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Infinite randomness with continuously varying critical exponents in the random XYZ spin chain
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We study the antiferromagnetic XYZ spin chain with quenched bond randomness, focusing on a critical line
between localized Ising magnetic phases. A previous calculation using the spectrum-bifurcation renormalization
group, and assuming marginal many-body localization, proposed that critical indices vary continuously. In this
work, we solve the low-energy physics using an unbiased numerically exact tensor network method named
the “rigorous renormalization group.” We find a line of fixed points consistent with infinite-randomness phe-
nomenology, with indeed continuously varying critical exponents for average spin correlations. A self-consistent
Hartree–Fock-type treatment of the z couplings as interactions added to the free-fermion random XY model
captures much of the important physics including the varying exponents; we provide an understanding of
this as a result of local correlation induced between the mean-field couplings. We solve the problem of the
locally correlated XY spin chain with an arbitrary degree of correlation and provide analytical strong-disorder
renormalization group proofs of continuously varying exponents based on an associated classical random walk
problem. This is also an example of a line of fixed points with continuously varying exponents in the equivalent
disordered free-fermion chain. We argue that this line of fixed points also controls an extended region of the
critical interacting XYZ spin chain.
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I. INTRODUCTION

In many situations, phases of many-body quantum systems
are stable under weak static, or “quenched,” disorder in the
presence of a gap, and the disorder average of certain quanti-
ties can be calculated in a related clean system via either the
replica trick or supersymmetry arguments for noninteracting
models [1,2]. However, these methods are not suitable for
relevant disorder, or disorder along with interactions, which
together produce a rich variety of behaviors. In contrast, real-
space thinking should be suitable for directly accounting for
spatial inhomogeneity. Interestingly, strong disorder causes
certain classes of disordered systems to become tractable on
long scales, making real-space renormalization group (RG)
approaches amenable to analytical treatments controlled by
the flow to infinite randomness. In this work, we investigate a
modern application of real-space RG to a random XYZ spin
chain [3,4], where we use exact numerics to perform unbiased
exploration and validation, and also use the strong-disorder
renormalization group (SDRG) to demonstrate and character-
ize such fixed points using the language of random walks.

The original development of a real-space RG appropriate
for strong-disorder physics in one dimension (1d) is due to
Ma, Dasgupta, and Hu [5]. The feature distinguishing SDRG
from, e.g., spin blocking, is that effective degrees of freedom
are explicitly associated with an energy scale rather than with
a spatial grouping. In this way, the disorder realization deter-
mines the pattern of integrating out fluctuations.

Such an approach is now understood to be well-motivated
by the idea of an infinite-randomness fixed point (IRFP), a
stable solution of the SDRG equations discovered by Fisher

in Refs. [3,6,7] at which effective disorder strength grows
with the scale without bound, and SDRG predictions be-
come asymptotically exact. In an IRFP, disorder dominates
the low-energy physics and physical observables are not self-
averaging; average behaviors are instead often determined
by rare regions within a disorder realization. Interestingly,
although such fixed points lack conformal symmetry, the
phenomenology can resemble that of CFT fixed points: for
instance, the scaling of average entanglement follows the con-
formal form with an effective central charge which in some
cases is related to the central charge of the clean theory (but
does not obey the same rules under RG) [8–10].

Since its introduction, the SDRG has been specialized to
a variety of classical and quantum systems, and the original
scheme has seen many generalizations; see recent reviews
[11]. For example, applications in two-dimensional (2d) ran-
dom models also yield IRFPs in these settings [12–18]. In
another direction, SDRG methods were extended to treat all
eigenstates of a quantum Hamiltonian [19–22], in order to
assess the possibility of many-body localization (MBL) of
excited states. (There are by now multiple reviews of MBL,
for instance see Refs. [23,24].) The many-body extended
SDRG procedures do not perform an iterative targeting of the
low-energy space, but instead tabulate emergent conservation
laws corresponding to the local integrals of motion of an MBL
phase; nevertheless, the equations are formally quite similar to
the original picture implementing a more traditional RG.

One of the extended many-body SDRG procedures, the
“spectrum bifurcation renormalization group” (SBRG) devel-
oped in Ref. [21] for Hamiltonians comprising Pauli strings,
was applied to the random XYZ spin chain by [4]. There,
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along a phase boundary between localized Ising antiferromag-
nets (proposed to be MBL), disorder- and energy-averaged
Edwards-Anderson spin correlations were found to decay as
power laws with continuously varying critical exponents. Av-
erage entanglement entropy scaling also exhibited a stable
effective central charge. The phase transition was conjectured
to be “marginal MBL,” meaning that eigenstates do not ther-
malize but exhibit a logarithmic violation of the area law.
However, it has recently been argued that such marginal MBL
Hamiltonians are perturbatively unstable to ergodicity at finite
energy density due to resonances [25,26]. As is true of all
excited-state SDRG schemes, Refs. [4,21] rely on MBL for
validity, and these recent arguments call this assumption into
question.

In the present work, we investigate the SBRG findings
using unbiased numerics for the ground state and low-energy
excited states. We emphasize that our focus is entirely on low-
energy properties, and we will not have anything to say about
MBL physics at arbitrary energy density. However, we find
the possibility of continuously varying power laws in IRFPs
already very interesting and worth further study. The random
XYZ chain—while suspected to support infinite-randomness
phenomenology in Fisher’s original work, Ref. [3]—has
eluded understanding due to the lack of a closed-form SDRG
solution, and developing a stronger grasp of such instances
would constitute an important advance.

Strongly disordered models pose an especially difficult
challenge for unbiased numerics, and have long been recog-
nized as among the only 1d models to be resistant to standard
methods, chiefly the density matrix renormalization group
(DMRG). We apply a relatively new tensor network numerical
method named the rigorous renormalization group (RRG) to
this problem, as it has already been shown to be effective in
the related random XY model [27]. Our goal for the unbiased
tensor network computations is to test the findings of Ref. [4],
and better understand the disordered fixed points associated
with the critical line.

As a brief overview of our results, the data found by RRG
are in support of both infinite-randomness physics as well
as continuously varying critical indices for disorder-averaged
correlations. These conclusions are based on direct measure-
ments in MPS, along with scaling of low-energy spectral gaps,
which we solve for in the various symmetry sectors of the
model up to systems of length N = 80 spins. Our findings
are in general agreement with the SBRG results, namely, that
critical indices controlling decay of correlations, as well as
long-range mutual information, vary along the critical line,
while the “central charge” is fixed. We additionally study
the critical exponent ψ , which characterizes IRFP dynamics
through the relationship ln(1/E ) ∼ Lψ between energy scale
and length, and find that its value is close to, but may be vary-
ing away from, the free-fermion fixed point with ψ = 1/2.

These numerical results for the critical line are captured
reasonably well by a self-consistent Hartree-Fock mean-field
that treats Jz couplings as interactions added to the free-
fermion XY chain [throughout, Jx,y,z

j refer to terms in the XYZ
chain as in Eq. (1)]; the Hartree-Fock also apparently pro-
duces continuously varying exponents. This finding motivates
study of a “locally correlated” XY chain with correlations
only between terms on the same link of the lattice. The

FIG. 1. Shown is an updated version of the schematic RG flow
of XY antiferromagnets in Fig. 4 of Ref. [3]. In this work, we prove
the line of fixed points along the exactly marginal direction δ, which
describes the degree of correlation between bond terms Jx and Jy, in
the notation of Eq. (1). (Note that δ = 1 corresponds to σ 2

a = 0 in
Fisher’s notation.) The average anisotropy a is as defined in Ref. [3];
in the present work, we consider only the line a = 0.

locally correlated model again exhibits similar behavior, and
its SDRG structure has an advantageous mathematical con-
nection to the theory of random walks. Within this setting, we
write rigorous bounds fully determining the critical exponent
for power-law decay of a certain average spin correlation
function. This exponent indeed varies continuously, proving
that the free-fermion critical line of the locally correlated
model is marginal, and is described by a line of IRFPs. This
result resolves a question posed by [3], as illustrated in Fig. 1.
In this figure, we parametrize correlations between Jx

j and Jy
j

by a generic parameter δ varying between δ = 0 (completely
uncorrelated or XY model) and δ = 1 (completely correlated
or XX model) [for a specific example, see Eq. (19)]; devia-
tion of δ from 1 can also be viewed as introducing random
anisotropy to the XX model.

Returning to the interacting model, based on the above un-
derstanding of the noninteracting case and the RRG numerical
data, we conjecture that at least in the neighborhood of the
free-fermion model, interactions are irrelevant and the local
correlations generated in the SDRG drive the interacting the-
ory to the line of noninteracting IRFPs at long distances. This
scenario is presented in Fig. 2 and represents our conjectured
explanation for the continuously varying critical exponents in
the XYZ chain.

The outline of this paper is as follows. In Sec. II, we
present the XYZ spin model and summarize the history of
its SDRG, along with explicitly developing the RG rules in
the many-body language. In Sec. III, we perform an unbiased
study of the ground state using RRG. In Sec. IV, based on
our numerical results, we develop both a Hartree-Fock mean-
field theory and the free-fermion locally correlated effective
model. In Sec. V, we use a picture of the SDRG procedure in
terms of random walks to prove continuously varying critical
exponents in the locally correlated effective model. In Sec. VI,
we conjecture a possible long-distance fate of the RG flow for
the critical XYZ spin chain, and finally in Sec. VII, we discuss
the implications of all of these results taken together.
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FIG. 2. We propose the following schematic flows for the XYZ
antiferromagnet, where δ is the degree of correlation between local
Jx and Jy couplings [as defined in Eq. (1)] and J̃ z is the bandwidth of
the Jz distribution, with statistical isotropy corresponding to J̃ z = 1.
The line of fixed points at J̃ z = 0 is the same as in Fig. 1, and J̃ z is
argued to be perturbatively irrelevant. We conjecture that any J̃ z < 1
is irrelevant at δ = 0, but through generation of finite δ flows to
the line of noninteracting IRFPs. The methods we employ cannot
access the statistically isotropic XYZC or U(1)-symmetric XXZC
fixed points, but XXZC was previously described by [3]. The flows
on the dashed line between XYZC and XXZC lie on a manifold
separating the basins for XY and ZAF, which is not well described by
this slice through parameter space. We avoid any specific conjecture
on this matter but remark that it is an interesting topic for further
study.

II. RANDOM XYZ MODEL AND REVIEW OF
PREVIOUS SDRG RESULTS

A. Spin chain Hamiltonian

As our most general model we consider the antiferro-
magnetic XYZ spin chain with quenched randomness in all
couplings; that is,

H =
N−1∑
j=1

(
Jx

j σ
x
j σ

x
j+1 + Jy

j σ
y
j σ

y
j+1 + Jz

j σ
z
j σ

z
j+1

)
. (1)

The couplings Jα
j > 0, α = x, y, z, are independent. This

model generically has a Z2 × Z2 global symmetry, with gen-
erators given by the Ising-type operators gx = ∏N

j=1 σ x
j and

gy = ∏N
j=1 σ

y
j . In particular, local field terms are excluded

by this symmetry. This model also respects time reversal on
the spins, which we implement as gyK, where K is complex
conjugation in the z basis.

We impose the same functional form on the disorder dis-
tributions of Jx

j , Jy
j , and Jz

j (though delay specification until
Sec. III), with bandwidths specified by a set of parameters
J̃x, J̃y, J̃ z > 0. If the value of any one of these is larger than
the other two, the ground state of the model displays Ising
antiferromagnetic (AFM) order. As we are considering strong
disorder, we anticipate that these phases are localized. If two
bandwidths are equal and of the largest magnitude, the model
lies on a boundary between localized phases with distinct
types of magnetic order; we will primarily consider this case.
If all three disorder bandwidths are equal, the model has a
statistical S3 permutation symmetry and sits at a tricritical
point in the phase diagram [3,4].

Many exact results are known for phases of the Hamilto-
nian Eq. (1) in certain limits, and we provide a brief recap
here. The SDRG was in fact originally introduced by Ma,
Dasgupta, and Hu in order to study the random Heisenberg
antiferromagnet with SU(2) symmetry [5], achieved in the
present notation by fixing Jx

j = Jy
j = Jz

j for all bonds j. These
works argued for the asymptotic development of a power-law
singularity in the distribution of couplings and computed lead-
ing contributions to critical indices, which vary slowly along
the flow.

[3] generalized this analysis to account for anisotropy and
performed a thorough study of the resulting phase diagram.
The SDRG rules for the random XX model (Jx

j = Jy
j and

Jz
j = 0 for all j), which breaks the SU(2) spin rotation sym-

metry to a U(1) subgroup, are very similar to those of the
isotropic model, and in particular both realize random-singlet
(RS) phases [28]. In the ground state, the microscopic spins
are paired up into singlet states at arbitrarily long scales.
Correlations between the spins in a singlet are of order unity,
and are strongly suppressed with the rest of the system. Thus
typical spin correlations are short-ranged, whereas the average
correlations are dominated by rare paired spins. This is one
hallmark of an IRFP: that a distribution which is broad on
a logarithmic scale leads to exponential separation between
typical and averaged properties of the state. From the density
of paired spins, one finds that average spin correlations exhibit
power-law decay, scaling as r−2 for separation r. This defines
the XX fixed point exponents ηx = ηy = ηz = 2. The charac-
teristic energy scale of the singlets in the RS phase follows:

ln(1/E ) ∼ Lψ, (2)

where ψ = 1
2 . As a consequence for the density of states, the

dynamical exponent is formally infinite.
The random XY chain (i.e., independent Jx

j and Jy
j but

with J̃x = J̃y, J̃ z = 0), in contrast, does not realize the RS
phase. With the mean in-plane anisotropy J̃x − J̃y serving
as the quantum control parameter, [3] computed the critical
exponents ν = 2 and β = 3 − √

5 for the transition separating
Ising x- and y-AFM phases. This was accomplished through a
lattice duality mapping to two decoupled copies of the random
transverse-field Ising model (RTFIM), whose SDRG equa-
tions are also well-studied [6,7,29]. Translating the RTFIM
results to the present XY chain, at the phase transition the
critical exponent for the decay of x and y components of
spin correlations is ηx = ηy = 4 − 2φ, where φ = 1+√

5
2 is the

golden ratio.
Starting from the opposite limit of the XX model, with

Jx
j = Jy

j for all j, it was also found by [3] that weak random
in-plane anisotropy, which moves along the phase transition
toward the XY point, is a marginal perturbation. It was not
clear whether this is the case along the entire phase boundary,
and we will in fact be led to take up this question in some
detail in Sec. V.

The set of exponents for disorder-averaged spin correla-
tions can be completed using the mapping of the XX and
XY models to free fermions [30]. For the anisotropic model
with S2 permutation symmetry, ηz = 4. In a chain with open
boundaries, consideration of the form of the surface magneti-
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zation leads to the scaling of the end-to-end spin correlations
ηe

x = ηe
z = 1 for the XX model and ηe

x = 1, ηe
z = 2 for the XY

model.
Focusing on a different type of spin chain, [31] stud-

ied permutation-symmetric multicritical points arising from
effective low-energy theories of partially dimerized spin-S
models with SU(2) symmetry. They performed a fixed-point
analysis of the SDRG equations for degrees of freedom lo-
calized at the boundaries between distinct domains of n =
2S + 1 different types of local order (i.e., topological phases
distinguished by the properties of edge modes localized near
the ends of open chains). Their primary result is a general-
ization of the n = 2 random-singlet criticality to a countably
infinite set of IRFPs with critical exponents ψ = 1

n and ν =
2n√

4n+1−1
. The permutation symmetry refers to the interchange

of distributions for the different types of order, which me-
diate effective couplings between the domain walls. While
the permutation-symmetric tricritical point at J̃x = J̃y = J̃ z in
our model shares the statistical symmetry of these theories
for n = 3, its microscopic details are dissimilar and it is not
clear a priori whether this category of universality applies.
Indeed, our estimates of the exponent ψ at the XYZ tricritical
point in Sec. III B 3 appear to rule out the applicability of the
Damle-Huse universality in this case.

B. Majorana representation

Aspects of this problem become more evident in the lan-
guage of fermions, for which we use the Jordan-Wigner
transformation. Equation (1) maps to a spinless p-wave su-
perconductor with density-density interactions:

H =
N−1∑
j=1

(t jc
†
j c j+1 + 
 jc

†
j c

†
j+1 + H.c.)

+ Jz
j (2n j − 1)(2n j+1 − 1), (3)

which has position-dependent hopping t j = Jx
j + Jy

j and pair-
ing potential 
 j = Jx

j − Jy
j . Following the idea of [32,33], it

is enlightening to introduce two species of Majorana fermion,

η j = c†
j + c j and ζ j = 1

i
(c†

j − c j ). (4)

The η j and ζ j are Hermitian, and normalized so that (η j )2 =
(ζ j )2 = 1. In terms of these operators, the Hamiltonian is
written

H =
N−1∑
j=1

iJx
j ζ jη j+1 − iJy

j η jζ j+1 − Jz
j η jζ jη j+1ζ j+1. (5)

The symmetry group of the problem is somewhat more
expressive in the Majorana language. In the following, we
specialize to even system sizes N ∈ 2Z. The generators of the
global symmetry translate to

gx = iN/2ζ1η2ζ3 · · · ηN , (6)

gy = (−i)N/2η1ζ2η3 · · · ζN . (7)

The symmetries measure fermion parity on two disjoint sets
partitioning the Majorana orbitals. The Hamiltonian (5) takes

the form of separate “imaginary random hopping” prob-
lems (see Ref. [33]) on these two chains of Majoranas of
length N , which we denote X = {ζ1, η2, ζ3, . . . , ηN } and Y =
{η1, ζ2, η3, . . . , ζN }. On each chain, the coefficients of the
Majorana hopping terms—which are fermion parity measure-
ments on adjacent orbitals within a chain—alternate between
iJx

j and −iJy
j . There are also interchain coupling terms with

coefficients −Jz
j . A single “rung” term iη jζ j is odd under the

parity symmetries, and H instead includes the double-rung
interactions −η jζ jη j+1ζ j+1.

The antiunitary symmetry K (i.e., complex conjugation
in the σ z basis) acts on the Majoranas as {i, η j, ζ j} �→
{−i, η j,−ζ j}. This symmetry prohibits nonzero expectation
values of the form 〈iη jηk〉 or 〈iζ jζk〉, even when these orbitals
belong to the same Majorana chain.

Constraining Jz
j = 0 for all j, the resulting Hamilto-

nian Hxy ≡ H[J̃x, J̃y, J̃ z = 0] is quadratic and can be solved
for any particular disorder realization by diagonalization of
the auxiliary Bogoliubov-de Gennes (BdG) matrix in the
particle-hole basis. The mapping to the Majoranas in Eq. (4)
transforms the BdG matrix into a particular form decoupling
the two Majorana chains X and Y . This further simplifies the
solution for the single-particle eigenstates to diagonalization
of a pair of N × N tridiagonal matrices.

As we are considering boundaries between Ising ordered
phases, the natural observables are the corresponding mag-
netic order parameters σα , α = x, y, z. Written in terms of
fermion operators, the spin correlation functions Cα ( j, k) =
〈σα

j σα
k 〉 are

Cx( j, k) = 〈iζ j (iη j+1ζ j+1) · · · (iηk−1ζk−1)ηk〉, (8)

Cy( j, k) = 〈−iη j (iη j+1ζ j+1) · · · (iηk−1ζk−1)ζk〉, (9)

Cz( j, k) = 〈−η jζ jηkζk〉. (10)

From Wick’s theorem, in the ground state of any specific
disorder realization Cx( j, j + r) and Cy( j, j + r) can be com-
puted as Pfaffians of antisymmetric 2r × 2r matrices, and the
calculation further simplifies due to the separation into two
Majorana chains. We focus on this case and consider the angle
brackets 〈·〉 as denoting expectation values measured in the
ground state, although the expressions (8)–(10) apply more
generally. We will be discussing disorder-averaged correla-
tions Cα ( j, j + r) and when this is clear we will drop the
overline. In the following, we work exclusively along the line
with statistical symmetry between Jx

j and Jy
j and will often

collectively refer to Cx,y( j, j + r), as C⊥( j, j + r).

C. Strong-disorder renormalization group

1. Decoupled Majorana chains

Examining the Hamiltonian on Majorana chains X and
Y also clarifies the form of the analytic SDRG. In the de-
coupled model Hxy, the RG proceeds independently on each
of the chains, which are endowed with parity conservation.
The SDRG for a single such chain was developed explicitly
in the single-particle spectrum language by [33] and in the
many-body Hamiltonian language by [22]. We review the re-
sult here, specialized to our case, in the many-body language,
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which naturally extends to the interacting problem [22]. For
now, we consider only a single Majorana chain and relabel the
orbitals as γn, n = 1, . . . , N . The Hamiltonian acting on this
chain is HM = ∑N−1

n=1 ihnγnγn+1. Suppose that the largest en-
ergy scale is set by H0 = ihkγkγk+1 for some k ∈ [1, N − 1].
H0 measures fermion parity on the two orbitals, with eigen-
values ±hk associated with the two parity states; denote the
splitting by 
 = 2hk . Accordingly, this term is diagonalized
by the complex fermion mode f †

0 = 1
2 (γk + iγk+1), which has

projectors π+ = f0 f †
0 and π− = 1 − π+ = f †

0 f0 into the even
and odd parity sectors, respectively. In terms of the projectors
we have H0 = (
/2)(π+ − π−).

The rest of the terms in HM ≡ H0 + V can be treated as
a perturbation if the nearby couplings are much smaller than
the local gap |
|. Although this condition may not be satisfied
initially, the validity of the assumption improves during the
RG flow because the SDRG generates an effective disorder
distribution with increasingly broad logarithm. The rest of the
Hamiltonian can be divided into diagonal and off-diagonal
components with respect to H0; specifically, V = Vd + Vod,
where

Vd = π+V π+ + π−V π−, (11)

Vod = π−V π+ + π+V π− = π−HMπ+ + π+HMπ−. (12)

Note that Vod contains only a constant number of local terms.
We denote the small scale of these terms relative to H0 by
the parameter ε. The effective Hamiltonian with emergent
good quantum number 〈 f †

0 f0〉 is found by a Schrieffer-Wolff
transformation eliminating Vod up to O(ε2) [34–37]. That is,
H ′
M = eiSHMe−iS , where the Hermitian generator of the rota-

tion can be expanded in powers of ε as S = S[1] + S[2] + · · · .
The conditions on the rotation are that S[1] is off-diagonal
and satisfies Vod = [H0, iS[1]], and S[2] eliminates off-diagonal
terms at O(ε2) (but we will not need to write it explicitly). A
suitable generator is iS[1] = 1



(π+HMπ− − π−HMπ+),

H ′
M = eiSHMe−iS (13)

= HM + [iS, HM] + 1

2
[iS, [iS, HM]] + · · · (14)

= H0 + Vd + 1

2

∑
ι=±

πι[iS[1],Vod]πι + O(ε3) (15)

≈ H0 + Vd + 1



[π+HMπ−, π−HMπ+], (16)

the final line being Eq. (17) of Ref. [22].
The off-diagonal terms are those which share an odd

number of Majoranas with H0 and thus anticommute. Con-
sequently Vod = ihk−1γk−1γk + ihk+1γk+1γk+2 and

π+HMπ− = (ihk−1γk−1 + hk+1γk+2) f0, (17)

π−HMπ+ = (ihk−1γk−1 − hk+1γk+2) f †
0 . (18)

Finally the rotated Hamiltonian is

H ′
M = H0 + Vd + h2

k−1 + h2
k+1

2hk
(iγkγk+1)

+ i
hk−1hk+1

hk
γk−1γk+2 + O(ε3). (19)

This result includes a renormalization of the strength of the
H0 term which increases the magnitude of the splitting, in
addition to a new term ih′

k−1γk−1γk+2. By projecting into the
low-energy sector of H0 (which depends on the sign of hk),
the Majoranas γk and γk+1 are frozen into one of the definite
parity states of the complex fermion mode, and thereby de-
coupled, or “decimated,” from the effective Hamiltonian. The
single effective coupling h′

k−1 replaces three hopping terms in
HM. Because the new term maintains the imaginary random-
hopping form, the SDRG is closed in this model space and can
be iterated, with the flow acting on the disorder distribution of
the couplings {hn}. During the RG flow, some of the terms
involved in decimations will be themselves renormalized cou-
plings from prior steps; they can be made to fit the present
format by reindexing the chain after every step to remove the
decimated Majorana orbitals. In addition, the specific form
of the renormalized coupling h′

k−1 permits a framing of the
SDRG in terms of a classical random walk; this approach will
be developed in detail in Sec. V.

The many-body Hilbert space is therefore decomposed into
a tensor product of noninteracting complex fermions in defi-
nite parity states. Returning to the XY model viewed as two
decoupled Majorana chains and running the above procedure
independently on each of the chains, one can deduce from the
signs of the couplings in Eq. (5) that the ground state is even
under gx and gy if N mod 4 = 0 and odd under gx and gy if N
mod 4 = 2. The ground state spin correlations in an eigenstate
of the Hamiltonian can also be understood from this picture;
see Sec. II D.

As a technical remark, one way to deal with the signs of
the couplings in Eq. (5)—needed to deduce gx and gy quantum
numbers as well as the signs of the correlation functions—is
to perform a gauge transformation of the Majorana fermions
as η j = s jη

′
j , where s j = 1 if j = 4n + 1 or 4n + 2 and s j =

−1 if j = 4n + 3 or 4n + 4, while ζ j = s j (−1) j+1ζ ′
j . The

Hamiltonian written in terms of the primed Majoranas takes
the form

∑
j iJx

j ζ
′
jη

′
j+1 + iJy

j η
′
jζ

′
j+1, i.e., all Majorana hopping

amplitudes are positive in the convention where the Majoranas
are written in the same order as they appear on the chain:
ihnmγ ′

nγ
′
m with n < m has hnm > 0. This property is preserved

under the SDRG, which simplifies analysis of the signs. For
example, for Majoranas γ ′

n, γ
′
m with n < m decimated as a

pair we then have 〈iγ ′
nγ

′
m〉 = −1 at the zeroth order in the

SDRG, and using the noncrossing property of the pairs in each
Majorana chain fixes the signs of correlations in Eqs. (8)–(10)
to be (−1) j−k . To avoid confusion, in formulas we keep using
the original Majoranas as in Eq. (5).

2. Majorana problem with interchain interaction terms

In the presence of interactions coupling the two Majorana
chains, it is necessary to consider the full Hamiltonian (5). In
the notation of the present section we have H = HX + HY +
Hint, where

HX =
N−1∑
n=1

ihX
n γX

n γX
n+1, (20)

HY =
N−1∑
n=1

ihY
n γY

n γY
n+1, (21)
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Hint =
N−1∑
n=1

Kn
(
iγX

n γX
n+1

)(
iγY

n γY
n+1

)
. (22)

Because all of the terms in H are measurements of fermion
parity, the general framework from the previous section—in
particular Eq. (16)—still applies. Now there are two cases:
the largest energy scale can be set by one of either the hopping
terms {hM

n } or the interactions {Kn}. While one can in princi-
ple consider both cases following Ref. [22], for our purposes,
we will study only the hopping-dominated case. Suppose that
H0 = ihX

k γX
k γX

k+1. Now

Vod = ihX
k−1γ

X
k−1γ

X
k + ihX

k+1γ
X
k+1γ

X
k+2

+ Kk−1
(
iγX

k−1γ
X
k

)(
iγY

k−1γ
Y
k

)
+ Kk+1

(
iγX

k+1γ
X
k+2

)(
iγY

k+1γ
Y
k+2

)
. (23)

The components appearing in each off-diagonal block of the
Hamiltonian are

π+Hπ− = ((
hX

k−1 + Kk−1
(
iγY

k−1γ
Y
k

))
iγX

k−1

+ (
hX

k+1 + Kk+1
(
iγY

k+1γ
Y
k+2

))
γX

k+2

)
f0 (24)

≡ (
ihX ,int

k−1 γX
k−1 + hX ,int

k+1 γX
k+2

)
f0, (25)

π−Hπ+ = ((
hX

k−1 + Kk−1
(
iγY

k−1γ
Y
k

))
iγX

k−1

−(
hX

k+1 + Kk+1
(
iγY

k+1γ
Y
k+2

))
γX

k+2

)
f †
0 (26)

≡ (
ihX ,int

k−1 γX
k−1 − hX ,int

k+1 γX
k+2

)
f †
0 . (27)

The effect of the interactions in perturbation theory is simply
to modify the couplings into operators which we refer to as
“interacting couplings:” hX

k±1 → hX ,int
k±1 . This is a reasonable

shorthand because the interacting couplings commute with
each other and all fermion operators appearing in the formula.
Then from the result Eq. (19),

H ′ = H0 + Vd +
(
hX ,int

k−1

)2 + (
hX ,int

k+1

)2

2hX
k

(
iγX

k γX
k+1

) + i
hX ,int

k−1 hX ,int
k+1

hX
k

γX
k−1γ

X
k+2 + O(ε3) (28)

= H0 + Vd + (
iγX

k γX
k+1

)((
hX

k−1

)2 + (
hX

k+1

)2 + K2
k−1 + K2

k+1

2hX
k

+ i
hX

k−1Kk−1

hX
k

γY
k−1γ

Y
k + i

hX
k+1Kk+1

hX
k

γY
k+1γ

Y
k+2

)

+ i
hX

k−1hX
k+1

hX
k

γX
k−1γ

X
k+2 + Kk−1hX

k+1

hX
k

(
iγX

k−1γ
X
k+2

)(
iγY

k−1γ
Y
k

) + hX
k−1Kk+1

hX
k

(
iγX

k−1γ
X
k+2

)(
iγY

k+1γ
Y
k+2

)

+ Kk−1Kk+1

hX
k

(
iγY

k−1γ
Y
k

)(
iγX

k−1γ
X
k+2

)(
iγY

k+1γ
Y
k+2

) + O(ε3). (29)

Projecting into the low-energy sector sets iγX
k γX

k+1 →
−sgn(hX

k ) and again decouples the Majorana operators γX
k

and γX
k+1 from the rest of the system, decimating them by

creating a complex fermion mode with definite parity. As
in the noninteracting case, the magnitude of the splitting is
increased by renormalization of H0, and a new hopping term
hX ′

k−1 is added to the X chain. However, the leading-order
effect of the interactions, at O(ε), arises from Vd, where the
“degradation” of the term Kk (iγX

k γX
k+1)(iγY

k γY
k+1) renormal-

izes hY ′
k = hY

k − sgn(hX
k ) Kk . As a result, correlations develop

between the hopping terms on the same bond. This aspect of
the perturbation will constitute the basis of a mean-field study
of the interacting system, presented in Sec. IV.

The effective Hamiltonian also includes renormalized cou-
plings hY ′

k−1 and hY ′
k+1, as well as new four-fermion terms which

change the structure of the lattice graph, and a six-fermion
term. The appearance of these terms breaking the form of H ,
as well as the generation of correlations between terms, are an
indication that the RG flow cannot be tracked exactly in the
interacting model. However, if the interaction terms already
tend to be weak compared to the hopping, the higher order
terms generated by this process will accordingly be weaker
still. This is the situation, at least initially, in the random XYZ
model with small J̃ z; however there is no guarantee at this
point that the relative strengths of the different types of cou-

plings are maintained asymptotically. We will return to this
question more systematically in Sec. VI, after we understand
the noninteracting problem with correlated Majorana hopping
amplitudes in the two chains in Sec. V.

D. XY model spin correlations in SDRG

From the controlled SDRG for the random XY model,
one can deduce that average correlations in the ground state
follow power laws—although typical correlations are short-
ranged—and even calculate the exponents. One also obtains a
more qualitative picture of the behavior of the spin correlation
functions.

Expanding Eq. (10) in the ground state at distance r,

Cz( j, j + r) = 〈iη jζ j+r〉〈iζ jη j+r〉. (30)

Other terms vanish due to symmetry. One sees immediately
that Cz( j, j + r) = 0 if r is even. For odd r, Cz( j, j + r)
assumes a large value if and only if the sites j and j + r
were decimated together on both Majorana chains, in which
case both expectation values 〈iη jζ j+r〉 and 〈iζ jη j+r〉 have ap-
proximately unit magnitude and opposite sign, so the sign of
Cz is negative. Otherwise if this decimation did not occur in
one or both Majorana chains the contribution is suppressed,
arising only from higher order terms in the perturbation the-
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ory. Consider the correlations averaged over sites j as well
as over disorder realizations, which average we denote Cz(r).
Nearly all terms will be vanishingly small, with rare terms
of roughly unit magnitude occurring with some density; these
dominate the average. It is a result of Ref. [3] for the RS phase
that at sufficiently large separation the likelihood of such a
decimation scales as r−2; thus for two independent Majorana
chains ηz = 4.

The transverse correlations (8) and (9), summarized as
C⊥( j, j + r), are the expectation values of strings of 2r Ma-
joranas. Such operators are evaluated as the sum of r-fold
products of expectation values of symmetry-allowed bilinear
contractions, with signs arising from the signature of each
permutation. A term in the sum has a large value if and only
if it contracts all Majoranas with their decimation partners in
the SDRG. This will be the case for exactly one term if all
decimations of the Majoranas appearing in the string expecta-
tion value are “internal,” that is, if all decimation partners are
also included. If any Majoranas were decimated with orbitals
which do not appear in the string, the expectation value will
be small. We again define C⊥(r) as the average over sites and
disorder realizations.

If on both chains X and Y the sites j and j + r are deci-
mation partners, then as described above, this pair contributes
a large value to Cz(r). The pair also necessarily contributes a
large value to C⊥(r), as pairing the extremal Majorana orbitals
in a string implies that all decimations are internal to the
string. Thus the critical exponent η⊥ lower bounds ηz. As
reviewed earlier, for the random XY model η⊥ = 3 − √

5 ≈
0.764; the bound is saturated in the XX model where η⊥ =
ηz = 2 [3].

Finally, the SDRG picture also tells us about the end-to-end
spin correlations in the XX and XY models. The expectation
value Cz(1, N ) ≡ Cz(N ) obtains large contributions if on both
Majorana chains the end sites 1 and N are paired in the
SDRG. While such occurrences in the two chains are perfectly
matched in the XX model and have probability 1/N or ηe

z = 1,
in the XY model, the occurrences are independent, giving
ηe

z = 2. On the other hand, the expectation value C⊥(1, N ) ≡
C⊥

e (N ) includes all Majorana orbitals on one chain, and all
but those at sites 1 and N on the other. This string has a
large expectation value if all of these Majoranas are paired
internally, which is to say that the two excluded Majoranas are
decimated together. As this is occurs on a single chain only,
it has the same probability in both the random XX and XY
models. Indeed, ηe

⊥ = 1 in both cases [30].

III. UNBIASED TENSOR NETWORK STUDY

A. “Rigorous RG” numerical method

The standard numerical technique for equilibrium states
of many-body quantum systems in 1d is the density matrix
renormalization group (DMRG) [38,39], which has been re-
markably effective in conjunction with matrix product state
(MPS) representations of low-energy wave functions [40,41].
Over nearly 30 years, DMRG has seen enormous practical
success in a wide range of models of physical interest. How-
ever, for some time its effectiveness was not well explained:
even as MPS attained a rigorous footing with the proof of

the area law of entanglement in 1d [42–44], the existence
of an efficient algorithm for eigenstates given an area-law
Hamiltonian remained unclear. It was not until the work of
[45] in 2015 that a polynomial-time algorithm was developed
for ground states of gapped models, proving that an efficient
method is possible in principle.

However, the algorithm exhibited in Ref. [45] bears little
resemblance in its particulars to DMRG, and a similar proof
for the DMRG algorithm appears to be challenging; in fact, it
is known that popular multisite variants can be NP-hard in the
worst case [46]. As a practical matter, in systems with strong
disorder DMRG is susceptible to spurious convergence to
excited states, an outcome which cannot be readily diagnosed
[47]. This is fundamentally a consequence of performing an it-
erated local optimization over MPS parameters. The rigorous
algorithm is distinguished by a reliance on an approximate
ground state projector (AGSP), an operator derived from the
Hamiltonian, which was introduced by [48]. The role of the
AGSP is to provide global information, ensuring that inter-
mediate states can be efficiently represented and directing
the algorithm along a computationally tractable route to the
ground state.

AGSP-based methods were later generalized to low-energy
excited states in models with slightly relaxed conditions on
the density of states [49]. Based on this work, in collaboration
with Vidick we introduced the rigorous renormalization group
(RRG), a numerical implementation for low-energy states of
local Hamiltonians in one dimension [27]. While the imple-
mented method differs slightly from the proof construction
and does not strictly satisfy the conditions of the guarantee—
whose parameters are not known a priori regardless—it
inherits the intuitive benefits of the AGSP and has been seen
to be effective in practice for nontrivial low-energy spectra
like those of strongly disordered systems, or in the presence
of nearly degenerate manifolds [27,50], where DMRG may be
unreliable.

In the following sections, we perform a numerical study
of the line J̃ z ∈ [0, 1], J̃x = J̃y = 1, in the phase diagram of
Eq. (1), using RRG. Our objective is primarily to verify by
unbiased numerics the observation of continuously varying
critical exponents in the SBRG study of [4], and then to shed
additional light on the nature of the low-energy theory. (Here
we focus solely on the ground state properties and low-energy
physics, rather than the question of MBL.) For concreteness,
we use the disorder distribution described in Eqs. (3) and (4)
of Ref. [4], namely,

p
(
Jα

i

) = 1

�J̃α

(
Jα

i

)1/�−1
, Jα

i ∈ [0, (J̃α )�]. (31)

We use a milder disorder strength � = 2, as compared to
� = 4 for the previous work [4]. Both choices lead to strong
disorder physics and the specific value should have little ef-
fect on the universal low-energy physics for large enough
systems. However, we find that the logarithm of the distri-
bution of the energy gaps depends significantly on �, with
smaller values tending to lead to larger gaps; this eases the
challenge to the numerics which in any case are limited by
double-precision floating-point errors on the order of 10−16.
In RRG we are capable of accurately resolving energy scales
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TABLE I. RRG hyperparameters are shown for values of J̃ z stud-
ied numerically. As described in the text, we optimize the output of
RRG using DMRG, and for finite J̃ z take as a measure of accuracy the
number of sweeps required for convergence. These values of s and D
were chosen in order to accurately converge approximately 99% of
disorder realizations on N = 80 spins. For the small fraction of more
difficult realizations which are not solved by the hyperparameters
above, we repeat the algorithm with increased values, finding that
convergence is achieved this way.

J̃ z 0.0 0.2 0.4 0.6 0.8 1.0

(s, D) (8,14) (8,14) (6,10) (6,10) (5,8) (5,8)

down to log10(
/ε) ∼ −12, and validate our results against
the free-fermion solution at the soluble point J̃ z = 0.

To construct the AGSP for RRG we use a Trotter approx-
imation to a thermal operator e−βH . The output of the RRG
algorithm is a subspace of constant dimension approximating
the low-energy states of the model. We use an implementation
based on ITensor [51], in which we explicitly realize the
Z2 × Z2 symmetry and solve for the lowest two eigenstates in
each of the four symmetry sectors [52]. In each case, the MPSs
generated by RRG are then further optimized using DMRG in
order to minimize the overlap with high-energy states. The
RRG “hyperparameters” s and D (see Ref. [27] for details)
are chosen as in Table I, so that for the majority of disorder
realizations DMRG can optimize the RRG output in a small
number of sweeps. For approximately, the most challenging
1% of realizations, DMRG requires many sweeps to converge.
In these instances, we repeat the calculation, increasing the
RRG hyperparameters, and find that the improved RRG states
are easily converged by DMRG. From comparison with exact
free-fermion results for J̃ z = 0 obtained by numerical matrix
diagonalization, we find that if RRG produces states which are
successfully converged by DMRG and the excitation gap is
larger than the target threshold 10−12, the ground state energy
and gap are numerically exact in �99.5% of realizations. As
we will show in the following section, at J̃ z > 0, the finite-size
gaps tend to be larger than those at J̃ z = 0 and should be easier
for RRG; thus we believe our results are even more reliable for
these points.

B. Results from RRG

1. Critical spin correlations

We measure spin correlations in the RRG ground state
of H[J̃x = 1, J̃y = 1, J̃ z] with J̃ z ranging from 0 to 1 and
microscopic disorder strength � = 2 throughout. Bulk corre-
lations in an open chain of length N are measured for r � N

2
including only sites j, j + r ∈ {N

4 , . . . , 3N
4 }, in order to distin-

guish the power law from the end-to-end correlations closer
to the boundaries. We show disorder-averaged correlations
data measured in chains of length N = 80 sites in Fig. 3,
which includes slices at values of J̃ z moving along the phase
boundary from the free-fermion model to the tricritical point.
Already the raw data clearly shows power laws with varying
exponents for both C⊥ and Cz in the bulk.

End-to-end spin correlations are measured only between
the single pair of sites 1 and N for each disorder realization,

FIG. 3. Bulk spin correlations data from RRG are shown for the
random XYZ model with varying bandwidth J̃ z, up to separation
r = 40 lattice spacings, from systems of length N = 80. Open circles
indicate C⊥(r) data, while filled circles mark Cz(r). The disorder
averages for each value of J̃ z include 1500 realizations. In the spatial
average we include only the middle half of the spin chain—that is,
only sites in { N

4 , . . . , 3N
4 }—in order to separate the bulk correlations

from the ends, which exhibit different scaling laws. See Fig. 5 for
the critical power-law decay exponents extracted from this data. In
order to measure the power laws, we show the absolute value of the
correlations, which originally have a staggered sign pattern (−1)r .
In addition, only odd r are shown for Cz data because the values for
even r, though demonstrating a similar power law, are much smaller
(at J̃ z = 0 they are identically 0, see Sec. II D).

and exhibit correspondingly larger statistical fluctuations. In
addition, reproducing Cz

e (N ) correlations presents a singular
challenge for the RRG algorithm. As discussed in Sec. II D,
in the SDRG, the likelihood of a nonzero value of 〈σ z

1σ z
N 〉 at

the XY free-fermion point is the square of the probability of
an end-to-end singlet in a spin chain of length N in the RS
phase. That is, the distribution is broad on a logarithmic scale,
with the average being dominated by a very small tail. More
importantly, the disorder realizations located in the tail—of
outsize importance in the average—are those on which sites
1 and N were decimated together on both Majorana chains,
which correlate with the smallest excitation gaps in the low-
energy spectrum and are the most difficult realizations for the
method to solve accurately. We show disorder-averaged end-
to-end correlations as a function of N in chains up to N = 80
in Fig. 4. One sees that the C⊥

e correlations depend weakly on
J̃ z and have close slopes on the log-log plot, suggesting similar
power-law exponents. On the other hand, the Cz

e correlations
depend strongly on J̃ z and despite evident statistical scatter
appear to have varying slopes.

Our unbiased numerical results for the bulk correlations
are in broad agreement with the finding of Ref. [4] of critical
exponents governing the decay of spin correlations that vary
continuously with J̃ z. In contrast to the previous approach,
we perform direct measurements in optimized MPS for the
ground state. We show the extracted power-law exponents for
the bulk and end-to-end correlations in Fig. 5 as a function of
J̃ z. As expected, the C⊥ and Cz exponents approach each other
at the tricritical (permutation-symmetric) point J̃ z = 1, where
we estimate the bulk critical index to be η⊥ = ηz ≈ 1.48.
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FIG. 4. RRG end-to-end correlations data are shown for the ran-
dom XYZ model with varying bandwidth J̃ z. System sizes N =
32, 48 , 64, and 80 are included for C⊥

e (N ) (open circles) and Cz
e (N )

(filled circles). These data are noisier than the bulk data shown
in Fig. 3 due both to reduced statistics (same number of disorder
realizations but no averaging over bulk pairs) as well as the special
difficulty of measuring Cz

e (N ) in RRG, as described in the text. See
Fig. 5 for the critical power-law decay exponents extracted from this
data. We use the absolute value of the correlations data here; the true
values all have negative sign because all N are even.

2. Entanglement structure

We also study measures of entanglement in the RRG
ground states for varying J̃ z. The average bipartite entangle-
ment entropy of a connected subsystem of length � adjacent
to the system boundary is known to scale according to the
conformal field theory result Sb(�) = c̃

6 ln �, with a universal
constant c̃. In some cases the “effective central charge” c̃ is
apparently related to the central charge of the clean model
[8]; for example, in the critical phase of a single Majorana
chain c̃ = ln 2

2 = c ln 2, where c = 1
2 is the central charge of

a clean Majorana fermion chain. Accordingly, the XY fixed

FIG. 5. Critical exponents governing spin correlations in the
RRG ground states are shown, extracted from the data in Figs. 3
and 4. Both bulk and end-to-end exponents are included, with known
results for the bulk correlations in the free-fermion model at J̃ z = 0
indicated by red stars, and results for end-to-end correlations by
yellow diamonds. An increase in statistical noise is evident in the
end-to-end correlations as compared to the bulk. The reason that
these computations, particularly Cz

e (N ), are more difficult, is dis-
cussed in the text.

FIG. 6. Characterizations of the entanglement structure of the
ground state are shown. We include the power-law exponent ρ for
decay of average long-range mutual information I (r), based on the
raw data shown in the upper panel. The subsystems A and B consid-
ered in this case are single spins separated by a distance r, and the
average is taken over sites in the middle half of the chain. Also shown
is the effective central charge c̃, found from finite-size scaling of the
half-chain entanglement entropy. While c̃ appears to be insensitive to
the coupling between the two Majorana chains, the LRMI exponent
varies continuously.

point has c̃ = ln 2, being equivalent to two decoupled criti-
cal random Majorana chains. From finite-size scaling of the
disorder-averaged half-system bipartite entanglement entropy
Sb(N/2), we find with fair precision that c̃ is stable at this
value for any interaction strength J̃ z along the critical line,
in agreement with Ref. [4].

We also measure long-range mutual information (LRMI)
between disconnected regions; the formula for this entropic
quantity in terms of the entanglement entropy of a subsystem
is I (A : B) = S(A) + S(B) − S(A ∪ B). We will take A and B
to be single spins separated by a distance r; Ref. [4] found
that up to appropriate rescaling, the lengths of the subsystems
do not affect the asymptotic behavior. The disorder-averaged
LRMI we denote I (r), and this quantity will decay no faster
than the slowest observable. That is, in the symmetric ground
state of an ordered phase I (r) will be long-ranged; in a
phase without order one expects exponential decay; and at a
critical point the exponent ρ, I (r) ∼ r−ρ , lower-bounds the
power-law decay exponent of any local observable. We show
disorder-averaged LRMI data in the upper panel of Fig. 6.
The critical exponent ρ varies continuously with J̃ z, as is
the case with the other critical indices measured, and is very
close to the exponent η⊥, suggesting that the correlations
of the order parameters for the adjacent phases saturate the
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FIG. 7. Histograms of the first excitation gap are shown for the
random XYZ model at system size N = 80 sites. Vertical lines in-
dicate the median MJ̃z of each gap distribution. The medians include
long tails that are not shown, as they contain energy gaps too small to
be accurately measured by the RRG algorithm; however the estimate
of the median is not sensitive to these uncertainties. The trace for
each value of J̃ z includes 1500 disorder realizations.

lower bound everywhere along the boundary. Our RRG results
for ρ as well as the effective central charge c̃ are shown in
the lower panel of Fig. 6. At J̃ z = 1, we estimate ρ ≈ 1.73,
which is somewhat larger than the estimates of η⊥,z but is in
general agreement and is also similar to the SBRG estimates
in Ref. [4].

3. Scaling of excitation gap

Because RRG produces not only the ground state but a
constant number of low-energy states, it is possible in prin-
ciple to study spectral properties as well. We focus first on the
simplest of these, the energy gap to the lowest excitation in a
finite system. From the SDRG for the free-fermion point one
observes that this excitation consists of flipping the parity of
the complex fermion associated with the lowest-energy (i.e.,
the last decimated) pairing on either Majorana chain. As we
consider chains with lengths that are multiples of 4, the ground
state is found in the (gx, gy) = (+1,+1) sector of the global
(Z2)2 symmetry and the first excited state will be found in
either the (+1,−1) or (−1,+1) sector.

The distribution of excitation gaps is known exactly via the
mapping to two decoupled copies of the RTFIM, where the
universal form of the gap distribution is known from the work
of Ref. [29]. The gap in the random XY model is the mini-
mum of two independent random variables sampled from the
distribution of Ref. [29]. In Fig. 7, we show histograms of the
(logarithmic) excitation gaps for the random XYZ model with
varying J̃ z for chains of length N = 80. The exact distribution
for the J̃ z = 0 point is indicated with a dotted line.

Indicated on Fig. 7 by vertical lines and the labels MJ̃z

are the medians of the histograms; these are provided as a
characterization of the distributions that is not overly sensitive
to the tails, where the energy gaps can be close to the numer-
ical threshold. While the precise tails are not accessible, it is
rare for RRG to make an error which would move a disorder
realization out of the tail into the bulk of the distribution.

FIG. 8. The value of the critical exponent ψ extracted from
finite-size scaling of excitation gaps in RRG is shown. The upper
panel shows the finite-size scaling of the medians MJ̃z (shown in
Fig. 7 for N = 80), with each data point including 1500 disorder re-
alizations. The lower panel shows the extracted power-law exponents
for both the first gap, denoted E1 − E0 (found from the data shown in
the upper panel) as well as the second and third energy gaps. At the
free-fermion point J̃ z = 0, ψ = 1

2 , and the systematic deviation from
the exact value is likely due to finite-size corrections. At this point,
the first and third energy gaps are very often identical, both being
associated with the lowest-energy decimation on one chain. Away
from this point, this is no longer necessarily the case and a drift in ψ

with J̃ z is visible in the E1-E0 curve.

Thus the median provides an accurate summary of the gap
distribution although the mean cannot be reliably estimated. In
Fig. 8, the scaling with chain length of the median of the gap
distribution is shown with varying J̃ z. This allows an estimate
of the exponent ψ controlling the length-energy relationship
Eq. (2), which takes the value ψ = 1

2 at the free-fermion point.
The RRG scaling data suggest that there may be a systematic
drift in ψ as J̃ z is varied toward the permutation-symmetric
point J̃ z = 1, however it is difficult to exclude the possibility
of a stable ψ with a long crossover around J̃ z = 1. In either
case, this result does not support the n = 3 Damle-Huse uni-
versality for this tricritical point.

4. Symmetry properties of low-energy states

As described in Sec. III B 3, in the noninteracting model
Hxy, the symmetry properties of the ground and low-lying
states can be deduced from the single-particle excitations used
to build the many-body states. For convenience we relabel
the Z2 × Z2 symmetry sectors (always working on systems
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with N ∈ 4Z): denote the free-fermion ground state sector
(gx, gy) = (+1,+1) as 0; the sector (−1,−1) as 1; (+1,−1)
as 2; and (−1,+1) as 3. Along the critical line, H has a
statistical Zstat

2 symmetry exchanging sectors 2 and 3, and at
the tricritical point a statistical S3 relates sectors 1, 2, and 3.

Beginning from a vacuum state in sector 0, the first many-
body excited state—found by flipping the occupancy of the
lowest-energy fermionic mode—comes from either sector 2
or 3, depending on which Majorana chain is involved. The
next excited state must also be associated with a low-energy
single particle mode on one of the Majorana chains, thus
will again come from sector 2 or 3. The third many-body
excited state can be of the same type, or can be associated
with the simultaneous excitation of the two lowest energy
single-particle states. With a logarithmically broad disorder
distribution, as at an IRFP, the third excited state is very likely
to be of the latter type; thus we expect that for sufficiently
long N , the four lowest-energy states of Hxy will most of-
ten come from the sectors {0, 2, 3, 1} or {0, 2, 2, 0}, or their
Zstat

2 counterparts {0, 3, 2, 1} and {0, 3, 3, 0}. The other free-
fermion-allowed configurations are {0, 2, 3, 2}, {0, 2, 3, 3},
{0, 2, 2, 2}, {0, 2, 2, 3}, and Zstat

2 counterparts.
At the tricritical point, this picture cannot apply, as the S3

counterparts of the free-fermion-allowed configurations (these
include, e.g., {0, 1, 2, 3} and {0, 1, 1, 0}) must also occur
and with equal likelihood; thus we study the critical line by
tabulating occurrences of free-fermion-disallowed low-energy
configurations in disorder realizations with finite J̃ z. We clas-
sify the various configurations as described in the table in
Fig. 9, and their likelihood in our sample of disorder realiza-
tions is plotted. Note that in this plot we have averaged over all
system sizes, in order to provide an initial summary of the typ-
ical behavior (we will study the scaling behavior with N later).

For Hxy, the dominant pattern is type 1, with a substantial
minority of type 2 and very few of type 3. The S3 counterparts,
which are forbidden in the picture of decoupled Majorana
chains, are labeled types 1∗, 2∗, and 3∗. The category “Other”
includes all low-energy configurations not matching any of
the types already described. There is a very small, though
finite, fraction of such instances; however these are nearly
entirely associated with very small excitation gaps. As al-
ready described, in such situations with very small splitting
RRG cannot systematically identify the lowest-energy state
or the exact sequence of excitations, so the precise order
of symmetry sectors is not reproduced. At J̃ z = 0, we are
able to “interpret” many such cases by assuming that the
energy-permuted free-fermion-allowed symmetry pattern is
the correct one, though away from this point a corrected type
cannot be uniquely determined. (At J̃ z = 0, some low-energy
patterns found by RRG cannot be interpreted as one of the
free-fermion-allowed configurations, and these are the real-
izations classified as “Other” at this point.)

Moving away from J̃ z = 0, the types 1∗, 2∗, and 3∗ occur
with increasing probability. We find that type 2 decreases
more quickly for small J̃ z than type 1, which is in line with
our understanding, developed in Sec. IV, of the interaction as
introducing correlations between the Majorana chains (such
correlations make it less likely that the two lowest-energy
single-particle states occur in the same Majorana chain). The
rate of “Other” instances is very low and decreasing with

FIG. 9. Sampled estimates of the likelihood of the various sym-
metry patterns of low-energy states are shown as a function of J̃ z.
The lower panel shows the same data as the upper, zoomed in on
the bottom of the y-axis. The free-fermion allowed types 1, 2, and
3 are defined in the table above and drawn with solid lines, and
the free-fermion-disallowed types 1∗, 2∗, and 3∗ consist of all other
partners under the action of the S3 statistical symmetry, and are drawn
with dashed lines. Here we provide summary data which is averaged
over system sizes N = 32, 48, 64, and 80, with 6000 total disorder
realizations for each value of J̃ z. (In Fig. 10, we study the dependence
on N .) At J̃ z = 0 we assume that only types 1, 2, and 3 are present
and include eigenstate permutations of the exact symmetry pattern
for very small splittings <10−12; nevertheless there is still a low rate
of “Other” instances.

increasing J̃ z, suggesting that these remain attributable to
errors due to small energy gaps, and the only new types of
symmetry pattern appearing at low energy are those related
to the free-fermion-allowed types by S3. As one expects from
the definitions of each type, the frequency of types 1∗, 2, and
3∗, are roughly twice those of types 1, 2∗, and 3, respectively,
at J̃ z = 1. Here the S3 partners types 1 + 1∗ describe roughly
91% of disorder realizations, with types 2 + 2∗ and 3 + 3∗
describing roughly 4.5% each.

From the above general picture of the low-energy states we
learn that the critical line is characterized by the increasing
probability of the free-fermion-disallowed symmetry partners
types 1∗, 2∗, and 3∗ with increasing interaction strength J̃ z.
The dependence of these probabilities on system size provides
a hint about the RG relevance or irrelevance of the interaction.
In Fig. 10, we show the ratio of the combined likelihood of
types 1∗ + 2∗ + 3∗ to that of types 1 + 2 + 3 as a function of
J̃ z for each system size separately.1 While these data suffer

1Normalizing by p(1 + 2 + 3) is intended to eliminate the effect
of the system size dependence of unclassifiable “Other” realizations,
which should be associated with RRG errors.
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FIG. 10. The ratio of the combined likelihood of the free-
fermion-disallowed types 1∗ + 2∗ + 3∗ to the combined likelihood
of types 1 + 2 + 3 is shown as a function of J̃ z, separately for system
sizes N = 32, 48, 64, and 80. Each data point includes 1500 dis-
order realizations. For intermediate J̃ z ∈ (0, 1), there is a consistent
trend toward lower probabilities as the system size increases from
N = 32 to 64, meaning that the low-energy symmetry patterns of
longer systems are more likely to be free-fermion-like. The quantity
p(1∗+2∗+3∗ )

p(1+2+3) is very similar for system sizes N = 64 and 80 at all

values of J̃ z, with the difference being within the apparent statistical
scatter. At the tricritical point J̃ z = 1 the predominant scaling behav-
ior is reversed, and the quantity appears to be converging toward its
long-distance fixed value from below with increasing system size N .

from poorer statistics than those of Fig. 9, there is a trend for
all J̃ z ∈ (0, 1) toward lower probabilities with increasing N ,
meaning that at longer scales the disorder realizations appear
more free-fermion-like. The system sizes N = 64 and 80 are
quite similar by this measure, and the differences between
these values are smaller than the apparent statistical noise.
In contrast, the dependence on system size is opposite at the
tricritical point J̃ z = 1, as the likelihoods converge to their
asymptotic value from below with increasing length scale. In
Secs. VI and VII, we make a conjecture consistent with this
observation, that the interactions may in fact be irrelevant but
the SDRG generates a marginal perturbation (corresponding
to the local correlation of renormalized terms, see Sec. IV)
which ultimately takes the system to a line of free-fermion
fixed points with variable exponents.

IV. MEAN-FIELD THEORY OF INTERACTION

Turning on J̃ z > 0 introduces four-fermion interaction
terms to the quadratic Hamiltonian Hxy. These terms couple
the Majorana chains X and Y in such a way that the ground
state is no longer analytically tractable under SDRG, which
generates multifermion terms in the effective Hamiltonian that
proliferate with increasing RG scale. However, as mentioned
in Sec. II C 2, if at some point in the RG the interaction terms
are typically weaker than the hopping terms then the effective
higher order descendants will be even weaker. One might
hope, then, that by beginning with a bandwidth J̃ z � J̃x, J̃y

the strength of these terms may be suppressed at all scales,
leading to only a minimal effect on the criticality.

Based on this understanding, we consider the mean-field
theory by “expanding” the interaction into fermion bilinear

terms. In the Majorana language, the mean-field structure
is particularly transparent; here the only symmetry-allowed
bilinear terms act internally on the chains. For Jz

j � 1,

Jz
j (iη jζ j )(iη j+1ζ j+1)

≈ Jz
j (iη jζ j+1〈iζ jη j+1〉 + iζ jη j+1〈iη jζ j+1〉). (32)

This can also be seen in terms of the original spins, where the
mean-field theory takes the form

Jz
j σ

z
j σ

z
j+1 = −Jz

j σ
x
j σ

x
j+1σ

y
j σ

y
j+1

≈ −Jz
(
σ x

j σ
x
j+1

〈
σ

y
j σ

y
j+1

〉 + 〈
σ x

j σ
x
j+1

〉
σ

y
j σ

y
j+1

)
. (33)

The effect of the allowed terms is to renormalize the existing
couplings in the following way:(

Jx
j

)mf = Jx
j + Jz

j 〈iη jζ j+1〉 = Jx
j − Jz

j

〈
σ

y
j σ

y
j+1

〉
, (34)(

Jy
j

)mf = Jy
j − Jz

j 〈iζ jη j+1〉 = Jy
j − Jz

j

〈
σ x

j σ
x
j+1

〉
. (35)

With expectation values 〈·〉 understood to be evaluated in the
ground state of the mean-field Hamiltonian with parameters
(Jx

j )mf , (Jy
j )mf , the above represent self-consistency equations

(i.e., minimization equations in the variational perspective of
the mean-field theory). Because the Majorana chains remain
decoupled, the mean-field theory can be solved in the analytic
SDRG, at least in principle, by accounting for the distributions
of effective Jx

j and Jy
j couplings no longer being independent.

In the following sections, we numerically investigate the uni-
versal behavior of this mean-field theory, and provide exact
results from the analytic SDRG in Sec. V.

A. Self-consistent Hartree-Fock treatment of interaction terms

We first perform a self-consistent numerical study of the
interaction term in the quadratic mean-field theory by directly
implementing Eqs. (34) and (35) in the BdG Hamiltonian,
iteratively solving the ground state of the Hamiltonian and
updating the mean-field couplings until reaching convergence.
The bulk correlations data in the thus determined mean-field
ground state are shown in Fig. 11, end-to-end correlations in
Fig. 12, and a summary of the critical exponents in Fig. 13.

The key finding of the mean-field treatment is that the
power-law exponents in all correlation functions do evolve
with J̃ z in a similar way to those of the interacting model. This
not necessarily expected since, e.g., in a clean XXZ model the
mean-field, while capturing some short-range energetics, can-
not capture varying power laws in the fully interacting theory.
By understanding the features in the mean-field responsible
for capturing the varying power laws in the random XYZ
chain, in the following sections we will be led to a plausible
scenario for the physics of this system.

While the mean-field theory is reasonably accurate for
J̃ z � 0.4, it is evident from Fig. 11 that the magnitudes of
the mean-field correlation functions around J̃ z = 1 do not
approach their actual values. At the tricritical point of the
interacting model, the statistical S3 symmetry of the Hamil-
tonian leads to the equivalence of the averages C⊥ and Cz; as
the mean-field lacks this symmetry, it is not surprising that the
distinction persists. Moreover, there is nothing special about
J̃ z = 1 in the mean-field model; note also that this specific
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FIG. 11. Bulk correlations data from the self-consistent Hartree-
Fock mean-field theory are shown with varying bandwidth J̃ z, up
to separation r = 64 in chains of length N = 128. Filled markers
indicate Cz(r) data, and open C⊥(r). The disorder averages for each
value of J̃ z are taken over 25 000 realizations and include only the
middle half of the spin chain, as described in the caption to Fig. 3.
These simpler free-fermion calculations are cheaper to perform, and
accordingly exhibit better statistics than those of Figs. 3–10.

mean-field does not allow any symmetry breaking, and we
see that the best it can do upon increasing J̃ z is to approach
the XX chain, which is a poor approximation for J̃ z � 1.

Nevertheless, buoyed by the success of the mean-field at
small J̃ z, we now examine more closely the effective param-
eters (Jx,y

j )mf . As the interaction strength is increased, the Jx
j

and Jy
j terms tend to become more similar. We can clearly see

how this happens in the spin formulation of the self-consistent
mean-field of Eqs. (34) and (35): a large bare AFM Jx

j > 0
will tend to correlate σ x

j and σ x
j+1 strongly antiferromag-

netically (achieving 〈σ x
j σ

x
j+1〉 ≈ −1 if this is the dominant

coupling), and in the presence of AFM Jz
j > 0 this will lead

to an increase of the effective AFM Jy
j coupling, and vice

FIG. 12. End-to-end correlations data from the self-consistent
Hartree-Fock mean-field theory are shown with varying bandwidth
J̃ z. Filled markers indicate Cz

e (r) data, and open C⊥
e (r). Each data

point is the average end-to-end correlations from 25 000 disorder
realizations. Because for small J̃ z the likelihood of simultaneous
end-to-end decimations is very low, in computing Cz

e (L) we are
restricted to shorter systems in order to have reasonable statistics.
For example, in the SDRG picture, Cz

e (N ) = e−7 corresponds to only
25000 × e−7 ≈ 23 important “events.”

FIG. 13. Critical exponents are shown for the self-consistent
Hartree-Fock mean-field theory with varying interaction strength
J̃ z ∈ [0, 1], extracted from the correlations data in Figs. 11 and
12. Both bulk and end-to-end exponents are included, with known
results for the bulk correlations in the free-fermion model at J̃ z = 0
indicated by red stars, and results for the end-to-end correlations by
yellow diamonds. The point J̃ z = 1 in this model does not feature
any special symmetry.

versa. However it is not clear what sort of model the full self-
consistent mean-field treatment actually constitutes, as the
iterated nature of the solution could lead to long-range corre-
lations effects among the couplings. In the following section,
we propose a more straightforward model intended to broadly
capture the features of this self-consistent Hartree-Fock mean
field. We will see that the ultra-short-range correlations among
Jx

j and Jy
j identified above can already explain continuously

varying power laws.

B. Numerical study of random XY chain
with locally correlated couplings

1. Definition of locally correlated XY model

The rules Eqs. (34) and (35) for the mean-field couplings
modify bonds on one Majorana chain based on expectation
values across the same bond on the other chain. As a result, re-
calling that Jz

j > 0 for all j, the terms on a given bond—which
at the mean-field level are strengthened by the interactions—
develop correlations among themselves. Terms on separate
bonds also get correlated in less obvious ways, since the
mean-field ground state is influenced by all bonds, but we will
proceed by ignoring such longer-range correlations among
the couplings. We refer to such an effective model as having
“local correlations,” in order to distinguish from spatial cor-
relations between terms on separated bonds. One can mimic
the behavior of the mean-field theory and explore the effects
of such correlations using the following parametrization of
the couplings: for Aj , Bj independent random variables and
δ ∈ [0, 1], let

Jx
j =

(
1 − δ

2

)
Aj + δ

2
Bj, (36)

Jy
j = δ

2
Aj +

(
1 − δ

2

)
Bj . (37)

Tuning δ from 0 to 1 interpolates between fully indepen-
dent couplings and the perfectly correlated case with U(1)

214208-13



BRENDEN ROBERTS AND OLEXEI I. MOTRUNICH PHYSICAL REVIEW B 104, 214208 (2021)

FIG. 14. Bulk correlations data from the locally correlated effec-
tive XY model are shown with varying correlation δ, up to separation
r = 64 in spin chains of length N = 128. Filled markers indicate
Cz(r) data, and open C⊥(r). The disorder averages for each value
of δ are taken over 25 000 realizations. In the average, we include
only the middle half of the spin chain, as described in the caption to
Fig. 3.

symmetry. That is, the parametrization runs along the line
between the random XY and XX spin chains. As mentioned
in Sec. II A, Ref. [3] found that weak random anisotropy is
marginal around the XX point, which is in the RS phase.
However, it was not resolved whether this perturbation is truly
marginal, or perhaps instead marginally relevant or irrelevant.
The mean-field numerical results in this section provide an in-
vestigation into this question, a topic which will be discussed
in more detail within the analytic SDRG in Sec. V.

2. Exact diagonalization study of locally correlated Majorana
chains

It is not immediately clear to what extent the locally corre-
lated free fermion effective model defined in Eqs. (36) and
(37) shares the qualitative features of the XYZ model, or
indeed the self-consistent mean-field theory. We investigate
this by repeating the measurements of bulk and end-to-end
spin correlations in chains of similar length to the previous
studies, now varying the coupling correlation parameter δ.
Figures 14–16 demonstrate that these critical indices do vary
continuously in a similar way to the interacting case. Our ob-
servation that this mean-field approach indeed exhibits many
of the qualitative features of the original case suggests that
at least for small J̃ z, the primary effect of the interactions is
to correlate the coefficients of the hopping terms on the two
Majorana chains. However, we emphasize that although the ηz

and η⊥ converge to similar values at the XX point δ = 1 and
the tricritical XYZ point J̃ z = 1, the reasons for this are not
necessarily the same. The mean-field should not be taken too
seriously as a picture of the interacting phase away from the
perturbative regime.

V. LOCALLY CORRELATED XY MODEL IN THE
RANDOM WALK FORMALISM

Some types of disordered quantum Hamiltonian can be
uniquely associated with a classical random walk (RW). An
alternative picture of the SDRG viewed through this connec-

FIG. 15. End-to-end spin correlations data are shown in the
locally correlated effective XY model with varying coupling corre-
lation δ. Filled markers indicate Cz

e (r) data, and open C⊥
e (r). System

sizes N = 32, 48, 64, 80, 96, and 128 are included and each data
point averages over 25000 disorder realizations. See Fig. 16 for the
critical power-law decay exponents extracted from this data.

tion is useful for understanding the properties of IRFP phases.
The RW formulation has previously been applied to both the
RTFIM [53,54] and AFM quantum spin chains [30,55]. In this
section we first review the RW for a single Majorana chain
based on the SDRG procedure of Sec. II C 1. While all results
for correlation functions in this case are known from Fisher’s
analytic solutions for flows approaching the RS fixed point,
we demonstrate how to obtain some power-law exponents
from different arguments, which will generalize to the locally
correlated XY chain where we do not have analytic flows.
We first obtain rigorous bounds in the continuum limit on the
asymptotic scaling of the Majorana pairing probability (which

FIG. 16. Critical exponents governing spin correlations in the
locally correlated XY model with varying correlation parameter δ are
shown, extracted from data shown in Figs. 14 and 15. Both bulk and
end-to-end exponents are shown, with known results for the bulk cor-
relations in the uncorrelated XY model at δ = 0 indicated by red stars
and known end-to-end critical spin exponents by yellow diamonds.
Known critical exponents for the U(1)-symmetric XX model at δ = 1
are similarly indicated; in this case, ηe

⊥ = ηe
z = 1 and η⊥ = ηz = 2.

The discrepancy in η⊥ is likely a result of a long crossover, as the
disorder distribution of Eqs. (36) and (37) is somewhat weaker than
Eq. (31) for the same value � = 2.
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determines the correlations of the z component of spin in the
random XX and XY chains) based on RW survival probability,
a connection which had previously been noted in Ref. [30].
We then consider the problem of two locally correlated RWs,
one for each Majorana chain, following the effective model
developed in Sec. IV B. This system turns out to correspond
to an anisotropic two-dimensional RW. We again rigorously
bound the likelihood of decimation using the RW survival
probability, where we find that the power-law exponent varies
continuously with the local correlation parameter. As a result,
we are able to prove a specific form for continuously varying
critical exponents of spin correlations in the locally correlated
effective model.

A. RW formulation of SDRG for the Majorana chain

Returning to the notation of Sec. II C 1, define the loga-
rithm of the energy associated with each bond in the Majorana
chain Hamiltonian HM as un = ln(J̃/|hn|), n = 1, . . . , N −
1. Here J̃ is a bare bandwidth for the coupling terms, meant
to evoke the parameters of the Hamiltonian Eq. (1). From
Eq. (5), one sees that if J̃x = J̃y, in each Majorana chain
of the random XY model the hopping terms are identically
distributed. Note that the signs of hn are not important for the
discussion of probabilities of site pairings below, and are only
needed to fix sign factors for the spin correlation functions, as
discussed at the end of Sec. II C 1. We consider the specific
disorder distribution Eq. (31) with J̃x = J̃y = J̃ = 1. Then the
distribution of log-energies is exponential, with distribution
parameter �:

τ (u) = 1

�
e−u/�, u ∈ (0,∞), (38)

which has mean 〈u〉 = � and variance Var(u) = �2. The Ma-
jorana model HM on N sites is associated with a 1d RW m,
a Markov chain with state variables (xn, σn), n = 1, . . . , N ,
where xn ∈ R is a cumulative log-energy defined below and
σn = (−1)n−1 is an internal Z2 variable determining the sign
of the next step to be taken.2 The discrete RW time n matches
the spatial index of the quantum chain. A given disorder
realization {h j}1� j<N corresponds to a RW step sequence
{σ ju j}1� j<N : that is, the state of m at time n = 1, . . . , N is

m[n] =
(

n−1∑
j=1

σ ju j, σn

)
. (39)

In the following, we will sometimes leave the σn state variable
implicit, and refer to xn as m[n]. Let Prob(x, σ, n) be the
distribution of m[n], which is governed by the master equation

Prob(x, σ, n + 1) =
∫ ∞

0
du τ (u) Prob(x − σu,−σ, n).

(40)

2That is, the RW takes alternating positive and negative steps de-
pending on the sublattice of site n, and we choose step n = 1 to be
positive. This is distinct from the alternating signs of the couplings in
Eq. (5), which are not invariant under a unitary rotation on the spins.

We now consider the behavior under the SDRG of a RW
m associated with a Majorana chain HM. The largest local
energy scale |hk|, for some k, corresponds to the smallest log-
energy uk . The effect of the Shreiffer-Wolff transformation up
to second order is to eliminate the following hopping terms:

ihk−1γk−1γk + ihkγkγk+1 + ihk+1γk+1γk+2, (41)

and to introduce the renormalized bond term

ih′
k−1γk−1γk+2, h′

k−1 = hk−1hk+1

hk
. (42)

(There is also a shift of the leading energy scale, but this will
not be important here.) For the RW the new step is

σk−1u′
k−1 = σk−1uk−1 + σkuk + σk+1uk+1. (43)

In this way, the SDRG transformation corresponds to a se-
quential “smoothing” of the RW, in which the global step
of smallest magnitude and its neighbors are removed, and
replaced by a treble step directly connecting xk−1 and xk+2.
For an illustration, the reader is referred to Fig. 8 in Appendix
B of the arXiv version of Ref. [55], or Fig. 1 of Ref. [11].

We define an inversion operation I acting on a RW m of
length N as

I : m[n] �→ Im[n] = m[N] − m[N − n + 1]. (44)

That is, I flips the spatial and time coordinates of m. (The
constant shifts the starting point of Im to 0.) We also define
reflection Ra of the spatial coordinate about the line x = a:

Ra : m[n] �→ Ram[n] = 2a − m[n]. (45)

We will make extensive use of a “gluing” operation ⊕ which
joins two RWs at their endpoints. For RWs m1,2 with lengths
N1,2, then, n = 1, . . . , N1 + N2,

(m1 ⊕ m2)[n] =
{
m1[n], n � N1

m1[N1] + m2[n − N1], n > N1
. (46)

That is, the combined RW m1 ⊕ m2 first performs the N1 − 1
steps of m1, followed by the N2 − 1 steps of m2. It is assumed
that the first step of m2 has opposite σ state variable as com-
pared to the last step of m1; this is required on the spin chain,
where m2 begins and m1 ends on the same sublattice.

Using the above definitions a precise statement can be
made about the decimation of a site n = k, which we suppose
without loss of generality to be a local minimum. For k, to
have decimation partner k′ > k in the SDRG, with k′ − k = r,
a RW m must admit a decomposition

m = Imext,L ⊕ mint ⊕ R0mext,R, (47)

where mext,L has length k, mext,R has length N − k′ + 1,
mint[r] ≡ 
 > 0, and the following conditions hold.

Condition 1. mint[l] satisfies xl > 0 for l = 2, . . . , r, and
attains the unique maximum xr = 
.

Condition 2. mext,L and mext,R reach height x � 
 before
crossing 0.

(For a pictorial description, see also Appendix B of the
arXiv version of Ref. [55].) These conditions relate the like-
lihood of a decimation pairing sites k and k′ to the survival
probability of the “interior” and “exterior” partial RWs on
the fully bounded interval (0,
). The physical interest of
this quantity follows from the strong correlations shared by
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sites paired in the SDRG; in particular, the scaling of the
decimation probability determines average spin correlations,
as described in Sec. II D.

Note that the writing of Eq. (47) is chosen so that the
exterior RWs mext,L and mext,R have identical structure to the
interior RW mint. That is, all walks evolve forward in time
starting at step 1 with the first step being positive. Implicit
in this is the assumption that the inversion and reflection
operations used result in identical probabilities for the RWs
because the microscopic distributions for un are identical for
n even and odd.

Focusing on asymptotic scaling (i.e., n, r � 1), we de-
scribe the RW in continuous time, passing from n → t . The
central limit theorem specifies that a sum of random variables
approaches a Gaussian distribution for sufficiently large n,
provided only that the moments of the constituent distribu-
tions are bounded. The variance of the continuum distribution
is Var(x) = Var(u)t . The effect of the internal state variable
σ can be accounted for by noting that sites which decimate
together necessarily inhabit distinct sublattices. This means
that one additional σ = +1 step is always taken. The mean
of the probability distribution, then, is the expectation value
of this step: 〈x〉 ≡ x0 = 〈u〉.3 The asymptotic density in free
space we denote by

Gfree(x, t ) = 1√
2πVar(u)t

exp

[
− (x − x0)2

2Var(u)t

]
. (48)

Now the continuum limit of Eq. (40) is the diffusion equa-
tion [56]

∂

∂t
G(x, t ) = D

∂2

∂x2
G(x, t ), (49)

with diffusion constant D = Var(u)/2. Equation (48) is the
Green’s function of Eq. (49) on x ∈ R with initial condition
G(x, t = 0) = δ(x − x0). This illustrates that the continuum
limit of the RW can be treated as a diffusing particle initially
localized at x = x0. Accordingly, in the following sections, we
use the language of the diffusion problem, referring to the
counterparts of discrete RWs associated with particular Ma-
jorana Hamiltonians as “paths,” “histories,” or “trajectories.”
We also sometimes write the initial condition explicitly, as
G(x, t ; x0). Finally, we will use the notation defined in this
section for the discrete case, e.g., I, Ra, and ⊕, to also refer
to the counterparts of these operations in the continuum.

B. Rigorous bounds on critical exponents
in the Majorana chain from RW survival

The diffusion equation on the fully bounded interval
(0,
), i.e., with absorbing boundary conditions at x = 0
and x = 
, can be solved straightforwardly by harmonic ex-
pansion. From the time-dependent solution one can directly
calculate the scaling of the asymptotic decimation probability
and reproduce Fisher’s detailed results in Refs. [3,7]. How-
ever, in Sec. V D the fully bounded geometry for two locally
correlated Majorana chains becomes too complicated to solve

3This can also be derived from the continuum expression of the
master equation (40).

this way. Instead we employ a different approach by proving
upper and lower bounds with the same power-law scaling,
based on the survival probability in a semi-infinite domain.
A similar method will work also for the locally correlated
effective model with an arbitrary degree of correlation.

First consider the survival probability of a RW in the semi-
infinite interval at time t > 0. As in the free case Eq. (48), the
initial condition on the constrained density G(x, t ) is G(x, t =
0) = δ(x − x0), but an absorbing boundary is present at x = 0,
restricting the solution domain to x ∈ (0,∞) and terminating
trajectories that reach x = 0. The boundary condition G(x =
0, t ) = 0 is accounted for by placing an “image charge”
at x = −x0 and superposing the distributions: G(x, t ) =
Gfree(x, t ; x0) − Gfree(x, t ; −x0). We generally work in a “scal-
ing limit,” where

G(x, t ; x0) = 1√
πDt

e−(x2+x2
0 )/4Dt sinh

( xx0

2Dt

)
(50)

≈ xx0√
4π (Dt )3

e−x2/4Dt , (51)

assuming in the last line x0 � √
Dt . This approximation is

valid at late times in integrals over the spatial coordinate, as
the exponential factor strongly mitigates the error introduced,
and allows us to extract leading power-law behaviors. The sur-
vival probability in the semi-infinite geometry in the scaling
limit is

S(t ) =
∫ ∞

0
dx G(x, t ; x0) = x0√

πDt
. (52)

1. End-to-end decimation probability for a single
finite Majorana chain

In order to support end-to-end decimation between sites 1
and N , the RW m[n = N] associated with a finite Majorana
chain of length N need only satisfy condition 1 of the previ-
ous section, with r = N . In the continuum limit for the RW
(N → L), the likelihood that the left end t = 0 is involved
in the final decimation is given by the survival probability
S(t = L) ∼ 1/

√
L; however, condition 1 additionally requires

that its decimation partner be the right end t = L. Applying
I to m, one sees that the requirement to reach a maximum at
t = L takes the same form as the absorbing boundary condi-
tion x = 0 near t = 0. Thus a naive estimate of the end-to-end
decimation probability pe(L) is the independent survival of
the two ends, or S(L)2 ∼ 1/L. Although these events are not
actually independent, we will show that the naive estimate
turns out to give the correct scaling. Some intuition for this
is that surviving histories tend to be located increasingly far
away from the absorbing boundary [57]: consequently, the
“special” low-probability behavior is confined to the neigh-
borhood of the ends, while the middle of the RW can be
allowed to be nearly typical. A precise statement of these
schematic remarks is that we are able to determine the scaling
of pe(L) by considering two independent “half-RWs” m1,2 of
length t = L/2, constructing RWs of length L which satisfy
condition 1 as m = m1 ⊕ Im2.

To be more concrete, we first give a rigorous upper bound
on the end-to-end decimation probability pe(L). Any RW m

can be decomposed as m = m1 ⊕ Im2, that is, into two inde-
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pendent “half-RWs” running up to time t = L/2, one running
over times t ′ ∈ [0, L/2], and the other over t ′ ∈ [L/2, L], with
the two RWs properly glued at their respective time t ′ = L/2.
It may be the case that m1 and m2 never reach the absorb-
ing boundary, and thus each is considered a surviving RW
in the semi-infinite geometry. Any RW instance of length L
producing an end-to-end pairing in the SDRG, i.e., satisfying
condition 1, indeed decomposes in this way, with only one ab-
sorbing boundary in each case. The converse statement is not
true, because when such two surviving trajectories are joined,
we cannot guarantee that the full RW satisfies condition 1.
Thus the desired probability pe(L) � S(L/2)2 ∼ 1/L.

To prove a lower bound on pe we construct a subset of
all paths satisfying condition 1 by considering certain m1 and
m2, each of length t = L/2, which when glued together as
m1 ⊕ Im2 satisfy the criterion. Again, in the present case we
can solve the problem with two absorbing boundaries, but
we want to demonstrate how to extract the behavior using
the semi-infinite solution, where the geometry is simpler, as
this will be the only option for the locally correlated model.
Specify constants α and β, 0 < α < β � 2α, and define a
target window x ∈ [α

√
Dt, β

√
Dt] for a time t > 0. In the

problem with one absorbing boundary at x = 0, the fraction
of surviving trajectories contained in the target window at t is

pw(α, β ) = 1

S(t )

∫ β
√

Dt

α
√

Dt
dx G(x, t ) = e−α2/4 − e−β2/4. (53)

That is, a constant fraction pw(α, β ) of the surviving density
of RWs at time t is located within the target window.

The above calculation Eq. (53) leads to an overcounting of
valid paths which can be glued to satisfy condition 1, because
it includes “dangerous” histories which take an excursion to
large x values before returning to the target window at time
t . Half-RWs m1 and m2 constrained in this way and glued
as m1 ⊕ Im2 may cross the eventual decimation log-energy
scale 
 prematurely, which would spoil the lower bound. To
account for the dangerous cases, we exclude those histories
which ever cross x = β

√
Dt and then return to the target

window.
The way we achieve the exclusion is the following. Sup-

pose that a history m[t ′], t ′ ∈ [0, t], performs q crossings of
the line x = β

√
Dt at times {t1, t2, . . . , tq} before returning to

the target window at t ′ = t . Immediately after tq, the history
must travel downwards and remain below x = β

√
Dt until

t ′ = t . We apply the following transformation:

T : m = mt ′�tq ⊕ mt ′>tq �→ mt ′�tq ⊕ Rβ
√

Dt mt ′>tq , (54)

where as indicated by the subscripts mt ′�tq describes the RW
up to time t ′ = tq and mt ′>tq the section t ′ ∈ (tq, t]. T does not
change the earlier partial RW but reflects the later about the
line x = β

√
Dt . Because m[t] ∈ [α

√
Dt, β

√
Dt], the trans-

formed endpoint Tm[t] necessarily lies in a “shadow window”
x ∈ [β

√
Dt, (2β − α)

√
Dt]. Moreover, the likelihood of the

trajectory is unaffected by T. Now every dangerous path with
q � 1 crossings can be identified with a transformed partner
terminating in the shadow window and having the same proba-
bility. Thus the density in the shadow window at time t upper
bounds the contribution to the density in the target window
arising from dangerous histories. (The upper bound is not

FIG. 17. A dangerous trajectory contributing to the counting pw

of the density in the target window, colored in blue, is illustrated. The
shadow window used to eliminate these trajectories is also shown,
colored in orange. The particular history m shown has q = 4 cross-
ings of the upper limit of the target window and the reflected partial
path Rβ

√
Dt mt ′>tq , terminating in the shadow window, is shown in

green. Because the diffusion is unbiased, both m and the transformed
Tm path have the same probability, and as any such dangerous
trajectory has a counterpart under the transformation, the density in
the shadow window upper bounds the associated contribution to the
density in the target window.

saturated, because a trajectory included in the shadow window
could deviate above x = 2β

√
Dt for some t ′ ∈ (tq, t], and this

RW would have no T−1 counterpart due to the absorbing
boundary at x = 0.) An illustration of this scheme is shown
in Fig. 17.

From the previous calculation, the fraction of the surviv-
ing density contained in the shadow window is psw(α, β ) =
e−β2/4 − e−(2β−α)2/4. Consequently a lower bound on the den-
sity of valid surviving histories in the target window at time t
is given by

pcorr
w (α, β ) = pw(α, β ) − psw(α, β ) (55)

= e−α2/4 − 2e−β2/4 + e−(2β−α)2/4. (56)

There is an extended region of (α, β ) for which the coefficient
is positive; for example, pcorr

w (α = 2, β = 4) ≈ 0.33.
Now take t = L/2. Two RWs m1 and m2 fulfilling the

criteria above are suitable for constructing a RW of length L
which satisfies condition 1 as m = m1 ⊕ Im2. The result is a
trajectory of length L reaching a maximum at t = L (assured
by taking β � 2α) without crossing x = 0. Not all RWs of
length L which support end-to-end decimation in the SDRG
can be constructed this way, only those with m[L/2] lying in
the target window and m[t ′ � L/2] below the upper limit of
the target window, but every RW coming from this construc-
tion evidently satisfies condition 1. Thus this probability is a
lower bound on pe(L) � [pcorr

w (α, β )S(L/2)]2 ∼ 1/L.
Together with the upper bound, this establishes the scal-

ing of end-to-end decimation probability pe(L)—and thus the
power law for end-to-end correlations in a single random
Majorana chain—as 1/L.

214208-17



BRENDEN ROBERTS AND OLEXEI I. MOTRUNICH PHYSICAL REVIEW B 104, 214208 (2021)

2. Bulk decimation probability in a single Majorana chain

Guaranteeing decimation away from the edges of a Majo-
rana chain requires satisfying both conditions 1 and 2. To find
the probability pb(r) of decimation at scale r in the bulk—i.e.,
that two fixed sites separated by r are decimated as a pair—we
decorate interior RWs mint by gluing exterior RWs to the left
and right. We showed that the probability of such an mint

is pe(L = r) ∼ 1/r, so we need only find suitable exterior
RWs satisfying condition 2 (while bearing in mind conditions
involving both interior and exterior RWs).

For the probabilities associated with the exterior walks, we
are interested in the likelihood ω(x; A) that a RW with spatial
coordinate x′ starting from x′ = x � 0 eventually reaches a
value x′ = A before being absorbed at the domain bound-
ary x′ = 0. We require the consistency condition ω(x; A) =
〈ω(x − dx; A)〉, where the average is taken over sufficiently
small displacements dx, and 〈dx〉 = 0, 〈(dx)2〉 �= 0 (reflective
of the microscopic step distribution) [57,58]. Taylor expand-
ing leads to Laplace’s equation ∇2ω = 0 which, together with
the boundary conditions ω(0) = 0 and ω(A) = 1, has solution
ω(x; A) = x/A.

A lower bound on pb(r) is now straightforward based
on mint as defined in Sec. V B 1, coming from a subset
of all RWs of length L = r supporting end-to-end decima-
tion. Any such mint is constructed from two glued half-RWs,
each terminating at t = r/2 inside of a target window x ∈
[α

√
Dr/2, β

√
Dr/2]; thus the total and maximum devia-

tion at t = r is bounded above by 
(r) = β
√

2Dr. Given
mint, the probability of a suitable exterior RW mext,L or
mext,R is greater than or equal to ω(x0; 
(r)); writing a
full RW satisfying all conditions, we find that pb(r) �
[pcorr

w (α, β )S(r/2)]2ω(x0; 
(r))2 ∼ r−2.
In the same spirit as the upper bound on end-to-end

decimation probability, consider mint = m1 ⊕ Im2; that is, de-
composed as two half-RWs surviving until t = r/2, with final
spatial deviations 
1 and 
2 and likelihoods G(
1, r/2; x0)
and G(
2, r/2; x0), respectively. All RWs with end-to-end
decimation are of this form. Now incorporating the probability
of exterior RWs which must reach a height 
1 + 
2, the
likelihood of the full RW provides an upper bound on the
probability of bulk decimation:

pb(r) �
∫ ∞

0

∫ ∞

0
d
1d
2 G(
1, r/2; x0) G(
2, r/2; x0)

× ω(x0; 
1 + 
2)2. (57)

Making use of ω(x0; 
1 + 
2)2 � 1
2ω(x0; 
1)ω(x0; 
2) the

integrals factorize, and we find

pb(r) � 1

2

[∫ ∞

0
d
1 G(
1, r/2; x0) ω(x0; 
1)

]2

(58)

= x4
0

2(Dr)2
. (59)

Again these upper and lower bounds exhibit the same scal-
ing, proving that pb(r) ∼ r−2 for a single Majorana chain, in
agreement with known results (see the XX case in Sec. II D).

C. Locally correlated Majorana chains
as a two-dimensional RW

To make statements about locally correlated Majorana
chains requires dealing simultaneously with two RWs (return-
ing for the moment to the discrete formulation) mx[n] and
my[n], associated respectively with the X and Y Majorana
hopping chains. In the general case, the steps taken by each at
time n are not independent, being instead drawn from a joint
distribution μ(u, v). If the full state of the system is specified
by variables (xn, yn, n), the master equation for the probability
distribution Prob(x, y, n) is

Prob(x, y, n + 1)=
∫

du
∫

dv μ(u, v) Prob(x − u, y − v, n).

(60)
This is however just the master equation for a RW in two
dimensions (2d). In the natural 2d vector notation with x =
(x, y)� and u = (u, v)�,

Prob(x, n + 1) =
∫

d2u μ(u) Prob(x − u, n). (61)

The continuum limit of the master equation Eq. (61) is de-
termined by the details of the microscopic distribution μ,
and does not in general reduce to the simple Laplacian. As
a remedy we begin by transforming the problem into isotropic
diffusion.

Let μ be centered, with covariance matrix4

� = σ 2

[
1 δ

δ 1

]
, (62)

where corr(u, v) = cov(u, v)/σ 2 ≡ δ ∈ [0, 1], with fixed
σ 2 = Var(u) = Var(v). (The value of δ here is related to, but
not necessarily the same as, the bare δ defined in Sec. IV B.
δ > 0 implies positive correlation between u and v, as ob-
served in the mean-field for the AFM spin chain.) The
continuum limit of evolution driven by μ is anisotropic dif-
fusion along the eigenvectors of �, ê± = 1√

2
(1,±1)�, with

diffusion coefficients D± = σ 2

2 (1 ± δ).
The 2d RW evolves by isotropic diffusion under a linear

transformation of the plane W : x �→ x̃ ≡ W x, with

W = 1√
2

[
1
λ

− 1
λ

λ λ

]
, λ ≡

(
1 − δ

1 + δ

)1/4

. (63)

W performs a rotation about the origin by π/4, followed by
a δ-dependent anisotropic rescaling. There is a divergence
at δ = 1, where � is rank-deficient; this reflects the funda-
mentally one-dimensional nature of the perfectly correlated
case. We will refer to the (x, y) coordinates of the original
problem as the “physical geometry,” and the image (x̃, ỹ) of
W as the “solution geometry,” where the governing equation
is isotropic diffusion, now with coefficient D ≡ √

D+D− =

4The central limit theorem allows us to ignore higher order mo-
ments, provided only that they are finite, so for our purposes all
acceptable microscopic distributions are fully characterized by this
one-parameter family of covariance matrices.
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σ 2

2

√
1 − δ2:

∂

∂t
G = D

(
∂2

∂ x̃2
+ ∂2

∂ ỹ2

)
G. (64)

D. Rigorous bounds on critical exponents in the locally
correlated model

1. End-to-end decimation probability for two locally correlated
finite Majorana chains

Investigating end-to-end decimation directly in the exact
solution for the fully bounded geometry would neces-
sitate solving Eq. (64) in a parallelogram. A harmonic
decomposition is not possible here, and as far as we
are aware the solution requires a prohibitively complicated
Schwarz-Christoffel conformal transformation usually per-
formed numerically [59]. Nevertheless, analytic results for
two Majorana chains with arbitrary local correlations are pos-
sible by utilizing the connection to the survival probability in
the simpler semi-infinite geometry.

As was the case for the single Majorana chain, we employ
a semi-infinite domain, now bounded by the lines x = 0 and
y = 0. The origin is evidently fixed by W , and the boundaries
map to the lines ỹ = ±λ2x̃, where x̃ lies in the ê− direction
and ỹ in ê+. These boundaries delimit an absorbing wedge
geometry with opening angle � given by cos � = −δ, which
runs from � = π/2 at δ = 0 to � = π at δ = 1. In terms
of the wedge half-angle θ ≡ �/2, the domain boundaries are
ỹ = ±(cot θ )x̃. For easy reference, we collect some relation-
ships between these geometric parameters:

cos � = −δ, sin � =
√

1 − δ2, (65)

cos θ =
√

1 − δ

2
, sin θ =

√
1 + δ

2
, λ =

√
cot θ. (66)

The Green’s function in the infinite wedge can be found
from the free-space distribution by the method of images for
opening angles � = π/m, with m a positive integer. This
entails 2m − 1 image charges with alternating sign, arranged
symmetrically around the wedge apex. However this approach
is of limited use, as we need � ∈ [π

2 , π ), and instead we will
use the Green’s function known for arbitrary opening angle
from an alternative solution. In polar coordinates, with the
wedge apex at radius ρ = 0 and solution domain bounded by
absorbing walls G(ρ, φ = 0, t ) = G(ρ, φ = �, t ) = 0 (i.e.,
the angle φ is defined relative to one of the absorbing bound-
aries), we have [60]

G(ρ, φ, t ; ρ0, φ0)

= e−(ρ2+ρ2
0 )/4Dt

�Dt

∞∑
l=1

Ilν

(ρρ0

2Dt

)
sin(lνφ) sin(lνφ0), (67)

where ν = π/� and Ilν is a modified Bessel function of the
first kind:

Is(x) =
∞∑

m=0

(x/2)s+2m

m! �(s + m + 1)
. (68)

In the physical geometry, the initial condition is (x0, y0) =
(〈u〉, 〈v〉), where 〈u〉 = 〈v〉 is again the result of each 1d RW

taking one additional positive step according to the discrete
microscopic distribution. In the solution geometry, this point
maps to ρ0ê+, where ρ0 = √

2λ〈u〉. In polar coordinates, the
source point is (ρ0, φ0 = θ ). Consequently, in Eq. (67), the
factor sin(lνφ0) vanishes for even l and for odd l is equal
to a sign (−1)(l−1)/2. As in the 1d case, we work in the
scaling regime at late times t , where we are able to extract
the leading power-law behavior. Again, spatial integrals are
regulated by the exponential factor, which decays fast enough
to suppress errors arising at large ρ. Because ν ∈ (1, 2] the
leading behavior requires only the l = 1, m = 0 term in the
double sum, and sets e−ρ2

0 /4Dt → 1.
The survival probability is determined from the Green’s

function by integration over the wedge. Explicitly, in the scal-
ing limit

S(t ) =
∫

ρ dρ dφ G(ρ, φ, t ; ρ0, φ0 = θ ) (69)

=
∫ �

0 dφ sin(νφ)

��(ν + 1)Dt

∫ ∞

0
ρ dρ e−ρ2/4Dt

(ρρ0

4Dt

)ν

(70)

= 2 �( ν
2 )

π�(ν)

(
ρ0√
4Dt

)ν

. (71)

The survival exponent depends on the opening angle as

S(t ) ∼ t−π/2�. (72)

This result for a RW in a 2d wedge is in fact well known
[57,58,61]. As � is a function of the correlation coefficient
δ, continuously varying behavior of this type is in agreement
with the numerical observations in Sec. IV B. Specifically,
again relying on the naive assumption that the two ends of the
chain decimate independently, the likelihood of this pairing
scales as [S(L)]2 ∼ L−π/�, which matches the known end-to-
end scaling exponents ηe

z = 2 for the uncorrelated model at
δ = 0 and ηe

z = 1 for δ = 1.
Our strategy for rigorously bounding the probability of

end-to-end decimation occurring on both chains using the
infinite wedge results is analogous to that of Sec. V B. From
the Green’s function we establish that at late times a constant
fraction of surviving RWs are suitable for subsequent gluing
to contribute to this probability, being found in a specified
target window, using a shadow window to exclude dangerous
trajectories. By gluing the ends of two RWs at time t = L/2
we establish bounds on the power law. We will use the nota-
tion of the previous section, namely, I and ⊕, to refer to the
generalizations of the relevant transformations to 2d.

In particular, we can write an upper bound immediately.
Any 2d RW of length (duration) L corresponding to two
locally correlated Majorana chains can be decomposed into
half-chains of length L/2 as m = m1 ⊕ Im2, as in the 1d case.
m1 and m2 may be valid surviving trajectories in their semi-
infinite wedge, and some will produce end-to-end decimations
on both physical Majorana chains described by the 2d RW m.
Trajectories that do not decompose in this way into surviving
half-chains will not satisfy condition 1. Because not every pair
of surviving m1 and m2 will do so either, the probability is
upper-bounded as pe(L) � S(L/2)2 ∼ L−π/�.

Now in order to prove a lower bound on pe(L), let α and
β be positive constants, α < β � 2α, and define the target
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FIG. 18. The solution geometry is illustrated for the 2d RW prob-
lem in the wedge with opening angle �, found from the correlation
coefficient by cos � = −δ. The exact target window is colored in
blue, and the sector defining the easier integration subregion for
the target in yellow. The two components of the shadow window
are found by reflecting the exact target window across the lines DL

and DR and are colored in orange, with the easier bounding shadow
integration region, which necessarily covers these areas, in green.

window for a 2d RW at time t to be the square (x, y) ∈
[α

√
Dt, β

√
Dt] × [α

√
Dt, β

√
Dt]. In the physical geometry,

the window is a square; however, when mapped to the solution
geometry the window becomes a parallelogram. The corners
{a, b, c, d} map to

{ã, b̃, c̃, d̃} =
√

Dt

2

{
2αλê+,

α − β

λ
ê− + (α + β )λê+,

β − α

λ
ê− + (α + β )λê+, 2βλê+

}
, (73)

as illustrated in Fig. 18. Treating this exact shape in the polar
coordinates of Eq. (67) is complicated; instead we define
an integration volume that is a subset of the target window,
with the same t scaling, but which leads to a simpler bound.
Consider the midpoints of the edges of the target window
in the solution geometry, which we denote {ẽ, f̃ , g̃, h̃}. They
describe the four corners of a rectangle, symmetric about
the line φ = θ , with edges in the directions ê− and ê+ (see
Fig. 18). We define an integration domain bounded by radial
values ρ+ (of points f̃ and h̃) and ρ− (of ẽ and g̃), and the
angular deviation ψ of points f̃ and h̃ from the midline φ = θ .

The proof that this “sector” geometry is indeed a sub-
volume of the target domain for any opening angle � < π

can be seen by drawing a picture. The specific integration
bounds can be found straightforwardly from Eq. (73), but the
crucial property is their scaling with t . Define the radial limits
as ρ± = C±(α, β, δ)

√
Dt ; the angular integration half-width

ψ = ψ (α, β, δ) turns out to be purely geometric, with no t

dependence. Again extracting the leading behavior for late
times t , the fraction of surviving paths whose position at time
t is in the integration window is

p2d
w (α, β, δ) = 1

S(t )

∫ ρ+

ρ−
ρ dρ

∫ θ+ψ

θ−ψ

dφ G(ρ, φ, t ; ρ0, θ )

(74)

= 4 sin(νψ )

ν�( ν
2 )

I (α, β, δ), (75)

where

I (α, β, δ) =
∫ C+/2

C−/2
du e−u2

uν+1. (76)

So p2d
w is indeed a constant, determined only by the correlation

coefficient δ and the constants α and β.
As was the case for the 1d RW, the calculation above

includes a “dangerous” contribution which should be sub-
tracted in order to lower bound the decimation probability by
subsequent gluing of half-chains m1 and m2. Again we upper
bound this contribution by calculating the fraction in a shadow
window. We consider those paths to be dangerous which ever
cross the lines x = β

√
Dt or y = β

√
Dt in the physical space

before returning to the target window at time t . In the solution
geometry these lines map to

DR : λ x̃ + 1

λ
ỹ − β

√
2Dt = 0, (77)

DL : −λ x̃ + 1

λ
ỹ − β

√
2Dt = 0. (78)

We define the boundary for dangerous trajectories piecewise
as (see Fig. 18)

D(φ) =
{
DR, 0 < φ � θ

DL, θ < φ < �
. (79)

Suppose a trajectory with time parameter t ′ makes
q crossings of D at times {t1, . . . , tq} at various points
{(ρ1, φ1), . . . , (ρq, φq )} before returning to the target window
at time t ′ = t . After its last crossing at (ρq, φq), it must stay
within the allowed region for times (tq, t]. We transform the
trajectory by reflecting the partial RW for times t ′ ∈ (tq, t]
about the component of D that was crossed at t ′ = tq, either
DR if φq ∈ (0, θ ] or DL if φq ∈ (θ,�). This is the counterpart
in 2d to the 1d transformation T. Because the step distribution
in the solution geometry is isotropic, the transformed path has
the same probability as the dangerous original. (The reflection
must be performed in the solution geometry, and does not
commute with W .) The shadow window in this case has two
components, which are disconnected for � < 2π

3 but overlap
for � > 2π

3 . Note that overlap of the mapped regions does
not introduce the possibility of double-counting, as the full
dangerous and transformed trajectories are uniquely related.

The corners c̃ and d̃ of the target window lie on line DR,
and b̃ and d̃ on line DL. Thus we need only reflect ã and b̃
about DR, and ã and c̃ about DL. The coordinates of the points
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reflected about DR are

{ãR, b̃R} =
√

2Dt

×
[

λ(β − α)

cosh(2 ln λ)
ê− +

(
β − α

λ cosh(2 ln λ)
+ αλ

)
ê+,

(
λ(β − 2α)

cosh(2 ln λ)
+ α − β

λ

)
ê−

+
(

β − 2α

λ cosh(2 ln λ)
+ λ(α + β )

)
ê+

]
, (80)

with similar forms for ãL and c̃L. The four-sided figures
described by the exact shadow window are evidently compli-
cated. As with the target window, we bound the area using
a sector which scales in the same way, however in this case
an upper bound is required. The upper limit ρsw

+ is the radial
coordinate of points c̃L and b̃R, and the lower limit ρsw

− is that
shared by the corners b̃ and c̃. The angular half-width is the
maximum of the angular half-widths of points c̃ and ãR; this
depends on the specific value of �. Again we find integration
limits ρsw

± = Csw
± (α, β, δ)

√
Dt , and ψ sw = ψ sw(α, β, δ).

Based on the previous calculation, p2d
sw(α, β, δ) =

4 sin(νψ sw )
ν�( ν

2 ) Isw(α, β, δ) and the corrected fraction is

p2d,corr
w (α, β, δ) = p2d

w (α, β, δ) − p2d
sw(α, β, δ) (81)

= 4

ν�
(

ν
2

) (sin(νψ )I − sin(νψ sw)Isw).

(82)

By working explicitly through the algebra one can verify that
p2d,corr

w is positive for all values of δ ∈ [0, 1), e.g., for the
choice α = 1, β = 2.

Now, taking t = L/2, for any such m1 and m2 we can
construct a RW which satisfies condition 1 for end-to-end dec-
imation in the quantum chain as m = m1 ⊕ Im2. Therefore
a lower bound on the simultaneous end-to-end decimation
probability is given by pe � [p2d,corr

w S(L/2)]2 ∼ L−π/�. In
combination with the upper bound, this shows that the power-
law exponent controlling end-to-end decimation probability
(and consequently ηe

z ) varies continuously with δ as

ηe
z = π/ arccos(−δ). (83)

2. Bulk decimation probability in two locally
correlated Majorana chains

Once again we can extend the result for end-to-end decima-
tion pe—requiring that both Majorana chains satisfy condition
1—to the bulk likelihood pb(r) (for two fixed spins separated
by r) by considering also condition 2. We first write a lower
bound on the bulk pair decimation probability by identifying
exterior RWs which are guaranteed to satisfy condition 2
when properly adjoined to an interior RW of the type used for
the lower bound on pe in the previous section. Specifically,
we restrict to exterior RWs with endpoints at time t ≡ r (for
concreteness, but any constant multiple of r would do as well)
within a particular sector (specified below) in the solution
geometry. In the physical geometry, 
(r) = β

√
2Dr is an

upper bound on the total deviation of each of the 1d RWs mx

and my described by the 2d interior RW mint.

One way to guarantee the bulk decimation is to require that
each of the physical 1d RWs described by each of the exterior
2d RWs mext,L and mext,R survive, and exceed 
(r) at t = r.
A point (ρ, φ) in the solution geometry corresponds to

x = ρ sin(� − φ)√
sin �

, y = ρ sin(φ)√
sin �

(84)

in the physical geometry. Employing angular integration lim-
its φ ∈ (θ − ψ, θ + ψ ), where ψ can be chosen to be the
same value used for mint, sufficient radial limits for our
purposes are ρext

− = 
(r)
√

sin �/ sin(θ − ψ ) and ρext
+ → ∞

(noticing that sin(θ − ψ ) � sin(θ + ψ ) for all ψ ∈ [0, θ ]).
From the calculation of the previous section, there is a con-
stant probability κ (α, β, δ) that any surviving RW lies in a
window bounded by ρ ∈ [ρext

− , ρext
+ ] and φ ∈ [θ − ψ, θ + ψ]

at t = r. Such a RW has deviation at least 
(r) in the phys-
ical x and y coordinates and thus as either mext,L or mext,R

is suitable for satisfying condition 2 for bulk decimation
when properly adjoined to mint as constructed previously; thus
pb(r) � pe(r)[κS(t = r)]2 ∼ r−2π/�.

Similar to the case of a single Majorana chain, for an upper
bound, we make use of the probability ω(ρ, φ; A) of a RW
with spatial coordinates (ρ ′, φ′) reaching radius ρ ′ = A in the
wedge given a starting point (ρ, φ). This probability follows
Laplace’s equation ∇2ω = 0, now with boundary conditions
ω(ρ, φ = 0) = ω(ρ, φ = �) = 0, ω(ρ = A, φ) = 1. Assum-
ing a separable solution ω(ρ, φ) = R(ρ)T (φ), we find that
for the angular coordinate the solutions are Tn(φ) = sin(nνφ),
n = 1, 2, 3, . . . , where as before ν = π/�. For the radial
coordinate,

ρ2 ∂2R

∂ρ2
+ ρ

∂R

∂ρ
− (nν)2R = 0, (85)

which has solutions of the form Rn(ρ) = ρ±nν . Determining
the constants from the boundary conditions,

ω(ρ, φ; A) =
∞∑

n=1
n odd

4

nπ

(ρ

A

)nν

sin(nνφ). (86)

Along the relevant line φ = θ , the probability simplifies to

ω(ρ, φ = θ ; A) = 4

π
arctan

[(ρ

A

)ν]
� 4

π

(ρ

A

)ν

. (87)

In order to write an upper bound on the bulk decimation
probability, we consider a full RW satisfying both condi-
tions assembled from an mint = m1 ⊕ Im2, where each of
m1 and m2 must survive until t ≡ r/2, along with exterior
RWs mext,L and mext,R which must reach a particular ra-
dial coordinate (determined from mint as specified below)
without being absorbed. Suppose that m1 and m2 terminate
at coordinates (ρ1, φ1) and (ρ2, φ2), which define the de-
viations of the physical RWs (
x,1,
y,1), and (
x,2,
y,2)
according to Eq. (84). The full deviation of the interior
walk mint in the physical coordinates is (
x,
y) = (
x,1 +

x,2,
y,1 + 
y,2) and the physical 1d RWs described by
mext,L and mext,R must exceed the corresponding 
x or 
y

before being absorbed. For this to be the case, it is nec-
essary, but not sufficient, that the 2d exterior RWs each
survive in the wedge until reaching radial coordinate A ≡√

sin � min(
x,
y) in the solution geometry. Defining for
m1 and m2 similar A1 ≡ √

sin � min(
x,1,
y,1) and A2 ≡
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√
sin � min(
x,2,
y,2), we note that A � A1, A2. The prob-

ability of finding two such mext,L and mext,R given the
terminating locations of m1 and m2 is

p(ext|ρ1, φ1, ρ2, φ2) � ω(ρ0, θ ; A)2 (88)

�
(

4

π

)2(ρ0

A

)2ν

(89)

�
(

4

π

)2(ρ0

A1

)ν(ρ0

A2

)ν

. (90)

Then, integrating over the distribution of the interior half-
chain coordinates,

pb(r) =
∫

ρ1 dρ1 dφ1 G(ρ1, φ1, r/2; ρ0, θ )

×
∫

ρ2 dρ2 dφ2 G(ρ2, φ2, r/2; ρ0, θ )

× p(ext|ρ1, φ1, ρ2, φ2) (91)

�
[

8

π

∫ ∞

0
ρ1 dρ1

∫ θ

0
dφ1

× G(ρ1, φ1, r/2; ρ0, θ )

(
ρ0

ρ1 sin φ1

)ν
]2

(92)

=
(

16Iφ

π2�(ν)

)2(
ρ2

0

2Dr

)2ν

. (93)

We restrict to the right half-wedge, as the integrand is sym-
metric about φ = θ . The angular integral is

Iφ =
∫ θ

0
dφ1

sin(νφ1)

(sin φ1)ν
, (94)

which converges for � > π/2, equivalently δ > 0. (The ex-
ponent we are bounding is known at δ = 0, and follows from
the result of Sec. V B 2.)

Combining the upper and lower bounds, we prove that
pb(r) ∼ r−2ν , and the bulk correlations exponent for two lo-
cally correlated Majorana chains with parameter δ is

ηz = 2π/ arccos(−δ). (95)

E. Numerical SDRG study

The final results of this section, Eqs. (83) and (95), are
in qualitative agreement with the quantum simulations of
Sec. IV B for relatively short Majorana chains, and are con-
sistent with previously known results at the points δ = 0, 1,
where the locally correlated model describes the random un-
correlated XY and perfectly correlated XX IRFPs. For further
verification we implement the SDRG update Eq. (19) directly
for two Majorana chains with locally correlated terms, and
are able to access larger system sizes. This also allows us to
study the bulk C⊥(r) power laws, which are not analytically
tractable in the mapping to RWs used in the preceding sec-
tions.

The numerically extracted exponents are shown in Fig. 19.
The bare correlation coefficient δ may become slightly renor-
malized from the lattice scale definition in Eqs. (36) and (37)
compared to the meaning in the continuum 2d RW treatment

FIG. 19. Numerical SDRG data are shown for two locally cor-
related Majorana chains, with the end-to-end and bulk decimation
probability exponents—equivalent to ηe

z and ηz, respectively, in the
quantum model—compared to the analytic forms Eqs. (83) and (95)
(dashed lines). Also shown are critical exponents ηe

⊥ and η⊥ mea-
sured in the numerical SDRG, as well as red stars indicating known
values of bulk correlations exponents at δ = 0 and 1, and yellow
diamonds indicating known values of end-to-end correlations expo-
nents. The end-to-end correlations data were taken from 1 000 000
disorder realizations each for system sizes up to N = 128, and the
bulk correlations data were taken from 100 000 disorder realizations
at system size N = 256, utilizing the middle half of each of the two
Majorana chains.

in Sec. V D, but these simulations are in good agreement with
the analytic forms for ηe

z (δ) and ηz(δ) we obtained. While
we have precise analytical knowledge only of the critical
exponents ηe

z and ηz, we observe that η⊥ also varies continu-
ously. In contrast, ηe

⊥ = 1 for any value of δ, by the argument
presented in Sec. II D.

VI. FIXED POINTS FOR THE INTERACTING MODEL

In Sec. V, we performed a study of the behavior of critical
exponents under a varying degree of local correlations in
a random free-fermion model. Despite the lack of tractable
SDRG flow equations, we showed that the local correlation
controlled by δ is a marginal perturbation which tunes along a
line of IRFPs. In the present section, we advance the perspec-
tive that this line of noninteracting fixed points in fact also
controls the long-distance behavior of the interacting model
for small Jz strength below the transition to the z-AFM phase.

To do so requires a study of the SDRG at intermediate
stages, taking into account more general terms produced by
the interactions. Equation (29) describes the result of an initial
decimation, but eventually descendant terms will be frequent
and must also be taken into account. We change our conven-
tions here from those of Sec. II C 2 for convenience: namely,
we denote the Majorana chains by I, II rather than X ,Y; and
by a gauge transformation (described at the end of Sec. II C 1),
we set the signs of hI

n, hII
n > 0 for all n = 1, . . . , N − 1, and

Kn ≡ Kn,n < 0.
In order to capture the effect of iterated decimations,

we observe that in Eq. (29) descendants of the form
Kn,m(iγ I

nγ
I
n+1)(iγ II

m γ II
m+1) are produced, which generalize the
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Kn of Eq. (22). We enlarge the space of couplings to include all
such terms, with initial distribution Kn,m = 0, n �= m. If the av-
erage K ≡ |〈Kn,m〉| can be considered to be a small parameter
(for weak interactions K < |〈hn〉|), the higher-fermion term in
Eq. (29) appears at order O(K2) and can thus be neglected. We
will demonstrate that the space of couplings including all Kn,m

is closed under RG flow up to O(K ), and that the structure
of the signs is preserved. Furthermore, we will show that the
strength of the K terms decreases in some sense relative to the
h terms, suggesting that interactions are irrelevant, at least in
the neighborhood of the free-fermion fixed point.

Following the approach of Sec. II C, denote the largest term
as H0 = ihI

kγ
I
k γ

I
k+1 and associate with the eigenstates of this

term a complex fermion f †
0 = 1

2 (γ I
k + iγ I

k+1) with projectors

π+ = f0 f †
0 and π− = f †

0 f0 into the even- and odd-parity sec-
tors, or the high- and low-energy eigenstates, respectively, of
H0. The off-diagonal terms in the Schrieffer-Wolff treatment
share exactly one Majorana operator with H0:

Vod = ihI
k−1γ

I
k−1γ

I
k + ihI

k+1γ
I
k+1γ

I
k+2 (96)

+
N−1∑
m=1

(
Kk−1,m

(
iγ I

k−1γ
I
k

)(
iγ II

m γ II
m+1

)
+ Kk+1,m

(
iγ I

k+1γ
I
k+2

)(
iγ II

m γ II
m+1

))
. (97)

Separating Vod into symmetry sectors, we find that

π+Hπ− =
[(

hI
k−1 +

∑
m

Kk−1,m
(
iγ II

m γ II
m+1

))
iγ I

k−1 +
(

hI
k+1 +

∑
m

Kk+1,m
(
iγ II

m γ II
m+1

))
γ I

k+2

]
f0 (98)

≡ (
ihI,int

k−1γ
I
k−1 + hI,int

k+1γ
I
k+2

)
f0, (99)

π−Hπ+ =
[(

hI
k−1 +

∑
m

Kk−1,m
(
iγ II

m γ II
m+1

))
iγ I

k−1 −
(

hI
k+1 +

∑
m

Kk+1,m
(
iγ II

m γ II
m+1

))
γ I

k+2

]
f †
0 (100)

≡ (
ihI,int

k−1γ
I
k−1 − hI,int

k+1γ
I
k+2

)
f †
0 . (101)

We make use of the “interacting couplings” notation used
also in Sec. II C 2 to connect with the noninteracting case, but
here it is not evident that these couplings—which are really

operators—all commute. Nevertheless, a suitably generalized
version of Eq. (19) implements the Schrieffer-Wolff transfor-
mation:

H ′ = H0 + Vd +
(
hI,int

k−1

)2 + (
hI,int

k+1

)2

2hI
k

(
iγ I

k γ
I
k+1

) + hI,int
k−1hI,int

k+1 + hI,int
k+1hI,int

k−1

2hI
k

(
iγ I

k−1γ
I
k+2

)
(102)

= H0 + Vd + (
iγ I

k γ
I
k+1

)[(
hI

k−1

)2 + (
hI

k+1

)2

2hI
k

+ hI
k−1

hI
k

∑
m

Kk−1,m
(
iγ II

m γ II
m+1

) + hI
k+1

hI
k

∑
m

Kk+1,m
(
iγ II

m γ II
m+1

)]

+ (
iγ I

k−1γ
I
k+2

)[hI
k−1hI

k+1

hI
k

+ hI
k−1

hI
k

∑
m

Kk+1,m
(
iγ II

m γ II
m+1

) + hI
k+1

hI
k

∑
m

Kk−1,m
(
iγ II

m γ II
m+1

)] + O(K2). (103)

The effective terms in the first line of Eq. (103) (and the
first term of the second line) are h-type, with positive coeffi-
cients in the low-energy sector of H0 where 〈iγ I

k γ
I
k+1〉 = −1.

Conversely, the remaining terms in the second line are K-
type (recalling that γ I

k−1 and γ I
k+2 become adjacent after the

decimation of γ I
k and γ I

k+1), and have coefficients with nega-
tive signs. One sees that the signs of the initial distributions,
namely hI,II

n > 0 and Kn,m < 0, are maintained during the RG
flow, and it is evident from Eq. (103) that these types of terms
are closed under the SDRG up to O(K ).

As a measure of the evolution of the relative strength of
K terms to h terms under this RG step, we compare the
renormalized Keff

k−1,m to the geometric mean of the proximate

h terms hI,eff
k−1 and hII

m:

Keff
k−1,m√

hI,eff
k−1 hII

m

=
√

hI
k−1

hI
k

Kk+1,m√
hI

k+1hII
m

+
√

hI
k+1

hI
k

Kk−1,m√
hI

k−1hII
m

. (104)

We see that if such ratios are small to begin with, i.e.,

Kk+1,m/

√
hI

k+1hII
m, Kk−1,m/

√
hI

k−1hII
m � 1 before the decima-

tion, they will likely become even smaller under the RG flow
if the disorder in the Majorana hoppings is strong, so that
hI

k−1, hI
k+1 � hI

k . This suggests that if the h terms are domi-
nant initially, they will be even more so during the SDRG and
will asymptotically constitute the entirety of the decimations.

The diagonal terms which contain both decimated Majo-
ranas are ∑

m

Kk,m
(
iγ I

k γ
I
k+1

)(
iγ II

m γ II
m+1

)
. (105)

Upon decimation, setting 〈iγ I
k γ

I
k+1〉 = −1 in the ground state

gives O(K ) contributions to the Majorana hoppings in the
other chain, hII,eff

m = hII
m − Kk,m. Given the opposite signs of

the h and K couplings, this increases the overall strength of
the remaining Majorana hoppings. This is the local SDRG
analog of the “mean field” of Eqs. (34) and (35) where the Jz
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interactions renormalize the Jx and Jy couplings by strength-
ening and correlating them, as was already noted in Sec. II C 2
and discussed in Sec. IV. Here we note that including these
renormalizations of the h couplings only improves our argu-

ments for the persistence of the dominance of these couplings
over the K couplings.

The terms omitted from Eq. (103) at O(K2) are the follow-
ing:

1

2hI
k

(
iγ I

k γ
I
k+1

)[∑
m

(
K2

k−1,m + K2
k+1,m

) +
∑

m,l �=m,m±1

(Kk−1,mKk−1,l + Kk+1,mKk+1,l )
(
iγ II

m γ II
m+1

)(
iγ II

l γ II
l+1

)]

+ 1

hI
k

(
iγ I

k−1γ
I
k+2

)[∑
m

Kk−1,mKk+1,m +
∑

m,l �=m,m±1

Kk−1,mKk+1,l
(
iγ II

m γ II
m+1

)(
iγ II

l γ II
l+1

)]
. (106)

The first terms in each line are corrections to the ground-state
energy and the strength of the renormalized bond coupling
on chain I [which again preserves the sign structure and
strengthens this hopping compared to the leading contribution
in Eq. (103)]. Along with these, four-fermion terms within
chain II and six-fermion interchain terms appear at O(K2).
The former are expected to be ultimately irrelevant, based
on previous studies of a single Majorana chain realized in
the quantum Ising model [3]. However, these four-fermion
and six-fermion terms will produce yet more complicated
descendants in subsequent RG steps, and there will also be
“degradation” processes leading to fewer-fermion terms, in-
cluding renormalization of the two-fermion terms, similar to
the discussion after Eq. (105) [22]. In this case, we must
rely on the perturbative argument to justify dropping them,
viewing them as irrelevant other than feeding into strictly
marginal correlations among the effective Majorana hoppings
in the two chains.

Together with the understanding of the locally correlated
XY model in the previous section, this leads us to propose
the following picture for the critical XYZ chain along the line
separating the x-AFM and y-AFM phases. For small J̃ z, this
critical line is actually controlled by the line of free Majorana
fixed points with locally correlated hoppings characterized
in Sec. V. The effect of the interactions Jz in the original
model with no correlations among the couplings (δ = 0) is to
develop such correlations among the renormalized Jx and Jy

couplings under RG while the Jz couplings flow to zero. The
ultimate degree of such correlations (i.e., the fully renormal-
ized parameter δeff) then determines the long-distance power
laws in the average spin correlation functions. We further
conjecture that this persists for all J̃ z < J̃ z

crit = 1 below the
transition to the z-AFM phase. While we do not have pertur-
bative control close to this transition, any alternative would
require yet another transition below J̃ z

crit, which we did not
observe and consider to be less natural. Note that in this
scenario the transition to the z-AFM phase is controlled by
a different non-free-fermion fixed point, and we do not have
access to this S3-symmetric fixed point in the present study.
We will further discuss the above conjecture, its corollaries
and possible tests, as well as open questions in the concluding
section.

VII. DISCUSSION

In this paper, motivated by the observations of Ref. [4],
we have performed a study of the low-energy properties of

the random XYZ model using unbiased numerics. We focus
on the line separating the x-AFM and y-AFM phases, which
exhibits statistical symmetry between Jx and Jy couplings.
At all points allowing comparison, our results are in general
agreement with the previous findings of Ref. [4] which used
SBRG and presumed critical MBL physics at arbitrary energy
density. Our results strongly suggest that—regardless of the
behavior of highly excited states—there is quantum critical
behavior in the ground state and the critical line is described
by IRFPs with continuously varying critical exponents in the
disorder-averaged correlation functions. Perhaps surprisingly,
a Hartree-Fock mean-field theory treating the Jz interaction
terms as perturbations around the random XY (free-fermion)
fixed point yielded results that are qualitatively rather consis-
tent with the full interacting model at small to moderate Jz

couplings, including continuously varying power laws. This is
in contrast to the clean case, where the mean-field model is not
qualitatively accurate due to divergences in the perturbation
theory [62].

The locally correlated XY effective model, introduced with
the idea of distilling the essential feature of the mean-field
theory, again exhibited continuously varying critical expo-
nents, which we were able to establish numerically in larger
sizes than for the XYZ chain. Because of the particular free-
fermion form of this effective model, we were able to treat
it in the SDRG using the random walk formulation in two
dimensions. By making use of a connection between sur-
vival probability and the structure of decimation in the RG,
we showed analytically that critical exponents for end-to-end
and bulk Cz spin correlations vary continuously as the cou-
pling correlation parameter δ is tuned, and we also observed
varying exponents in the bulk C⊥ correlations by running
the SDRG numerically. This result singles out and proves
one of the scenarios of Ref. [3] that random anisotropy is
strictly marginal along the critical line connecting the random
XX and random XY fixed points; that is, there is a line of
fixed points connecting the XX and XY IRFPs as sketched in
Fig. 1.

Motivated by the successful understanding of the locally
correlated XY model, we revisited the SDRG for the full
interacting XYZ chain in the regime of small interactions and
proposed a scenario where these interactions are irrelevant,
but during the initial flows they generate effective correlations
between the local Jx and Jy couplings (i.e., Majorana hopping
amplitudes on the two chains). Such flows are sketched in
Fig. 2. These local correlations in the free-fermion couplings
then lead to nonuniversal power laws in the average spin
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correlations: this is our story for the continuously varying
criticality in the XYZ spin chain.

We note that continuously varying critical exponents were
previously observed in IRFPs associated with correlated dis-
order by [63], however, in a qualitatively different setting than
ours. Specifically, disordered fixed points perturbed by the
introduction of long-range correlations ∼r−a to the disorder in
the random transverse-field Ising chain exhibit critical indices
varying continuously with a for a < 1. Their setting has only
one Majorana chain and the correlated disorder is within the
chain. Also, in their case the ψ exponent varies continuously,
which reflects a different character of the corresponding “ran-
dom walker” imprinted by the long-range correlations in the
disorder.

Nonuniversal exponents at IRFPs were also observed in
cases with very broad (singular) distributions of random cou-
plings [64,65]. This again occurs already in a single chain
and has varying exponent ψ , and the variation can be traced
directly to the singularity in the probability distribution of the
microscopic couplings, while the exponents are universal for
nonsingular probability distributions.

The XYZ chain studied here is different from the above
examples with varying exponents in that there are no long-
range correlations or singular distributions input into the
microscopic disorder. In this way, the continuously varying
exponents are intrinsic to this system rather than imprinted ex-
trinsically. What is important in the XYZ chain is that we have
two simultaneously critical Majorana chains whose couplings
become locally correlated. This insight may be useful when
looking for other IRFPs with intrinsic continuously varying
critical indices.

We conclude by returning to the discussion of the proposed
scenario for the fully interacting XYZ chain. This scenario is
based on the conjecture that the four-fermion and higher terms
are irrelevant other than feeding into correlations between
the Majorana hoppings. While this is plausibly justified for
small interactions in Sec. VI, we have not fully proved it
and the status for intermediate interactions is less certain.
In this respect, it would be useful to carry out a systematic
numerical SDRG study of the fully interacting problem (e.g.,
using the scheme of Ref. [22]) keeping track of all generated
interactions as well as allowing decimations of the interaction
terms when they happen to be the strongest. If our scenario
is correct, we should see the interaction terms progressively
decreasing relative to the Majorana hoppings. One should be
able to perform such a study also directly in the spin variables
using the SBRG approach of [4] projected onto the ground
state branch, e.g., as used in Ref. [66] in a different problem.
Employing the insights gained here, it should be helpful to

interpret various Pauli string terms generated under the SBRG
as either Majorana hoppings or specific multifermion interac-
tions. The SBRG can also be indispensable for studying the
putative S3-symmetric fixed point describing the transition to
the z-AFM phase, as a possible new IRFP that is not tractable
with available analytical tools.

Thinking about a broader phase diagram, our work sug-
gests that it could be fruitful to add another parameter “axis”
and study the XYZ chain with locally correlated Jx and Jy

couplings in the bare model (analogous to parameter δ in the
correlated XY model), in addition to the interactions Jz. Fig-
ure 2 shows this parameter space, and constitutes a mild abuse
inasmuch as it serves as both a phase diagram and a picture of
RG flows, the latter of which occur in space not captured by
just the two parameters. In the space shown, the bare δ = 0
corresponds to the present XYZ chain, with the transition
from the critical phase to the z-AFM phase at the S3 symmetric
point, marked XYZC in Fig. 2. On the other hand, δ = 1
corresponds to the XXZ chain studied in the original work
by Ref. [3]. For J̃ z below some threshold value, the XXZ spin
chain is critical and controlled by the free-fermion XX point,
while for larger J̃ z it undergoes a transition to the z-AFM
phase. Fisher concluded that this transition is controlled by
the so-called XXZC fixed point which is essentially random
singletlike, also marked in Fig. 2. An interesting question is
the nature of the transition to the z-AFM phase driven by the
J̃ z coupling as we vary the disorder correlation parameter from
δ = 1 (XXZC fixed point) to the statistically isotropic XYZC
fixed point. This line is marked with a question mark in Fig. 2,
and one possibility is that it is also described by a line of
fixed points, but we cannot at present exclude other scenarios.
We leave these questions for future investigations, noting that
the possibility of novel IRFPs is quite tantalizing and worth
further exploration.
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