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Scaling and renormalization in the modern theory of polarization: Application to disordered systems
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We develop a scaling theory and a renormalization technique in the context of the modern theory of polariza-
tion. The central idea is to use the characteristic function (also known as the polarization amplitude) in place of
the free energy in the scaling theory and in place of the Boltzmann probability in a position-space renormalization
scheme. We derive a scaling relation between critical exponents which we test in a variety of models in one and
two dimensions. We then apply the renormalization to disordered systems. In one dimension, the renormalized
disorder strength tends to infinity, indicating the entire absence of extended states. Zero (infinite) disorder is a
repulsive (attractive) fixed point. In two and three dimensions, at small system sizes, two additional fixed points
appear, both at finite disorder: Wa (Wr) is attractive (repulsive) such that Wa < Wr . In three dimensions, Wa tends
to zero and Wr remains finite, indicating a metal-insulator transition at finite disorder. In two dimensions, we are
limited by system size, but we find that both Wa and Wr decrease significantly as system size is increased.
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I. INTRODUCTION

Scaling theory of localization in disordered systems [1–4]
has a long history. A milestone work by Abrahams et al.
[1], often referred to as the “gang of four” paper (G4), put
forth this theory to explain the dimensional dependence of
criticality. The central results for systems of no symmetry are
that all states are localized in one dimension (1D) and even
in two dimensions (2D) there are no extended states, but here
a crossover occurs and only in three dimensions (3D) does a
true metal-insulator transition occur in the form of an unstable
fixed point.

Experimental evidence shows unambiguous support for the
G4 conclusions in 1D [5,6] and 3D [7–9]. The 2D results
were more difficult to establish [10] experimentally due to
the possibility of weak localization [11–13]. Theoretically, a
debate [14–16] about a possible metal-insulator transition in
2D, rather than the entire absence of extended states, arose.

An important development in the understanding of crys-
talline systems in general (with or without disorder) was the
development of the modern theory of polarization [17–19]
(MTP). This theory provides the tools [20,21] to measure
localization. Although some studies [22–24] have used these
tools to assess localization in disordered systems, how the G4
results concur with the MTP is still an open question.

In this paper, we seek to fill this gap by developing thermo-
dynamic scaling and renormalization methods [25–27] within
the MTP context. The idea is to use the MTP characteristic
function (also known as the polarization amplitude [28]) in
place of the partition function as a starting point for both
scaling (similar to Widom scaling of critical exponents) and
our position-space renormalization scheme.

In 1D, our flow lines tend to a high disorder attractive
fixed point, meaning that there are no extended states. In 2D
and 3D, for finite system sizes, we find an attractive (Wa)
and a repulsive (Wr) fixed point (Wa < Wr). The key question
becomes how these fixed points evolve with system size. In
3D, Wa tends to zero, while Wr tends to a finite number,
indicating a metal-insulator transition. In 2D, both the Wa and
Wr decrease, but due to finite size limitations, it is difficult to
draw a definite conclusion that is valid for the thermodynamic
limit. We discuss the possible scenarios.

Other renormalization approaches to Anderson local-
ized systems, apart from the G4 scaling theory, have also
been used [29–32]. Traditional real-space renormalization
schemes, based on blocking sites of the lattice (Migdal-
Kadanoff procedure), concur with G4. In the context of MTP,
renormalization has been applied by Voit and Nakamura [33],
but this technique relies on bosonization and is only applicable
in 1D.

There are many investigations [28,34–38] which focus on
the distribution function and the scaling of the polarization
amplitude in band theoretic and correlated quantum models.
MTP also serves as the starting point for deriving topological
invariants [39], for example, the time-reversal polarization;
the topological invariant in the Fu-Kane spin pump [40] is
the difference of the Zak phases of different members of a
Kramers pair.

In Sec. II, the scaling theory of localization and the MTP
are outlined and the motivation for this work is stated, also
placing our work in a contemporary context. In Sec. III, the
Hamiltonians of the models studied in this work are given.
In Sec. IV, we derive a relation between critical exponents
based on Widom’s thermodynamic scaling and test it for some
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model systems. In Sec. V, we develop our renormalization
approach and apply it to disordered systems in different di-
mensions. In Sec. VI, we conclude our work.

II. BACKGROUND AND MOTIVATION

The starting point of the G4 scaling theory [1] is the spec-
ification of the Thouless number [41] as the relevant quantity
to analyze. The Thouless number is a dimensionless conduc-
tance defined as

g(L) = G

e2/2h̄
, (1)

where

G = �E

dE/dN
, (2)

where �E is the difference between energy levels calculated
using periodic boundary conditions and antiperiodic boundary
conditions, and dE/dN is the average level spacing. The
argument in support of G as a conductance is that it is local-
ization that determines whether or not a state is insulating. A
delocalized state should be sensitive to changing the bound-
ary conditions, whereas a localized one should not. G4 then
argues that the g(L) depends only on the system size. The
scaling theory then analyzes the scaling function,

β(g) = d ln g

d ln L
. (3)

In this function, L appears explicitly, since in disordered sys-
tems the system size dependence is more pronounced than in
clean systems. Asymptotic analysis can be applied. When the
conductance is small (states are localized), it is expected that

g = exp(−L/ξ ), (4)

where ξ denotes a correlation length. When extended states
dominate, the conductance is expected to behave as

g = σ0Ld−2, (5)

where σ0 denotes the conductivity and d is the dimensionality
of the system. From this information, by plotting β(g) as a
function of ln g, the dimensional dependence of the critical
behavior can be surmised. In 1D, all states are localized since
the function β(g) is always negative, even as ln g goes to
infinity. In 2D, the curve is negative when ln g is negative, and
it approaches zero as ln g goes to infinity, meaning that even
in 2D, the states are extended; however, in this case, due to the
crossover between exponential and logarithmic behavior, G4
predicts that experiments may detect a sharp mobility edge.
In 3D, since the curve crosses β(g) = 0, corresponding to an
unstable fixed point, a metal-insulator transition is predicted.

Overall, in assessing a metal-insulator transition in (or-
dered or disordered) many-body quantum systems, the 1964
work of Kohn [42] was a starting point. On the one hand,
Kohn argued [42] that assessing whether a system is metallic
or insulating can be done by investigating the response of
the system to twisting the boundary conditions. On the other
hand, Kohn also pointed out that the localization of the center
of mass of the charge distribution is the ultimate measure
of whether a system is conducting or insulating. The two
approaches are equivalent.

The central difficulty addressed by MTP was the ill-defined
nature of the position operator in systems with periodic
boundary conditions. This difficulty hindered the application
of the hypothesis of Kohn [42] in calculations for crystalline
systems. The problem was overcome by casting the polariza-
tion in terms of a geometric phase [43] of the Zak [44] variety,
which arises upon integrating across the Brillouin zone. Other
relevant properties, such as the many-body generalization [20]
of the polarization and the variance thereof [21], were also
derived. The program of Kohn [42] was later realized through
the MTP [17–19,21].

In the formalism of Resta and Sorella, the variance of the
total position is cast [21] as

χ (2) = σ 2 = − L2

2π2
Re ln Z1, (6)

where

Zq = 〈�0| exp

(
i
2πq

L
X̂

)
|�0〉, (7)

and where |�0〉 denotes a quantum ground state, q is an
integer, and the total position operator is defined as

X̂ =
L∑

j=1

n̂ j j, (8)

where n̂ j is the density operator at site j. If σ tends to infinity
with system size, the system is metallic.

In this work, we perform calculations for disordered
systems in different dimensions based on MTP. Since the
Thouless number is a measure of localization, we replace it
with the quantity from the MTP which can be taken as its
analog,

g(L) → 1 − |Z1|. (9)

This is not an exact correspondence by any means. We justify
it by first stating that the variance can be cast according to
an approximation [38] different from the one of Resta and
Sorella,

σ 2 = L2

2π2
(1 − |Z1|). (10)

This approximation has the advantage that in the limit of the
Fermi sea (Z1 = 0), σ scales with system size linearly, which
is expected on robust physical grounds. Furthermore, in the
inset of Fig. 2(a), we show the quantity 1 − |Z1| as a function
of the Thouless number (defined as the sum over the abso-
lute value of the difference in energy between periodic and
antiperiodic boundary conditions, divided by the total energy
difference), for a 1D system of L = 160 and averaged over
100 disorder realizations (replicas) [Hamiltonian in Eq. (11)].
The function is monotonic, which also justifies our replac-
ing of the Thouless number with |Z1| in our renormalization
scheme (Sec. V).

To perform the asymptotic analysis, the G4 scaling theory
uses two pieces of information. In the small conductivity
(large disorder) limit, it is assumed that the conductivity
localizes exponentially [Eq. (4)]. In the opposite limit, the
conductance is related to the conductivity via the relation
given by Eq. (5). In the latter, there appears to be no direct

214207-2



SCALING AND RENORMALIZATION IN THE MODERN … PHYSICAL REVIEW B 104, 214207 (2021)

prescription to calculate the conductance based on a micro-
scopic Hamiltonian. To phrase the question differently: given
a disordered Hamiltonian for which we can calculate the
eigenstates, how do we calculate the conductance? Which
states do we consider? Should we consider a distribution of
states? In our calculations below, we will average the relevant
quantities over all states. This amounts to a high-temperature
approximation since all states have the same contribution. The
position operator that we use [45–47] is a single-body one.

III. MODELS

Most of this paper is devoted to disordered systems. The
one-dimensional version of the disordered Hamiltonian that
we study can be written as

Ĥ =
L∑

i=1

[−t (ĉ†
i ĉi+1 + H.c.) + W ξin̂i], (11)

where t denotes the hopping parameter (which will be taken as
the unit of energy), W indicates the disorder strength, and ξi

is a normal distributed random number. On the other hand,
in the next section we also test the result of our Widom
scaling theory for the Su-Schrieffer-Heeger [48] (SSH) and
Rice-Mele [49] (RM) models. The latter can be written as

Ĥ =
L∑

i=1

[−(t + (−1)iδt )(c†
i ci+1 + H.c.) + �(−1)in̂i], (12)

where δt denotes the alternation in hopping and � denotes the
strength of an alternating on-site potential. The SSH Hamilto-
nian is obtained by setting � = 0 in Eq. (12).

IV. WIDOM SCALING IN THE MODERN THEORY
OF POLARIZATION

We consider an N-electron system that is one dimensional
for convenience and periodic in L. The discrete analog of
the characteristic function is given in Eqs. (7) and (8). The
expression for the average position in a many-body crystalline
system given by Resta is

〈X 〉 = L

2π
Im ln Z1, (13)

which reduces to the Zak phase if �0 is a Slater determinant.
The average position [20] [Eq. (13)] and the variance [21]
[Eq. (6)] are finite difference derivatives of ln Zq at q = 0, i.e.,
first and second derivatives, respectively.

For our purposes in this section, it is more suitable to take
the thermodynamic limit in Eq. (7) and write

Z (K ) = 〈�0| exp(iKX̂ )|�0〉, (14)

and express the variance as

χ (2) = − ∂2 ln Z (K )

∂K2

∣∣∣∣
K=0

. (15)

The quantity χ (2) can be interpreted as a semiclassical approx-
imation to the dielectric susceptibility. It is to be expected that
if a phase transition point is approached from the insulating
side, χ (2) diverges.

FIG. 1. Log-log plot of χ (2)(0, K ) as a function of K for different
order, finite difference approximations to the second derivative [see
Eq. (16)] for two system sizes. n refers to the order of the approxi-
mation, O(K−2n). The upper panel shows results for L = 100 000 and
the lower panel for L = 1000. The solid line indicates a curve of the
form f (K ) ∝ K−2. The legend is for the upper and lower panels, not
for the inset of the lower panel. The inset of the lower panel shows
the estimated ratio of the exponents γ and β as a function of system
size for a two-dimensional disordered system.

To keep the discussion general, we introduce a variable D
which characterizes the approach to the critical point (we as-
sume that D = 0 is a quantum phase transition or gap closure
point). We first define

χ (n)(D, K ) = 1

in

∂n ln Z (D, K )

∂Kn
, (16)

and also define three critical exponents characterizing the
approach to the phase transition:

χ (2)(D, 0) ∝ 1

Dβ
,

χ (4)(D, 0) ∝ 1

Dγ
,

χ (2)(0, K ) ∝ 1

Kδ
. (17)

We also define the singular quantity

�(D, K ) = − ln Z (D, K ), (18)

which serves as the analog of the free energy. Applying the
scaling relation �(λaD, λbK ) = λ�(D, K ), we obtain the fol-
lowing relation between the scaling exponents:

γ δ = β(δ + 2). (19)

We tested this relation on a number of different models. For
the exponent δ (D = 0 limit corresponds to the Fermi sea), our
calculations are shown in Fig. 1. The different panels show
different system sizes; the different curves within each panel
are finite difference approximations to the second derivative
[Eq. (17)]. From these calculations, we can conclude that δ =
2, which also means that γ = 2β. We then calculated the other
exponents of the SSH and Rice-Mele [Eq. (12)] models, in 1D
and 2D, and found that β = 2 and γ = 4.
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In addition, we also calculated the exponents for a 1D
disordered system with the Hamiltonian given by Eq. (11).
When calculating the cumulants [Eq. (17)], a difficulty that
was faced was that a smooth curve only results for large
systems. In particular, at small W , large system sizes are
needed for converged results. We calculated the critical expo-
nents for an L = 1280 system, averaged over 100 realizations
of the disorder, and found β = 3.61(5) and γ = 7.16(27),
consistent with Eq. (19). We also made calculations for three
different realizations of the disorder (three different calcu-
lations, where no disorder average is taken and only W is
swept) for a system of size L = 2560. The results for the
exponents turned out to be β = 3.53(4), 3.45(4), 3.52(5) and
γ = 7.12(9), 6.90(12), 7.07(11), respectively, again consis-
tent with Eq. (19) within error bars.

We also performed a calculation for a 2D disordered sys-
tem. In this calculation, we encountered system size related
difficulties; however, we provide an estimate of the ratios of
critical exponents (inset of the lower panel of Fig. 1). As
shown below, at the accessible system sizes, there is a tran-
sition in two-dimensional disordered systems (see Fig. 2), but
the position of this transition decreases as the system size is
increased (see Fig. 4, upper panel). The relevant range of χ (2)

and χ (4) as a function of W is above the transition (which itself
changes with system size), but before the disorder becomes
too large because then the errors are larger than the values of
χ (2) and χ (4). We estimated the critical exponents γ and β

by looking for the maxima of the derivatives of the functions
log χ (2) and log χ (4) as a function of the logarithm of disorder
strength. This estimate is shown in the inset of the lower panel
of Fig. 1. The estimated ratio is increasing for the range of
system sizes studied, and it is γ /β ≈ 1.8 for the largest size,
L = 120.

V. REAL-SPACE RENORMALIZATION IN THE MODERN
THEORY OF POLARIZATION

In real-space renormalization [25–27], one starts with the
blocking of sites of the lattice. To each block, a single block
variable is assigned. The blocked system is assumed to have
the same Hamiltonian as the original Hamiltonian (although
this can mean an extended set of couplings). The parameters
of the blocked Hamiltonian are tuned to produce the same
Boltzmann probability as the original Hamiltonian, provided
that the configurations of the starting Hamiltonian consistent
with a given configuration of the block variables are summed
over (traced out).

A common way to define a blocked system is by the
procedure of “decimation,” in which some of the variables
of the original system are traced out. In most cases, the set
of equations obtained this way is overdetermined, so either
new parameters have to be introduced (for example, by ex-
tending the couplings included in the Hamiltonian) or further
approximations have to be introduced, for example equating
cumulants [50], between the original and the renormalized
system, rather than the full Boltzmann distribution.

We now apply this set of steps to the quantity

P̃j (x1, . . . , xL ) = |�0(x1, . . . , xL )|2 exp

(
i
2π

L
X̂

)
. (20)

FIG. 2. Renormalization flow lines for disordered systems of
different dimensions. (a) One-dimensional L = 160, 100 replicas
averaged. The inset shows the quantity 1 − Z1 vs the Thouless
number. (b) Two-dimensional, L = 24, 100 replicas averaged. The
repulsive (Wr) and attractive (Wa) fixed points are also indicated. The
inset shows the size scaling exponent calculated using system sizes
of L = 12, 14, 16, 18 (small) and L = 72, 80, 96 (large). (c) Three-
dimensional, L = 8, 100 replicas averaged. The repulsive (Wr) and
attractive (Wa) fixed points are also indicated. The inset shows the
size scaling exponent calculated using system sizes of L = 6, 8, 10
(small) and L = 20, 22, 24 (large).

Here, the index j indicates the step in the renormalization. As
a first step, we integrate out all the odd sites, resulting in

P̃j+1(x2, . . . , xL ) =
∫∫

dx1 . . . dxL−1P̃j (x1, . . . , xL ). (21)

We now require that the P̃j (x2, . . . , xL ) of the remaining vari-
ables equals P̃j+1(x2, . . . , xL ). It is easy to see, based on the
definition of X̂ [Eq. (8)], that P̃j (x2, . . . , xL ) corresponds to
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FIG. 3. Size scaling exponent of the variance of the polarization
for a (a) one-dimensional, (b) two-dimensional, and (c) three-
dimensional system.

the distribution of a system with half the size of the original
one, L/2. As in other real-space renormalization techniques,
the requirement is too stringent, so to arrive at a practical
scheme, we use the relaxed requirement,

Z1(Wj+1, L/2) = Z1(Wj, L). (22)

In other words, in each renormalization step, with a given dis-
order strength and system size, we find the disorder strength
at half the system size which generates the same value of
Z1(Wj, L). It is not the entire probability distribution that is
kept fixed in the course of a renormalization step, but only one
Fourier mode of the distribution of the many-body position. In
this sense, this renormalization is tailored to MTP.

In Fig. 2, the flow lines of the renormalization scheme are
shown for systems of different dimensions. Figure 3 shows the
size scaling exponent (γ ) of the variance of the polarization.
We define γ as

χ (2) = aLγ . (23)

In previous studies [38], it was shown that metal-insulator
transitions can be accurately determined by investigating γ .
In clean systems, a gapless system will exhibit γ = 2, while
in gapped insulators, γ → 1.

Figure 2(a) shows results for a 1D disordered system of
size L = 160, and 100 realizations of the disorder averaged.
All flow lines which start at a finite value tend towards infinity,
indicating that all states are localized. We found no significant
size dependence or dependence on the number of replicas.
Also, Fig. 3(a) is consistent with the renormalization flows.
The clean conducting system (W = 0) exhibits γ = 2, and
finite disorder strength leads to a rapid decrease in γ . These
results concur with the G4 [1].

Figure 2(b) shows the flow lines in a 2D sample calcula-
tion. The linear dimension of the system is L = 24, and the
calculation was done on a square lattice. The number of disor-
der configurations averaged was 100. The flow lines here show
qualitatively different behavior from the 1D case. We find
two fixed points on the W axis, with one repulsive, Wr ≈ 1,

TABLE I. The repulsive (Wr) and attractive (Wa) fixed points for
three sample calculations as a function of system size for a two-
dimensional disordered system. The number of replicas is indicated
in parentheses.

Size (No. replicas) Wr (1) Wr (2) Wr (3) Wa(1) Wa(2) Wa(3)

24 × 24(100) 1.00 0.86 0.95 0.38 0.40 0.43
32 × 32(50) 0.78 0.85 0.84 0.30 0.29 0.29
48 × 48(25) 0.69 0.75 0.69 0.19 0.17 0.16
64 × 64(15) 0.65 0.66 0.65 0.15 0.14 0.14
80 × 80(10) 0.60 0.62 0.62 0.11 0.10 0.12
96 × 96(5) 0.57 0.55 0.55 0.06 0.09 0.09
112 × 112(4) 0.51 0.53 0.56 0.08 0.07 0.06
128 × 128(3) 0.48 0.55 0.57 0.06 0.07 0.06

above which the flow lines tend to infinity, corresponding to
a fully localized state. Below Wr , the flow lines which start
at finite disorder strength tend to a finite disorder strength of
Wa. Wr (Wa) is a repulsive (attractive) fixed point. We have
done a number of calculations and this qualitative behavior is
maintained; however, we found variation in the values of Wr

and Wa. Figure 3(b) shows the size scaling exponent in 2D. In
these calculations, system sizes up to L = 18 (L is the linear
dimension) were used and 100 replicas were averaged. Note
that until W ≈ 1, the size scaling exponent is approximately
two; above that value it decreases. The flow lines in Fig. 2(b)
are consistent with the behavior of the scaling exponent.

Similar behavior is found in 3D [see Figs. 2(c) and 3(c)],
with a repulsive fixed point Wr and an attractive fixed point
Wa and Wr > Wa. The flow lines shown in Fig. 2(c) are for an
8 × 8 × 8 system with 100 replicas averaged.

In the G4 scaling theory, the system size itself appears
as a relevant variable [Eq. (3)]. For this reason, we further
investigate the system size dependence of the attractive and
repulsive fixed points. Our results are shown in Tables I and II,
and Fig. 4. To keep the CPU time manageable, we reduced the
number of disorder configurations averaged, proportionately
to system size. We made three calculations for each data point,
and the raw data are shown in Tables I and II. A plot is shown
in Fig. 4, with the raw results and their average.

In 3D, Wa tends to zero and Wr approaches a finite
value with large system size. The function fit in Fig. 4(b) is
f (L) = a exp(bL) + c, where a = 31.8259, b = −0.489526,
and c = 4.75641. A metal-insulator transition takes place at
finite Wr , in agreement with the G4 [1]. In 2D, due to finite size
limitations, a definite conclusion is difficult to reach. Several

TABLE II. The repulsive (Wr) and attractive (Wa) fixed points for
three sample calculations as a function of system size for a three-
dimensional disordered system. The number of replicas is indicated
in parentheses.

Size (No. replicas) Wr (1) Wr (2) Wr (3) Wa(1) Wa(2) Wa(3)

8 × 8 × 8(100) 5.49 5.46 5.23 0.42 0.40 0.49
12 × 12 × 12(25) 4.96 4.87 4.73 0.30 0.28 0.25
16 × 16 × 16(10) 4.60 4.96 4.68 0.08 <0.01 0.23
20 × 20 × 20(5) 5.05 4.70 4.58 <0.01 <0.01 0.05
24 × 24 × 24(3) 4.62 4.97 4.66 <0.01 <0.01 <0.01
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FIG. 4. The behavior of fixed points as a function of system size
in 2D and 3D. In 2D, both the repulsive and the attractive fixed
points are shown. The asterisks correspond to the raw data (three
calculations) also shown in Tables I and II. The red diamonds show
the average of the three calculations for each system size. The blue
dashed curve for 3D shows a fit function (see the text for a detailed
discussion).

scenarios are possible, depending on what happens to Wr and
Wa as L becomes large. Our results Fig. 4(a) show a sizable
decrease for both Wr and Wa, i.e., Wr ≈ 1 for the smallest
size and Wr ≈ 0.53 for the largest one. Also, while Wa does
decrease, we cannot say that it reaches zero (as happens in
3D). There are then several possible scenarios. If Wa and Wr

both go to zero, then extended states are absent, concurring
with the G4. If only Wa goes to zero, that would correspond
to a metal-insulator transition, which would appear to be
in accordance with transfer matrix and Lyapunov exponent
based calculations [14,16]. A third possibility is that Wa and
Wr both tend to finite values in the thermodynamic limit such
that Wr > Wa. This would mean that there is a transition,
but the small disorder states would be localized, rather than
extended, even though they would scale with system size
as L [substitute a finite size dependent Z1 in Eq. (10)]. We
note that localized states of a qualitatively different nature,
exhibiting power-law decay rather than exponential, have also
been suggested [51] in 2D.

We also calculated γ using different sets of systems, with
the results shown as insets in Figs. 2(b) and 2(c). In 2D,
we used systems with linear extension L = 12, 16, 18 (L =
72, 80, 96) for the data points designated “small” (“large”).
For the former, γ remains two up to W ≈ 1.0, while for the
latter, the decrease from two starts earlier at W ≈ 0.6. In 3D,
increasing the system size does not lead to a similar decrease.
[Here the linear extensions were L = 6, 8, 10 (L = 20, 22, 24)
for “small” (“large”).] Although these results are also limited
by system size limitations, the suggestion is that when the
system size is increased, the curve in Fig. 3(b) eventually
becomes like Fig. 3(a); in other words, no sign of extended
states remains and our results likely concur with G4.

VI. CONCLUSIONS

Wegner [52] is credited [2] with introducing concepts from
statistical mechanics into the study of disordered systems. In
this work, we applied statistical mechanical ideas using the
characteristic function of the modern theory of polarization
as a starting point. In particular, we derived a scaling relation
according to the steps followed by Widom to relate critical
exponents, and we applied a renormalization procedure to
the problem of disorder. In 1D and 3D, our method is in
full agreement with the common wisdom [1] on Anderson
localized systems; however, in 2D, we encountered system
size limitations.

We note that the case of two dimensions has always been
the most difficult one, both experimentally [10–13] and the-
oretically [14–16,51,53]. Although it is considered common
knowledge that there are no extended states in two dimen-
sions, the original work of Abrahams et al. [1] states that in
spite of the absence of extended states, due to the crossover
between exponential and logarithmic behavior, experiments
may still detect a mobility edge.
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