattice. Because it is a mean-field approach, the
Hartree-Fock approximation cannot account for dynamic fluc-
tuations in spin configuration but can accurately describe
the energy of particular spin configurations. Importantly
for the present application, the Hartree-Fock approximation

has the advantage over spin density functional theory [27]
that it correctly accounts for the absence of self-interaction
[28] when electrons are localized near lattice sites. We expect
the Hartree-Fock approximation to overestimate the stability
of insulating states relative to metallic states. (Indeed, this
expectation is confirmed by comparison with separate exact-
diagonalization calculations for the same model [29].) Our
calculations can therefore provide a lower bound on the moiré
modulation strength that drives the system from a metallic
to an insulating state at a given interaction strength. Unlike
exact-diagonalization calculations, Hartree-Fock calculations
can be accurately converged with respect to system size.

Our goal in this paper is to identify differences be-
tween moiré material physics and single-band Hubbard model
physics, with particular emphasis on the prospects for tuning
the system into exotic spin liquid states. Figure 1 shows the
phase diagram in a space defined by dimensionless modula-
tion strength α2(VM, φ, aM ) and interaction strength r∗

s (ε, aM )
parameters. The full phase space of the problem is actually
three-dimensional since the phase φ (see below) of the moiré
potential Fourier amplitude also plays a role. (aM is the moiré
material lattice constant.) The lowest-energy hole band is
spectrally isolated for α � 0.1, the range covered in Fig. 1,
unless φ is very close to a honeycomb value (see below).
We find that the three-sublattice antiferromagnetism expected
[30] in the insulating state transforms to stripe magnetism
and finally to ferromagnetism with increasing r∗

s and that a
semimetallic state with three-sublattice order occurs on the
metallic side of the metal-insulator phase transition. The tran-
sition to ferromagnetic insulating states at strong interactions
opens up new opportunities to engineer strongly frustrated
quantum magnetism. Given the possibility of in situ tuning
between different spin states, these findings demonstrate that
moiré materials are an exceptionally promising new system
for the exploration of two-dimensional quantum magnetism.

The rest of this paper is organized as follows: In Sec. II
we review the moiré material model, discuss expected prop-
erties, and introduce the mean-field formalism. In Sec. III,
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FIG. 1. Hartree-Fock phase diagram for triangular lattice moiré
materials with one hole per unit cell. The two dimensionless control
parameters (see the text) are the interaction strength r∗

s and α2, a
parameter that is inversely related to the moiré potential strength.
First-order and second-order phase transitions are marked by solid
and dashed black lines, respectively. States close to the top left corner
of the phase diagram (hashed) are metallic. States at the bottom right
of the phase diagram are insulating. A narrow semimetallic state
(labeled SDW, spin density wave) that shares spatial symmetries with
the three-sublattice noncollinear insulating state hugs the metallic
side of the metal-insulator transition. An unexpected phase transition
into an insulating ferromagnetic (blue) state at strong interaction
strengths is interrupted by a narrow collinear antiferromagnetic stripe
state (orange). This phase diagram was calculated for the moiré mod-
ulation phase (see the text) φ = 26◦. The lines follow approximate
phase boundary expressions explained in the text.

we discuss our results for spin interactions in insulating
moiré materials. We comment specifically on the necessary
conditions for nonzero Hall conductance, concluding that
although nontrivial band topology is unlikely, applying a mag-
netic field might induce a nonzero Hall conductance in doped
insulators. Finally, in Sec. IV we summarize our results and
highlight important directions for future research.

II. INTERACTING CONTINUUM MODEL

The low-energy physics of TMD moiré materials, like that
of twisted bilayer graphene, is most conveniently captured by
a continuum model [1]. Since TMDs are generally good insu-
lators with strong spin-orbit coupling from the transition metal
atoms, only the topmost valence band needs to be included
in the low-energy model, yielding one state for each valley.
Because of spin-valley locking, we can equivalently choose
to identify these states by their spins or by their valleys. The
type-II band alignment of TMD heterojunctions means that
only one layer is active at low energy. Hence, the fermion
field operators ψ (†)

α (r) in this model carry only one label,
representing locked spin/valley, while the effect of the other
layer is integrated out, appearing only as a contribution to
the moiré potential �(r) [1,31]. When the Fourier expansion

of � is truncated at the first shell of moiré reciprocal lattice
vectors b j ,

�(r) =
6∑

j=1

Vj exp [ib j · r], (1)

where Vj = VM exp[(−1) j−1iφ]. Vj and φ are material-
dependent parameters, with VM characterizing the moiré
modulation strength and φ being its shape. The single-particle
Hamiltonian of the moiré continuum model

H0 = T + �(r), (2)

where T is the single-particle kinetic energy operator for
electrons with effective mass m∗, is spin independent. In a
plane-wave representation

H0b,b′ (k) = − h̄2

2m∗ (k + b)2 δb,b′ +
6∑

j=1

Vjδb j ,b−b′ , (3)

where momentum k is in the first moiré Brillouin zone and b
are moiré reciprocal lattice vectors.

The key feature of this single-particle model, as pointed out
in Ref. [1], is that the lowest-energy hole band is isolated and
has a bandwidth W that decreases exponentially with moiré
period aM . One physical intuition for this behavior is based
on the observation that the model can be approximated, in the
large-aM limit, as a lattice of weakly coupled harmonically
confined electrons. Ignoring the “remote-band” holes for the
moment, we can readily see that the largest effect of Coulomb
interactions is to impose an energy penalty U on doubly occu-
pied sites, which is the essence of Hubbard model physics.
But in contrast to the simplest nearest-neighbor Hubbard
model, the ratio of the second-nearest-neighbor hopping to
the nearest-neighbor hopping can be increased by decreasing
the modulation strength, a property easily explained in the
harmonic oscillator approximation, increasing the magnetic
frustration of insulating states.

In addition to allowing flexible tuning of U/W , the sub-
lattice content of the hexagonal Bravais lattice on which the
model sits can be controlled. The symmetry of the moiré
potential can be changed from that of a triangular lattice to
that of a honeycomb lattice, with perfect honeycomb behavior
achieved at φ = 60◦, φ = 180◦, and φ = −60◦. The applica-
ble value of φ can be adjusted experimentally by choosing
different TMD heterojunctions [27,29]. Over a finite range of
φ near the honeycomb values, the moiré potential has local
minima at the honeycomb lattice sites. When φ is close to
one of the honeycomb values, the potential minima at the
two honeycomb sublattices differ slightly in value, allow-
ing inversion-symmetry-breaking sublattice-mass terms to be
added to the Hamiltonian when expressed in terms of its
tight-binding model limit. Here we focus on triangular lattice
Hubbard model Mott physics by restricting our attention to
the case of one electron per triangular lattice unit cell. At this
density the second minimum plays a role only over narrow
ranges of φ by increasing the spread of the ground state
Wannier wave function and slightly altering the competition
between different states.

The many-body Hamiltonian in TMD moiré materials
has three terms: the kinetic energy, the moiré modulation
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potential, and the Coulomb interaction term. It follows that the
many-body physics depends, up to an energy scale, on φ and
on two dimensionless parameters. We choose to describe the
phase diagram in terms of the standard electron gas interaction
strength parameter,

r∗
s = 1√

πna∗
B

=
(

3

4π2

)1/4 V s
C

T s
=

(
3

4π2

)1/4 aM

aB

m∗

m

1

ε
,

(4)

and a second parameter that characterizes the ratio of the
single-particle Wannier function spread to the moiré pe-
riod. Here we have defined two energy scales, the kinetic
energy scale at the moiré length T s = h̄2/2m∗a2

M and the
Coulomb interaction at the moiré length V s

C = e2/2εaM , and
one length scale, the Bohr radius a∗

B ≡ h̄2ε/e2m∗. Our in-
teraction strength parameter r∗

s can be viewed as the typical
distance between electrons in Bohr radius units. The definition
of the second dimensionless parameter is motivated by the
small-twist-angle limit in which the lowest-energy flat band’s
Wannier function is accurately approximated by the Gaussian
ground state of the harmonic potential m∗ω2r2/2 obtained by
expanding the moiré modulation potential around a minimum.
It follows from this expansion that ω2 = βVM/m∗a2

M , where
β = 16π2 cos(φ + k120◦), with k being an integer chosen to
place the argument of the cosine function ∈ (−60◦, 60◦) [32].
We choose

α ≡ a2
W

a2
M

= h̄√
m∗βVMa2

M

, (5)

where a2
W = h̄/m∗ω is the square of the oscillator length scale,

as the second dimensionless interaction parameter. Notice
that α is dependent on both the phase φ and the magnitude
VM of the moiré potential. In Fig. 1 the phase diagram is
plotted in terms of r∗

s and α2, with the latter variable cho-
sen to simplify its dependence on VM . Choosing α to be a
dimensionless model parameter eliminates most of the phase
diagram’s dependence on φ, with exceptions applying very
close to φ ∼ 60◦ + k120◦ and deep in the metallic state.

A. Symmetries

For later convenience, we briefly summarize the symme-
tries of the problem. The model has a full SU(2) rotation
symmetry of the locked spin/valley degree of freedom and
C3v orbital symmetry; the D3h symmetry of a TMD monolayer
is reduced by stacking. The nontrivial operations of C3v are
rotations by 2π/3,

C3 : ψα (x) → ψα (R2π/3x), (6)

and the mirror operation My,

My : ψα (x, y) → ψα (x,−y). (7)

In the absence of a magnetic field, the model is invariant under
time reversal, which switches the spins:

T : ψα (x) → i(σ y)αβ ψβ (x), (8)

where σ y is the Pauli matrix and acts in spin space. We note
that two spins are interchanged by only time-reversal symme-
try (TRS):

H↓
b,b′ (k) = H↑∗

−b,−b′ (−k), (9)

where we make use again of the discrete translational invari-
ance of our moiré system. At this level of approximation, each
spin-projected Hamiltonian itself also satisfies a spinless TRS
property:

H↑/↓
b,b′ (k) = H↑/↓∗

−b,−b′ (−k). (10)

We also note that since inversion symmetry is broken in TMD
monolayers, unlike in twisted bilayer graphene, Berry curva-
ture is not required to vanish identically throughout the moiré
Brillouin zone.

B. Weak and strong modulation limits

Before carrying out detailed self-consistent Hartree-Fock
calculations, we provide some orientation by discussing some
simple limits in which electronic properties are well under-
stood. We first consider the weak-modulation limit, where
bandwidths are large and moiré bands overlap, which should
give rise to behavior close to that of the 2D homogeneous
electron gas (jellium) model. It is well known that Hartree-
Fock approximation fails badly for magnetic properties by
predicting that 2D jellium is ferromagnetic above a small
value of rs � 2.01, whereas quantum Monte Carlo calcula-
tions [33,34] show that the paramagnetic fluid remains stable
up to a much larger interaction strength rs ∼ 25.56. In the
opposite strong-modulation limit electrons occupy Wannier
functions centered on potential minima. At one electron per
moiré period, strong on-site Coulomb interactions leave only
spin degrees of freedom at low energies. Because electronic
correlations are less subtle in this limit, the Hartree-Fock ap-
proximation predicts magnetic states much more reliably, and
we can fit ground state energies to determine the parameters of
spin Hamiltonians. The only quadratic spin Hamiltonian that
satisfies all the symmetry requirements of our model is the
isotropic Heisenberg model:

Hspin = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j, (11)

where 〈i, j〉 and 〈〈i, j〉〉 label nearest-neighbor and next-
nearest-neighbor interactions. In the case of J1 > 0, the
classical-spin triangular lattice ground state is the 120◦ Néel
state for J2/J1 < 1/8 and a stripe state for 1/8 < J2/J1 < 1
[30]. It is widely believed that quantum fluctuations play a
vital role in determining the phase near J2/J1 = 1/8, although
extensive numerical efforts over the years [35–40] have not
reached a clear consensus on the nature of the potentially
exotic phase. When the strong modulation Hamiltonian is
approximated by a Hubbard model, both interactions are an-
tiferromagnetic [41], with J2/J1 � 1, except possibly very
close to the metal-insulator phase transition. In the present
system, however, we find that insulating states are ferromag-
netic at large r∗

s and interpret this property as evidence for
beyond Hubbard model physics. The band topology of the
ferromagnetic state obviously has zero Chern number since
spin-projected bands are then time reversal invariant. The
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topology of the 120◦ Néel is less obvious since ↑ and ↓
band states are mixed by the noncollinear spin structure. We
nevertheless find that they are topologically trivial, as we show
in Sec. III. For extremely localized electrons (α → 0), all
magnetic configurations will become degenerate.

C. Self-consistent Hartree-Fock approximation

Our main goals in this paper are to gain insight into the spin
physics of the moiré superlattice Mott insulator phase and to
obtain a rough estimate of the boundary between insulating
and metallic states. As long as the spin ground state is close to
its classical limit, that is to say, as long as fluctuations in the
spin direction in the magnetic ground state are not extremely
large, the Hartree-Fock approximation is normally accurate.
One important advantage of the Hartree-Fock approximation
is that it completely removes spurious self-interaction effects
in the limit that the electrons are reasonably strongly local-
ized around their moiré lattice sites. As the twist angle is
increased and the moiré pattern’s lattice constant is reduced,
two-dimensional spin density functional theory [27], which
has much the same structure as Hartree-Fock theory, becomes
an attractive alternative. Even when quantum spin fluctuations
in the insulating ground state are large, either approach can be
used to approximate the classical energy function of the spin
subsystem, and quantum corrections can be calculated using
standard spin-wave techniques.

The Hartree-Fock energy functional is the expectation
value of the many-electron Hamiltonian in a single Slater de-
terminant ground state. Minimizing the energy functional with
respect to single-particle wave functions yields a mean-field
Hamiltonian that adds an interaction self-energy HF to the
single-particle Hamiltonian which can be expressed in terms
of the single-particle density matrix ρ = ∑

n |ψn〉 〈ψn|, where
the sum is over occupied moiré-band Bloch wave functions.
The mean-field electronic structure of moiré superlattices is
best evaluated using a plane-wave representation in which the
Hartree-Fock self-energy HF at each k in the Brillouin zone
is a matrix in reciprocal lattice vectors b:

HF
α,b;β,b′ (k) = δα,β

A

∑
α′

Vα′α (b′ − b)
∑
k′,b′′

ρα′,b+b′′;α′,b′+b′′ (k′)

− 1

A

∑
b′′,k′

Vαβ (b′′ + k′ − k)ρα,b+b′′;β,b′+b′′ (k′).

(12)

In Eq. (12) Greek letters label spin, A is the finite sample area
corresponding to a discrete Brillouin zone mesh, and ρα,b;β,b′

is the self-consistently determined momentum-space density
matrix. Starting with a physically plausible density matrix ρ0,
we minimize the energy by performing self-consistent itera-
tions. Because the many-body interaction is invariant under
both translations and spin rotations, if we start from a density
matrix ρ0 which satisfies a symmetry Ô of H0 ([ρ0, Ô] = 0,
[H0, Ô] = 0), then the symmetry survives under iteration.
That is to say, HHF commutes with Ô at every iteration
step. In many cases the minimum-energy Hartree-Fock state
breaks symmetries of H0, and these solutions are found under
iteration only by starting with a broken-symmetry density
matrix. As argued in Sec. II B, the phase diagram contains
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FIG. 2. Typical Hartree-Fock band structures for three-sublattice
magnetic states. (a) The 120◦ Néel insulator. The energy gap, indi-
cated by the light-blue band, is small because the state is close to
the metal-insulator phase transition. (b) At smaller r∗

s , we obtain a
120◦ semimetallic SDW state. (See Appendix A for further details
on model parameters.)

paramagnetic states that do not break any symmetries, ferro-
magnetic states with spontaneous collinear spin polarization
that do not break lattice translational symmetries, stripe states
with collinear order and a doubled unit cell area, and 120◦
Néel states with both a tripled unit cell area and noncollinear
spin order. We obtain solutions of the first two kinds by
appropriate choices of the initial density ρ0. Each possible
type of reduced translational symmetry implies a different
reciprocal lattice and therefore has to be encoded explicitly
in the reciprocal lattice employed and considered separately.
Solutions can be classified as insulating with a gap between
occupied and empty states or metallic with Fermi surfaces in
the Brillouin zone on which occupation numbers change. At
one electron per moiré period, the paramagnetic state must be
metallic, but all other states we consider can be insulating. We
show typical Hartree-Fock self-consistent band structures for
insulating and metallic magnetic ordered states in Fig. 2.

III. RESULTS

Having introduced the problem, we now present the pre-
dictions of Hartree-Fock theory for the phase diagram. We
focus first on a fixed moiré modulation phase φ = 26◦, esti-
mated [1] to apply to the WSe2/MoSe2 heterobilayer system.
(As emphasized earlier, we have chosen the dimensionless
parameters used to construct the phase diagrams with a view
toward minimizing any dependence on φ.). We have per-
formed self-consistent Hartree-Fock calculations on a discrete
two-dimensional grid of system parameters. The phase di-
agram in Fig. 1 was constructed by interpolating between
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FIG. 3. Phase competition near the metal-insulator transition.
We choose two values of the Wannier localization parameter α2 to
closely examine the emergence of the 120◦ semimetallic SDW state
and the disappearance of metallic states with increasing r∗

s . Energies
are plotted relative to the nonmagnetic metallic state energy. The
ferromagnetic state has higher energy than both antiferromagnetic
structures and is hence omitted in these plots. At the relatively large
α2 values we choose, the lowest-energy state clearly changes from a
paramagnetic metal to a 120◦ semimetallic SDW and then to a 120◦

antiferromagnetic insulator.

this discrete set of results; a pixelated summary of our ac-
tual calculation results is presented in Fig. 7 in Appendix A.
The influence of φ on the phase diagram will be discussed
later.

Each solution of the Hartree-Fock equations corresponds
either to a local minimum of the energy functional or to a
saddle point at which energy can be reduced by breaking sym-
metries. We have identified the ground state by comparing the
total energies of all solutions. Translational symmetry is al-
lowed to break down to only either the two-sublattice (stripe)
state or the three-sublattice (120◦) state, both of which are
common in triangular lattice phase diagrams. In our calcula-
tions, all phase transitions that change translational symmetry
are of the first order, and all that do not are continuous.

Two sets of two phase boundaries are of particular interest:
metal-insulator transitions on the left-hand side of Fig. 1 and
magnetic transitions within the insulating state on the right-
hand side. We see in Fig. 1 that the competition near the
metal-insulator phase transition is mostly between a nonmag-
netic metallic state and the noncollinear three-sublattice state.
When we examine the region near the metal-insulator phase
transition closely, however, we find that the three-sublattice
insulator becomes a semimetal at a critical r∗

s that is slightly
larger than the critical r∗

s at which the magnetic order dis-
appears (see Fig. 3). As a result, itinerant magnets with the
same magnetic structure as that of the noncollinear three-
sublattice insulating state appears near the metal-insulator

transition. Thus, within the Hartree-Fock approximation, the
insulator-to-metal transition is a continuous phase transition
but is closely followed by a first-order transition to a nonmag-
netic metallic state. We associate the increasing stability of
120◦ semimetallic spin density wave (SDW) states, relative
to 120◦ insulating states at larger values of α, with increased
itinerancy and associated larger values of t2/t1. We also find
that close to the metal-insulator phase boundary, the stripe
and 120◦ insulating states have very similar energy densi-
ties, although the stripe order energies are always slightly
larger.

To gain some analytic insight into the form of this phase
boundary, we make an approximation that is accurate in
the small-twist-angle limit discussed earlier. We estimate the
nearest-neighbor hopping parameter by using harmonic oscil-
lator wave functions, which yields

t1 = h̄2

2m∗a2
M

(
1

4α2
− 1

α

)
exp

(
− 1

4α

)
. (13)

The nonmonotonic dependence of t1 on α is related to a
breakdown of the assumption of strongly localized Wannier
orbitals at small α. To simplify the approximate phase bound-
ary expression we derive below, we measure energies in units
of the moiré kinetic energy scale T s and write X̃ ≡ X/T s. On
physical grounds, the metal-insulator transition should occur
at a critical value of the ratio c = U/t1. Since the ratio of the
moiré lattice constant to the Wannier function width, which is
∝ θ1/2, changes slowly in the parameter range of interest, this
criterion corresponds approximately to a critical c′ of the ratio
V s

C/t1, which is proportional to r∗
s [see Eq. (4)]. In estimating

the phase boundary line we ignore the 1/α factor in Eq. (13)
since α is small. This yields α2 = [8W−1(−

√
t̃1/4)]−2, where

W−1(x) is the Lambert W function and the branch is chosen
by the monotonic property of t1. The Hartree-Fock metal-
insulator phase boundary closely follows the c′ = 1.9 line in
the phase diagram, which corresponds to c = 2c′/

√
α ∼ 15.1.

Given this value for c, we can estimate that the magnetic
ordering energy on the insulating side of the phase diagram
4t2

1 /U is ∼4.0 meV for experimental systems with moiré
period aM ∼ 5 nm [23,24], which compares well with the
experimental estimate of J1 ∼ 3 meV [23].

We now turn to the magnetic transitions that occur within
the insulating region in the phase diagram. We find that the
insulators are ferromagnetic at large r∗

s and that all mag-
netic states are very close in energy near the 120◦ state to
ferromagnet phase boundary. Evidently, this phase boundary
is associated with a change in sign of the dominant near-
neighbor interactions between spins, leaving all states close
in energy. The energies of competing states close to this phase
boundary are plotted in Fig. 4, where we see that the ferro-
magnetic state is strongly favored at large interaction strength
r∗

s , that the stripe phase is stable over a narrow range of r∗
s

between the 120◦ and ferromagnetic states, and that the stripe
state stability range broadens at larger α.

To understand these observations, we consider interactions
within the spin-only Hilbert space discussed in Sec. II B.
Assuming the spin Hilbert space is correctly described by
the J1-J2 spin model of Eq. (11), the classical energies of the
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FIG. 4. Phase competition near the antiferromagnet-ferromagnet
transition. Again, the Wannier localization parameter α2 is fixed, and
interaction strength r∗

s is varied. Energies are plotted relative to the
120◦ Néel insulators. Paramagnetic metals in this case have much
higher energy than any insulators and therefore are omitted. The
lowest-energy state changes from a 120◦ antiferromagnetic insulator
at small r∗

s to a stripe insulator and then to a ferromagnetic insulator
at large r∗

s . The stripe phase becomes more stable at larger α.

ferromagnetic, stripe, and 120◦ states are

e1 = 1

4N
(3NJ1 + 3NJ2) = 3

4
J1 + 3

4
J2, (14)

e2 = 1

4N
(−NJ1 − NJ2) = −1

4
J1 − 1

4
J2, (15)

e3 = 1

4N
(−3NJ1/2 + 3NJ2) = −3

8
J1 + 3

4
J2. (16)

It follows that we can determine numerical values for the cou-
pling constants from the energy differences between the three
magnetic states we consider in our Hartree-Fock calculations:

J1 = 8
9 (e1 − e3), (17)

J2 = e1 − e2 − J1. (18)

We plot the J1 and J2 values obtained in this way in Fig. 5,
where we see that the signs of J1 and J2 are strongly correlated
and that the ferromagnetic state phase boundary aligns with
the line on which J1 changes sign.

One of the most intriguing aspects of our results is the
appearance (at the mean-field level) of a stripe state. This
finding suggests that these moiré materials may provide a
clean realization of the long-sought J1-J2 quantum spin liquid
state, which is born out of the quantum fluctuations near the
boundary between the three-sublattice state and the stripe
state. However, we caution the readers that our system is not
fully equivalent to a J1-J2 model. In the case of an exact J1-J2

Heisenberg model, stripe states appear for J2/J1 � 1/8. Since
we estimate values of the exchange couplings by compar-
ing energies of a small number of magnetic configurations,

FIG. 5. Values of J1 and J2 (in meV) for a fixed aM throughout the
phase diagram, obtained by fitting ground-state energies of different
insulating magnetic orders to a J1-J2 Heisenberg model [see Eqs. (17)
and (18)]. We observe that J1 changes sign at the antiferromagnet-
ferromagnet phase boundary, while J2 changes sign inside the region
of ferromagnetic states.

our results do not rule out other possibilities, one example
of which is that the third-nearest-neighbor exchange cou-
pling J3 is ferromagnetic and −J3/J1 � 1/9. Since current
experimental studies operate in parameter ranges close to the
metal-insulator transition, they may need to be tuned to larger
r∗

s to reach the ferromagnetic state, for example, by choos-
ing materials with smaller lattice mismatches or tuning twist
angles.

The J1 sign change is associated with interactions that
are nonlocal in the model’s Wannier function lattice rep-
resentation [42] and are therefore absent in generalized
Hubbard-model interaction approximations. For a given pair
of near-neighbor sites the nonlocal interaction terms can be
characterized as either an interaction-assisted hopping term,

Vah =
∑

σ

〈2σ, 1σ̄ |VC |1σ, 1σ̄ 〉 c†
2σ c†

1σ̄ c1σ̄ c1σ , (19)

or an intersite-exchange term,

Vx =
∑
σ1,σ2

〈2σ1, 1σ2|VC |1σ1, 2σ2〉 c†
2σ1

c†
1σ2

c2σ2 c1σ1 , (20)

where σ is a spin label and σ̄ = −σ . At half filling, Vah

is physically equivalent to hopping, so its main effect is
to enhance the antiferromagnetic coupling constant. On the
other hand, Vx, being an exchange term, carries a minus sign
from fermionic ordering and therefore favors ferromagnetic
coupling [43]. We now argue the transition happens when
the enhanced antiferromagnetic coupling 4(−t1 + |Vah|)2/U
is equal to 2|Vx| in magnitude. We assume we are in the
strongly interacting regime, where Vah/x ∼ t2

1 /U � t1. This
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allows us to compare the simplified antiferromagnetic energy
scale 4t2

1 /U to the ferromagnetic energy scale,

2|Vx(1, 2; 2, 1)| = 2U exp

(
− 1

2α

)
, (21)

where 1 and 2 are nearest neighbors. We again ignore the 1/α

factor in the expression of t1 in Eq. (13) to the lowest order. It
is clear that the antiferromagnet-ferromagnet phase boundary
should be described by 1/2

√
2α2 = Ũ , i.e., α2 = 1/2

√
2Ũ ∼

1/r∗
s [44], which agrees well with our Hartree-Fock

approximation.
To explicitly explore the influence of φ on the phase bound-

aries that remains for our choice of dimensionless interaction
parameters, we carry out self-consistent Hartree-Fock calcu-
lations vs φ at two points in our r∗

s -α2 phase diagram (Fig. 1)
that lie just to the right of the two phase transition bound-
aries. In order to describe how the generic triangular lattice
smoothly evolves into a honeycomb lattice we consider the
range from φ = 30◦ to φ = 60◦ at which the additional honey-
comb lattice symmetries become exact. Because we study the
case of one electron per triangular lattice unit cell, the electron
density is half of that associated with honeycomb lattice Mott
insulator states. As φ approaches 60◦, the two local potential
minima in the moiré unit call become more nearly-equivalent,
and inversion symmetry relative to the midpoint between the
two minima is more nearly-established. In our self-consistent
Hartree-Fock calculations we find that at the density we study
this approximate symmetry is always strongly broken. Even
at φ = 60◦, the electrons tend to occupy only one honeycomb
sublattice, as we verify by explicit calculation, and the role
of the difference between φ and 60◦ acts as a weak symmetry-
breaking parameter. At no point in this evolution do the lowest
two self-consistent Hartree-Fock bands overlap and develop
the Dirac points of single-orbital honeycomb lattice bands.
The broken symmetry lowers energies by increasing separa-
tions between electrons. In the language of the honeycomb
lattice Hubbard model, occupying only one honeycomb sub-
lattice avoids the near-neighbor electron-electron interaction
term in the Hamiltonian with coupling constant U1.

From the arguments in Sec. II, we anticipate the physical
effect of changing a triangular lattice to a honeycomb lat-
tice is (approximately) equivalent to increasing the effective
Wannier function width α. For this reason we expect the
metal-insulator phase boundary to move toward larger r∗

s as
φ → 60◦, while the antiferromagnet-ferromagnet transition
boundary moves toward smaller r∗

s . For a r∗
s -α2 point on

the insulating side of the metal-insulator phase boundary,
we show in Fig. 6(a) that the lowest-energy state changes
from a noncollinear magnetic insulator to a 120◦ semimetallic
SDW and finally to a paramagnetic metal as φ → 60◦. In
contrast, in Fig. 6(b), no phase transition is observed. The
ferromagnetic ground state becomes more and more stable
as the antiferromagnet-ferromagnet phase boundary moves
toward smaller r∗

s .
Last but not least, we examine the possibility of nontrivial

band topology in the magnetically ordered states. For fer-
romagnetic and stripe states, it is straightforward to show
that the spin-projected orbital Hamiltonians are time reversal
invariant. These states therefore cannot have nonzero Chern
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FIG. 6. Mean-field state evolution as a function of the moiré
potential phase φ. The parameters (r∗

s , α
2) are chosen to be close

to (a) the metal-insulator transition and (b) the antiferromagnet-
ferromagnet transition at φ = 26◦. We change φ from 30◦ (triangular
lattice) to 60◦ (honeycomb lattice). (a) Energy density is plotted
relative to the paramagnetic states. An insulator-to-metal transition
is observed as we increase φ. (b) Energy density is plotted relative
to 120◦ Néel insulators. We do not find any phase transitions in this
case.

numbers. The 120◦ noncollinear states also cannot be topo-
logical since they can be continuously tuned, via intermediate
umbrella states, to ferromagnetic states without closing the
gap between occupied and empty states. More generally, any
magnetic insulator that is close to a classical spin state with
specific spin orientations on specific sites cannot have a total
band Chern number that is nonzero, even if it is not coplanar.
The quantum anomalous Hall effect requires itinerancy in this
sense. The absence of nontrivial band topology is consistent
with the approach used to approximate the phase boundary
analytically since only in this case are the Wannier functions
exponentially localized, allowing a Gaussian to be a good
approximation.

Next, we make a stronger claim, namely, that the intrinsic
anomalous Hall conductance is required to be zero even at
finite doping whenever the magnetic state is coplanar. One
feature of the heterobilayer continuum Hamiltonian, the lack
of inversion symmetry except at honeycomb values of φ,
can lead to ground states with nonzero momentum-space
Berry curvature �(k) [45], for example, in the 120◦ Néel
state [46]. Because the TRS-breaking 120◦ state has T ′ ≡
T exp(iπS⊥) symmetry, where S⊥ is the spin operator per-
pendicular to the 120◦ ordering plane, it follows that �(k) =
−�(−k) and that the topological Chern index obtained by in-
tegrating the Berry curvature over the Brillouin zone vanishes.
It is worth noting that this new composite antiunitary sym-
metry T ′ squares to +1 and hence does not imply Kramers
degeneracy (see Fig. 2 for band structures). Therefore, T ′ is
an effective spinless TRS, ensuring that the band structure
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satisfies En(k) = En(−k). This gives the stronger constraint
that anomalous Hall conductivity is zero for all doped
systems.

While it is certainly possible to measure this nonzero Berry
curvature through a nonlinear Hall effect [47], it is hard to dis-
tinguish ferromagnetic and 120◦ orders by this measurement
alone since both have the same qualitative Berry curvature
properties. We propose an alternate strategy to identify the
120◦ state that exploits the proximity of noncollinear umbrella
[48] states in which all spins are tilted toward the direction of
an applied magnetic field [49], breaking T ′. Unlike collinear
states, coplanar states can evolve into noncoplanar states un-
der a Zeeman field B. T ′ symmetry can be broken only by
a noncoplanar magnetic structure. It is, however, known that
coplanar configurations are always favored by quantum fluc-
tuations in an isotropic Heisenberg triangular lattice model
system under a Zeeman field [50–52]. Our proposal therefore
relies on spin-dependent interactions present in a more ac-
curate continuum model beyond the simplest approximation
taken by Eq. (2). If the effective anisotropy is not strong
enough to realize the noncoplanar state, the 120◦ coplanar
state can also be measured by its distinctive field-dependent
magnetization curve M(B). Quantum fluctuations favor the
collinear up-up-down (UUD) state, among the many com-
petitive coplanar states [50], at a B field of around one third
the saturation value, where M(B) shows a wide plateau [48].
These properties motivate future studies aimed at achieving
a full understanding of magnetic anisotropies in triangular
lattice TMD moiré materials.

IV. DISCUSSION AND OUTLOOK

In this paper we have examined the phase diagram of moiré
Hubbard model systems for the special case of half filling
of the lowest-energy band. At this filling factor interaction-
induced insulating states are normally identified as Mott
insulators. The moiré band Hamiltonian [1] depends on the
semiconductor effective mass m∗, the moiré potential mod-
ulation strength VM , the moiré lattice constant aM , and the
moiré potential shape parameter φ that interpolates between
triangular and honeycomb lattice cases. The interaction term
is sensitive to screening by polarizable backgrounds (includ-
ing, but not necessarily limited to [53], screening by the
surrounding dielectric), which we characterize collectively by
an effective inverse dielectric constant ε−1. At fixed band
filling, the model parameters can be collapsed to the shape
parameter φ and two dimensionless coupling constant ratios,
r∗

s and α2, chosen with the goal of minimizing the dependence
of the phase diagram on φ. r∗

s is the standard electron gas
density parameter, and α2 is proportional to the fraction of
the unit cell area occupied by the model’s Wannier orbital.
We find a phase diagram with two prominent transitions,
an expected Mott transition between metallic and insulating
states and an unexpected transition between antiferromagnetic
and ferromagnetic insulating states. We predict that the metal-
insulator transition occurs along a line of nearly constant
U/t1 ∼ 15.1, where U is the on-site Hubbard interaction and
t1 is the triangular lattice near-neighbor hopping parameter.
The value of this ratio on the metal-insulator transition line is

comparable to values obtained in numerical studies of simple
on-site-interaction triangular lattice Hubbard models [54,55].

The metal-insulator transition line can be crossed by
changing the electron density parameter r∗

s by changing the
twist angle, by engineering the depth of the modulating moiré
potential via a suitable choice of materials, or in situ by
tuning gate voltages [23,24] or applying pressure [7]. On the
insulating side of the metal-insulator transition we find the
120◦ three-sublattice antiferromagnet expected on triangular
lattices with antiferromagnetic interactions between spins.
Within the Hartree-Fock approximation, we find a narrow
band of intermediate semimetallic states that maintain the
120◦ semimetallic SDW order of the insulating state. The
phase transition between the SDW state and the strongly
metallic state is first order.

The SDW phase that appears in our calculations provides
one possible explanation for the complex crossover between
insulating and metallic states seen in recent experiments
[23,24], which hint at an intermediate state with a small, but
finite, zero-temperature conductivity [56].

In closing we comment that in this paper we focused on the
simplest case in which electronic states are formed from a sin-
gle microscopic band and therefore described in a continuum
model by two-component spinors. In the case of TMD homo-
bilayers [57–60] and in the case of heterobilayers modified by
suitably large gate electric fields [61], low-energy bands are
present in both layers, yielding low-energy models with four-
component spinors that capture both spin and layer degrees
of freedom and opening up new opportunities to establish
topologically nontrivial states. Indeed, recent heterobilayer
experiments [25] found transitions to states with spontaneous
valley polarization and anomalous Hall effects in TMDs. We
have also limited our attention to one electron per moiré
period. Doping away from this limit enriches the physics
even more and is thought to lead to superconductivity in
some cases. Finally, we have neglected disorder, which might
be relevant experimentally, as suggested by the temperature-
dependent resistances measured in Ref. [23], which exhibit
bumps on the metallic side of the metal-insulator transition
similar to the ones seen in Si metal-oxide-semiconductor
field-effect transistors [62]. Much remains to be explored in
TMD moiré materials.
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APPENDIX A: MORE DETAILS ON THE
SELF-CONSISTENT HARTREE-FOCK CALCULATIONS

To make the continuum model feasible for a numerical
calculation, it is necessary to impose both upper and lower
cutoffs in the momentum space. In the atomic-insulator limit,
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FIG. 7. Pixelated phase diagram for triangular lattice (φ = 26◦)
moiré materials within the Hartree-Fock approximation.

the real-space Wannier function is well approximated by a
Gaussian in a harmonic potential, as argued in the main text.
It is then clear that the relevant scale for the upper cutoff
can be obtained by comparing the momentum-space Wannier
function width with the moiré Brillouin zone size:

1

aW

/
|�b| =

√
m∗ω

h̄

/
|�b| =

√
3

4π

(
βm∗VM

h̄2

)1/4√
aM . (A1)

That is to say, a larger upper cutoff may be required for
stronger interactions. The resulting dimensionless number is
of O(1) in our calculation, and we keep the number of momen-
tum shells in the continuum model such that more shells do
not change the Hartree-Fock energies up to the convergence
accuracy.

As for the lower cutoff, we note that energy density for
a periodic system with Coulomb interactions suffers from a
finite-size correction, which depends not only on the total
number of mesh points N in the moiré Brillouin zone but also
on the geometrical detail of the mesh. We correct the finite-
size effect by choosing the geometry such that it is compatible

with all the pertinent magnetic moiré Brillouin zones and
always meshing the moiré Brillouin zone in the same way. In
other words, we hold the real-space sample size N fixed for all
calculations, which is 108 in our phase diagram calculations.
Since the leading finite-size corrections to energy are now
state independent, they can be eliminated by evaluating energy
differences between states at a fixed system size. We do not
actually extrapolate the energies toward the thermodynamic
limit since the extrapolation itself incurs further uncertainty.

The actual phase diagram from the self-consistent Hartree-
Fock calculation is shown in Fig. 7. Figure 1 in the main
text is obtained by fitting the analytical form of the phase
boundary to Fig. 7. In the limit of α → 0, we observe different
spin configurations converge to the same energy due to the
vanishing of the exchange energies J , which we do not show
in the main text.

To show the Hartree-Fock band structures in Fig. 2(b) with
a clear, small Fermi surface, we increase the system size N
to 432. A caveat here is that when we consider a specific
magnetic ordered insulating state, the gap size is dependent on
the system size because the interaction U ∝ −1/

√
N . Hence,

there is a slight mismatch in parameters and phases between
Figs. 2 and 3. This finite-size correction to the gap size is
small when N is large, so the phase boundary of the 120◦
semimetallic SDW state is still relatively accurate in Fig. 1.

APPENDIX B: PERTURBATIVE EFFECTS OF
“NONLOCAL” INTERACTIONS

In this section, we illustrate the induced spin-spin inter-
actions by Vah and Vx in the presence of a large-U Hubbard
interaction. For simplicity, we always consider the half-filled
case and zero-hopping limit. The ground state lies in the no
doubly occupied site sector as in the usual Hubbard model.
It can readily be seen that Vah perturbs the ground state out
of this sector, so the lowest-order contribution is of order
O(|Vah|2/U ). In the spirit of the t/U expansion [41], the
leading-order terms are

−U −1
∑
σ1,σ2

[〈2σ2, 1σ̄2|VC |1σ2, 1σ̄2〉 〈1σ1, 1σ̄1|VC |1σ1, 2σ̄1〉 c†
2σ2

c†
1σ̄2

c1σ̄2 c1σ2 c†
1σ1

c†
1σ̄1

c2σ̄1 c1σ1

+〈1σ2, 2σ̄2|VC |1σ2, 1σ̄2〉 〈1σ1, 1σ̄1|VC |1σ1, 2σ̄1〉 c†
1σ2

c†
2σ̄2

c1σ̄2 c1σ2 c†
1σ1

c†
1σ̄1

c2σ̄1 c1σ1

] + H.c., (B1)

where 1 and 2 label nearest neighbors. The fermionic interactions of the two terms in the square brackets are actually related
by a relabeling symmetry: the second term (σ2 → σ̄2) equals the first term. The first term in Eq. (B1) can be simplified,
using

∑
σ niσ = 1, to −|Vah|2U −1(−∑

σ c†
1σ c1σ̄ c†

2σ̄ c2σ + ∑
σ n1σ n2σ̄ ) = −|Vah|2U −1(1 − σ1 · σ2)/2, where σ i = c†

iασαβciβ and
|Vah|2 = 〈2, 1|VC |1, 1〉 〈1, 1|VC |1, 2〉. Hence, it gives rise to the same type of contribution as the normal hopping term in the
Hubbard model, i.e., antiferromagnetic coupling.

Now we consider the effects of Vx. Vx actually leaves the number of doubly occupied sites invariant. So the lowest-order
contribution is just itself: ∑

σ1,σ2

〈2σ1, 1σ2|VC |1σ1, 2σ2〉 c†
2σ1

c†
1σ2

c2σ2 c1σ1 (B2)

= 〈2, 1|VC |1, 2〉
∑
σ1,σ2

c†
2σ1

c†
1σ2

c2σ2 c1σ1 (B3)

= −〈2, 1|VC |1, 2〉
2

(1 + σ1 · σ2), (B4)

which favors the ferromagnetic spin configuration.
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