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We develop a scaling theory of interaction-induced delocalization of few-particle states in disordered quantum
systems. In the absence of interactions, all single-particle states are localized in d < 3, while in d � 3 there
is a critical disorder below which states are delocalized. We hypothesize that such a delocalization transition
occurs for n-particle bound states in d dimensions when d + n � 4. Exact calculations of disorder-averaged
n-particle Green’s functions support our hypothesis. In particular, we show that three-particle states in d = 1
with nearest-neighbor repulsion will delocalize with Wc ≈ 1.4t and with localization length critical exponent
ν = 1.5 ± 0.3. The delocalization transition can be understood by means of a mapping onto a noninteracting
problem with symplectic symmetry. We discuss the importance of this result for many-body delocalization, and
how few-body delocalization can be probed in cold atom experiments.
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I. INTRODUCTION

The interplay between disorder and interactions in quan-
tum systems is a long-standing open question in condensed
matter physics. In the absence of interactions, single-particle
wave functions are localized in d = 1, 2 dimensions, while
in d = 3 dimensions there is a transition from localized to
delocalized states [1–5]. What happens in the presence of
interactions is less clear. Though the existence of a many-body
localized phase is established in d = 1 for strong disorder
[6–9], there is continuing debate on what happens at the tran-
sition from ergodic to many-body localization (MBL), about
the properties of the ergodic phase, and whether MBL can
exist in higher dimensions d > 1 [10–12].

Here, we investigate the problem of interactions and disor-
der using the following perspective. Given that single-particle
states are all localized in d � 2 dimensions, how can many-
particle states become delocalized?

It is, after all, highly unusual that a many-body state has
fundamentally different elementary excitations with or with-
out interactions. For example, within the widely applicable
Fermi liquid theory [13] the single-particle excitations of the
many-body state carry the same quantum numbers as the
noninteracting states. In the case of many-body delocalization
(MBdL), however, the elementary excitations of the many-
body state are delocalized and thus have nothing in common
with the single-particle fully localized states. Note that such a
complete interaction-induced overhaul of the nature of excita-
tions is also seen in the fractional quantum Hall effect, Mott
insulators, or Luttinger liquids [14–16].

Often, however, the interaction-dominated many-body
state can be understood in terms of bound states of a few par-
ticles. The most famous example is the Cooper pair instability
of the Fermi liquid [17]. Similarly, the flux attachment argu-
ment for the ν = 1/3 fractional quantum Hall effect shows
how nontrivial many-body states can be reduced to having

nontrivial few-body states. Therefore, we will look at the
properties of n-particle states in interacting disorder quantum
systems in d dimensions.

The properties of two-particle states in d = 1 dimensions
have been studied extensively [18–25], showing that the lo-
calization length of two-particle bound states is enhanced (for
weak disorder) compared to the single-particle localization
length. Surprisingly, however, is that in d = 2 dimensions an
exact calculation of the two-particle Green’s function showed
a delocalization transition [26–28]. Recent results claim the
opposite [29,30], but without showing scaling as a function
of disorder strength. Three-particle states have been discussed
using perturbation theory [23,31] and an increased localiza-
tion length was observed for relatively large disorder [24].
Note that also generic localization and chaos properties of
few-particle states have been discussed with [32–34] and
without disorder [35,36].

In fact, one can map interacting n-particle states onto the
problem of noninteracting particles with an internal struc-
ture. For d = 2, this relates the n = 2-particle problem to
the noninteracting case with symplectic symmetry, which
can delocalize in d = 2 (see Sec. VI). Similarly, the internal
structure of n = 3-particle states in d = 1 might be related
to single-particle problems that can delocalize in d = 1 [5].
Consequently, we propose the following hypothesis:

There exists a delocalization transition for n-particle bound
states in d dimensions when n + d � 4.

A key insight that allows us to investigate this hypothesis is
the existence of single-parameter scaling [2,3,26,37,38]. This
scaling implies that the n-particle localization length λn(W, L)
(for disorder strength W and system size L) can be expressed
as

λn(W, L) = L f ±
n [λ∞

n (W )/L] (1)
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where λ∞
n (W ) is the disorder-dependent localization length

when the n-particle states are localized, or a scale of resistivity
when the n-particle states are delocalized. The function f ±

n
only depends on the number of particles n, the dimension, and
whether it corresponds to a localized or delocalized branch.

In the remainder of this paper, we will first introduce the
relevant model (Sec. II), define n-particle Green’s functions
(Sec. III) and display numerical results (Sec. IV). In Sec. V we
will calculate the beta function of a renormalized n-particle
transmission coefficient based on the scaling hypothesis. To
understand the numerical results, we will discuss a map from
interacting particle systems onto noninteracting particle sys-
tems with symplectic symmetry in Sec. VI. We conclude
with a discussion of how our central hypothesis affects the
properties of many-body localization in Sec. VII.

II. MODEL

The “standard model” of many-body localization is that of
a chain of hopping spinless fermions with nearest-neighbor
repulsion [9].

H = −t
∑
〈i j〉

c†
i c j + V

∑
〈i j〉

nin j +
∑

i

μini, (2)

where μi, the on-site chemical potential, is a random variable
from a uniform distribution μi ∈ [−W,W ]. We will con-
sider chains with length L and open boundary conditions.
This model is equivalent, when V = 2t , to the random field
Heisenberg chain [39,40], which has been shown to exhibit
a MBL-to-ergodic transition at a critical value Wc ≈ 3.6t
[41]. In the absence of interactions, all single-particle eigen-
states are localized, with a localization length of λ1(W ) =
105/4(t/W )2 in the limit of small W [1,2,4].

In the remainder of the paper we set t = 1 and V = 2.

III. n-PARTICLE GREEN’S FUNCTIONS

Whether or not an n-particle state is delocalized can be
inferred from calculating the Green’s function. For a single
particle, the Green’s function expresses the expectation value
of creating a particle at position y and retrieving it at position
x. The Green’s function over the full length of a chain with
open boundary conditions thus corresponds to the likelihood
of transmitting a particle through its entire length.

The single-particle Green’s function is defined as

G1(x; y; E ) = 〈0|cx(E − H )−1c†
y |0〉, (3)

which can be calculated using the single-particle eigenstates
φin (such that H0

i jφ jn = εnφin where H0 is the real-space
single-particle Hamiltonian matrix),

G1(x; y; E ) =
∑

n

φxnφyn

E − εn
. (4)

From now on, we always look at the middle of the spectrum,
E = 0. An exact calculation of the single-particle spectrum,
and thus the single-particle Green’s function, takes a compu-
tational time proportional to O(L3).

For disordered systems defined by disorder strength W , we
can disorder average the Green’s function. In particular, for a

system with length L the single-particle localization is defined
as [3]

λ−1
1 (W, L) = − 2

L − 1
〈ln|G1(1; L)|2〉dis. (5)

This quantity can be related to the disorder-averaged single-
particle transmission coefficient

T1(W, L) = exp

( −2L

λ1(W, L)

)
. (6)

For a localized system, the limit limL→∞ λ1(W, L) yields the
single-particle localization length.

Similarly, one can define the two-particle Green’s function

G2(x1, x2; y1, y2; E ) = 〈0|cx2 cx1 (E − H )−1c†
y1

c†
y2
|0〉. (7)

In the absence of interactions, this two-particle Green’s func-
tion can be evaluated using the single-particle eigenstates,
making use of the fact that fermions are indistinguishable
particles that anticommute,

G(0)
2 =

∑
mn

φx2nφx1mφy1mφy2n − φx2mφx1nφy1mφy2n

E − εm − εn
. (8)

The interacting two-particle Green’s function needs to include
the effect of the interaction term Hint = V

∑
〈i j〉 nin j . An ex-

act calculation of the two-particle Green’s function scales as
O(L6), because the two-particle Hilbert space equals O(L2).
Following von Oppen and co-workers [22,26], however, we
can drastically speed up this calculation by using Dyson’s
equation.

Writing the two-particle Green’s function as a matrix in
the L(L − 1)/2-dimensional two-particle Hilbert space, the
Dyson equation reads

G2 = G(0)
2 + G(0)

2 HintG2, (9)

where G(0)
2 is the noninteracting Green’s function from

Eq. (8). The trick is to realize that the interactions are diagonal
and only act on the (L − 1) states where the two particles are
nearest neighbors. We can thus restrict the Dyson equation (9)
to the subspace with neighboring particles,

G̃2 = G̃(0)
2 + G̃(0)

2 HintG̃2, (10)

where G̃(0)
2 is the noninteracting two-particle Green’s function

restricted to the states where the two particles are neighbor-
ing. Consequently, the interacting Green’s function G̃2 can be
calculated quite efficiently: O(L3) to get the single-particle
eigenstates, O(L4) to compute the noninteracting two-particle
Green’s function in the restricted subspace, and O(L3) to
solve the Dyson equation. The leading contribution to the
computing time thus comes from the calculation of the non-
interacting Green’s function, which still is much faster than a
full exact diagonalization.

This efficient algorithm thus provides us the exact interact-
ing two-particle Green’s function in the space where the two
particles are always neighbors. This is the physically inter-
esting region of phase space: most two-particle states are just
two occupied localized single-particle states with a negligible
role of interactions. Because we only have local interactions,
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only when two particles are close to one another a change in
effective localization length might occur. We therefore look
at the Green’s function with a particle pair going from sites
y1, y2 = 1, 2 to x1, x2 = L − 1, L, which amounts to a trans-
mission of the particle pair through the length of the chain.
This allows us to introduce, similar to Eq. (5), a two-particle
localization length

λ−1
2 (W, L) = − 2

L − 2
〈ln|G2(1, 2; L − 1, L)|2〉dis. (11)

A similar efficient algorithm exists for the n-particle in-
teracting Green’s function, restricted to the subspace where
the interactions are nonzero. The computational cost scales as
O(L3n−2) and is always dominated by the calculation of the n-
particle noninteracting Green’s function. This is always more
efficient than the O(L3n) needed for an exact diagonalization.

Given a general n-particle Green’s function, the n-particle
localization length is defined as

λ−1
n (W, L) = − 2

L − n
〈ln|Gn(1 . . . n; L − n + 1 . . . L)|2〉dis.

(12)
This length can be related to the transmission probability of
n-particle states through a chain of length L,

Tn(W, L) = exp

( −2L

λn(W, L)

)
. (13)

IV. NUMERICAL RESULTS

We calculated the disorder-averaged n-particle localization
length λn(W, L) for n = 1, 2, 3 in d = 1 dimensions, for a
range of system sizes from L = 20 to L = 64 (for n = 1
we go up to L = 1280). Following the one-parameter scaling
theory of localization [2,3,24] we assume that the localization

FIG. 1. The scaling of the localization length λn(W, L) for n = 1, 2, 3-particle states. We display results up for L = 20, 24, 28, 32, 48 for
all disorder strengths, and up to L = 64 for 1 � W � 2. For the single-particle states, we include data up to L = 1280. The number of disorder
realizations decreases from Nd = 2000 for L = 20 down to Nd = 200 for L = 64 (for n � 2), for n = 1 all data points have Nd = 2000. The
finite system size localization length λn(W, L) is computed according to Eq. (12), and these results are shown in the top row as a function
of system size L for various disorder strengths. The results for different system size and disorder strengths are then projected onto a single
curve following the scaling ansatz Eq. (14), as shown in the bottom row. We clearly observe localization for n = 1, 2-particle states, with
λ∞

1 (W ) ∼ W −2 and λ∞
2 (W ) ∼ ec/W . In contrast, the n = 3-particle states undergo a delocalization transition at Wc ≈ 1.4 with the localization

length diverging as λ∞
3 (W ) ∼ |W − Wc|ν with exponent ν = 1.5 ± 0.3.
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lengths for various sizes and disorder all collapse onto the
same scaling function,

λn(W, L)/L = f ±
n [λ∞

n (W )/L], (14)

where λ∞
n is a fitting parameter, that depends only on the

disorder strength W and the particle number n. The function
f ±
n (x) only depends on the particle number n, and it can have

a localized and delocalized branch.
The fitting parameter λ∞

n is found as follows. For the
strongest disorder, the system size is always bigger than
the localization length and we set λ∞

n = limL→∞ λn(W, L).
The results for the next, smaller, disorder strength W are then
fitted such that we minimize the variance of ln(λn(W, L)/L).
Step by step, numerical results for smaller disorder values are
included until a full smooth curve is obtained.

Our main numerical results are shown in Fig. 1. Consistent
with earlier numerics and analytical arguments [3,4,38], we
find that the single-particle localization length indeed falls
onto a curve that approaches f1(x) = x for large disorder.
When W is small, the localization length diverges as λ∞

1 =
105/4W 2. The scaling curve f1(x) starts to deviate from
f1(x) = x when the system size becomes of the order of the
localization length, again consistent with the identification of
λ∞

1 as the localization length of single particles.
We find that two-particles states remain localized through-

out, though the localization length is enhanced compared to
the single-particle localization. This is consistent with earlier
numerical and analytical work [18–24], though the power with
which λ∞

2 diverges is different from other works. In fact, our
results are consistent with a singular divergence of the form
λ∞

2 (W ) ∼ ec/W where c is some constant; see Fig. 2. The
same divergence has also been observed for the single-particle
localization length in d = 2 [3], strengthening the hypothesis
that the n = 2-particle bound states in d = 1 correspond to
n = 1-particle states in d = 2.

A key result is the appearance of a delocalization transition
for n = 3-particle states in d = 1, as is shown in Fig. 1, right
panel. For W > Wc ≈ 1.4t all states are localized. At low
disorder, the results follow a different scaling curve than the
localized curve, suggesting this upper branch represents delo-
calization. The localization length diverges, which is based on
fitting the scaling curve. Using the ansatz λ∞ ∼ (W − Wc)−ν

for the localized branch, we perform several fits for different
choices of Wc. For each fit we calculate the adjusted R-squared
value to benchmark the quality of the fit. For Wc ∈ [1.37, 1.43]
the adjusted R2 was larger than 0.9995, which provides us with
a range for the exponent ν = 1.5 ± 0.3. The relatively large
uncertainty in the exponent is therefore due to the uncertainty
in the precise critical disorder strength. Note that this is in the
same range as the critical exponent for the single-particle de-
localization in d = 3, namely νd=3,n=1 ≈ 1.6 [3,42–44] and as
n = 2-particle delocalization in d = 2, νd=2,n=2 = 1.2 ± 0.2
[27].

A final comment is in order with regard to the interpretation
of λ∞

n . In the localized regime, this quantity corresponds to
the localization length in an infinite system. When there is no
localization, however, Ref. [3] showed that the conductivity
of the delocalized system is given by σ (W ) = 1/λ∞

n=1(W ). As
a generalization of their results, when n 	= 1, we interpret the
inverse of λ∞

n as an n-particle conductivity. It follows that the

FIG. 2. The same as the inset of Fig. 1, middle panel, showing
the extracted n = 2-particle localization length in d = 1 dimensions,
now visualized as lnλ∞

2 versus 1/W . It clearly shows that for small
disorder the localization lengths approach λ ∼ ec/W . The fit with an
exponential diverging localization length is much better than with
algebraic divergence λ ∼ W −4.

n = 3-particle conductivity vanishes at the critical disorder
strength Wc.

V. SCALING THEORY

The original scaling arguments of the “gang of four” are
based on single-particle scaling [2,37], meaning that the
conductance g, that depends on the system size L, can be
described by a scaling function

β(g) ≡ dlng(L)

dlnL
. (15)

The dimensionless conductance that is considered by the
gang of four is related to the level spacing based on Thou-
less [45]. However, conductance for few-particle states is not
a well-defined concept. Therefore, we consider instead the
dimensionless transmission coefficient defined in Eq. (13).
Following the assumption of Eq. (14), we find

lnTn(W, L) = −2

fn[λ∞
n (W )/L]

. (16)

The corresponding β function for this transmission coefficient
can thus be extracted from the numerical data, in a method
similar to the one employed by Ref. [3],

β(T ) = dlnTn

dlnL
(17)

= −2
d{ 1/ fn[λ∞

n (W )/L]}
dlnL

(18)
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FIG. 3. The scaling beta function β(T ) as a function of the trans-
mission coefficient Tn for n = 1, 2, 3 particle states in d = 1. The
dots correspond to the data from Fig. 1 scaled using Eq. (20). This
scaling diagram is similar to the single-particle scaling diagram in
d = 1, 2, 3 dimensions [2,3].

= 2

fn[λ∞
n (W )/L]

dln fn[λ∞
n (W )/L]

dlnL
(19)

= lnTn
dln fn(x)

dlnx
, (20)

where in the last line we substituted x = λ∞
n (W )/L. As a

consistency check, we know that for a localized system with
L � λ∞, there are no finite size effects and thus f (x) = x,
which results in β(T ) = lnT which implies T = e−αL.

We can verify the scaling using our numerical results, by
explicitly calculating Eq. (20). The results are shown in Fig. 3.
The results are consistent with our hypothesis that n = 1, 2, 3-
particle states in d = 1 have the same scaling behavior as
single-particle states in d = 1, 2, 3 dimensions. In addition to
the earlier results that n = 2-particle states in d = 2 have scal-
ing similar to single-particle states in d = 3 dimensions [26],
this further supports our hypothesis that localization scaling is
determined by n + d where n is the number of particles and d
is the dimensionality.

VI. SYMPLECTIC SYMMETRY

The behavior of n-particle states in d dimensions can be
understood through a mapping onto single-particle problems
with symplectic symmetry, also known as systems with spin-
orbit coupling.

Using diagrammatic expansions and renormalization group
analysis, Hikami et al. [46] showed that the presence of
spin-orbit coupling changes the sign of the weak localization.
This is due to the existence of an antiunitary symmetry T
that squares to T 2 = −1, in other words, the existence of a

symplectic symmetry [46,47]. In the case of d = 2 dimen-
sions, spin-orbit coupling therefore allows for a delocalization
transition of single-particle states. This has been confirmed
both experimentally, as seen in the magnetoresistance [48,49],
as well as in extensive analytical [47] and numerical studies
[50–56].

While symplectic delocalization is widely studied in d =
2, also in d = 1 the symplectic symmetry class (AII, which
requires just a symmetry T with T 2 = −1) can give rise
to exactly one delocalized state provided there are an odd
number of channels [5,57–59]. In this section, we will aim to
interpret the interacting cases n = 2, d = 2 and n = 3, d = 1
in terms of noninteracting particles with an internal structure
with approximate symplectic symmetry.

In general, the presence of an internal degree of freedom
for noninteracting particles allows for generic random hop-
ping,

H ′ =
∑

〈i j〉,αβ

V 〈i j〉
αβ (b†

iαb jβ + H.c.), (21)

where b†
iα creates a particle at site i with internal state α. In the

case of d = 2-dimensional symplectic symmetry, the hopping
matrix V 〈i j〉

αβ can be parametrized using Pauli matrices σ a,

V 〈i j〉
αβ =

∑
x

V 〈i j〉
a σ a

αβ, (22)

where V 〈i j〉
a are local independent random variables. The

Pauli matrices σ a act on the internal structure of the
particles. This structure was studied numerically in d = 2 in
Refs. [50,52,53,55].

The hopping matrix of Eq. (22) has symplectic symmetry
in the form of the operator T = σ yK where K is charge
conjugation. Here T acts as an antiunitary symmetry of the
hopping terms. However, instead of σ y acting on a “real”
spin degree of freedom, it acts on the internal state of the b
particles. Nevertheless, the presence of a T 2 = −1 symmetry
places this effective model in the AII symmetry class.

Let us now see what the possible internal states are for
interacting few-body states in d = 2 and d = 1 dimensions.

A. Two dimensions

To study two-particle states in d = 2 dimensions, consider
the most general two-particle state |ψ〉 = ∑

i j φi jc
†
i c†

j |0〉, with
φi j an antisymmetric wave function. Rather than expressing
the wave function in terms of the two positions i, j, it is
more natural to change to a basis with the center-of-mass
R = i + j and the relative position r = i − j. The short-range
interaction only depends on the relative coordinate V (r).
Therefore, the wave function for fixed R is described by a
quantum-mechanical problem of a particle in the potential
V (r). Such a problem can be decomposed in states with
two-dimensional angular momentum 
 and a radial profile
characterized by quantum number n. The wave function of
the two-particle state is therefore φn
(R). This wave func-
tion is now viewed as a single-particle wave function for the
center-of-mass coordinate R with an internal structure charac-
terized by the quantum numbers n
. The presence of disorder
induces scattering between the internal states depending
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on the exchanged momentum, which is analogous to the
random hopping Hamiltonian of Eq. (21). This establishes on
a formal level the equivalence of the problem of symplectic
noninteracting particles with n = 2-particle states in d = 2.
Since noninteracting symplectic particles in the AII class can
delocalize, so can the n = 2-particle states. Note that within
the numerical accuracy, the critical exponent of both classes
is the same [26,50].

We can make this mapping explicit using strong-coupling
perturbation theory. Of course, we are not actually in the limit
of strong coupling. However, this method allows us to sys-
tematically construct an effective single-particle Hamiltonian.
The intermediate-coupling regime (in our numerical results
we have V = 2t) can be reached by higher-order expansions.
Nevertheless, the effective symmetry of the resulting Hamil-
tonian is already reflected at the second order in perturbation
theory.

When V  t in Eq. (2) in d = 2, there are two inequivalent
interacting states: having the particles neighbor each other
along an x or y bond of the square lattice. Let us call a state
|Rα〉 = c†

Rc†
R+α|0〉 where α = x, y. In second-order perturba-

tion theory, the effective hopping Hamiltonian for these states
has the following nonzero components:

〈R′α′|Heff |Rα〉 = t2

V
[δαα′ (δ|R−R′ |=α + 2δ|R−R′ |=α )

+ 2δαα′ (δRR′ + δR−R′=α′

+ δR′=R+α + δR′=R+α−α′ )]. (23)

We use the notation here that x = y and y = x. The above
expression is quite tedious, but it can be simplified by an
appropriate symmetrization of our basis set of states. To this
end, we introduce the following set of states:

|ψR±〉 = 1
2 {[|Rx〉 + |(R − x)x〉] ± [|Ry〉 + |(R − y)y〉]}.

(24)
These states have center-of-mass R and carry angular momen-
tum eigenvalue 
 = ±1. Note that this exhausts the possible
values of the angular momentum for the C4 rotational sym-
metry of the square lattice. The nearest-neighbor hopping of
these states is given by

〈ψR+δσ ′ |Heff |ψRσ 〉 = t2

2V
(3 + 4σσ ′), (25)

where δ = ±x, y is the nearest-neighbor vector and σ, σ ′ are
±1. Note that all hoppings are real and symmetric in σ, σ ′.
Consequently, the antiunitary operator T = σ yK is a symme-
try of this effective hopping model.

At this order, the on-site disorder affects the states |ψRσ 〉
independent of σ . At higher order in perturbation theory, the
mix of disorder and hopping can give rise to random hoppings.
Nevertheless, in this systematic expansion the symplectic
symmetry of Eq. (25) remains intact. There is a major caveat
to this line of reasoning: the perturbation theory might break
down before we reach the intermediate coupling regime. Here
is where the numerics come in: based on Refs. [26–28] we es-
timate that the delocalized regime also exists for intermediate
interaction strengths.

B. One dimension

In d = 1, two-particle states do not have internal structure
in general. This is clearly seen in our model with nearest-
neighbor repulsion. The only possible interacting two-particle
states are living on a neighboring bond, |ψ2(R)〉 = c†

Rc†
R+1|0〉.

While the two-particle states do feel (on average) a weakened
disorder-profile due to the extent of its wave function, this
only leads to an increased localization length and not to de-
localization [18–25].

However, n = 3 appears to be the smallest possible num-
ber of particles required to obtain an effective single-particle
system with a nontrivial internal structure. Consider the three
states t†

Rσ defined by

b†
R0 = c†

R−1c†
Rc†

R+1, (26)

b†
R± = 1√

2
c†

R(c†
R−1c†

R+2 ± c†
R−2c†

R+1). (27)

The original hopping Hamiltonian restricted to the space with
tRσ states reads

Heff =
∑

R

b†
Rα (−tSx

αβ + V (Sz )2
αβ )bRβ

+
∑

R

t†
Rα (−tλ4)αβtR+1,β + H.c., (28)

where Sα are spin-1 operators and λ4 = (
0 0 1
0 0 0
1 0 0

).

These are the first three states of a tower of three-particle
states that are either symmetric or antisymmetric with respect
to reflection symmetry around the middle site R. The regular
spin-1 time-reversal symmetry T = e−iπSy K squares to T 2 =
+1, so this does not provide us with a symplectic symmetry.
However, the hopping term is symmetric under the antiunitary

operation T ′ = λ5K with λ5 = (
0 0 −i
0 0 0
i 0 0

) that exchanges the

σ = ± states. This operation only acts on part of the Hilbert
space, but in there it acts as T ′2 = −1.

At the moment it is unclear to us whether this places the
effective noninteracting Hamiltonian in the symplectic class
AII. However, if it would, this would explain the delocaliza-
tion in terms of AII systems with an odd number of channels
[5,57–59].

VII. MANY-BODY DELOCALIZATION

Up to now we have shown how few-particle bound states,
in particular n = 3-particle states in d = 1 and n = 2-particle
states in d = 2, can delocalize in a model with interactions
and disorder. It is an open question to what extent these
delocalized bound states affect the many-body state where the
number of particles scales n with the system size Ld .

Early on, Imry [19] already speculated that a “serious
rearrangement” will occur when single-particle states are
localized but some few-particle states are delocalized. In par-
ticular, transport properties of finite size system with finite
particle density might pick up the fact that not single-particle
but only n = 2, 3-particle states can traverse the whole sys-
tem. It was argued that many-body delocalization occurs “as
soon as finite but mobile excitations exist”[10]. If indeed
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delocalization is driven by n-particle mobile excitations, this
can be observed in the form of h/ne Aharonov-Bohm oscilla-
tions [21]. Similarly, whether only n-particle states contribute
to the mesoscopic transport can be probed using noise spec-
troscopy [60].

It might be interesting to seek such effects in cold atoms
systems, which are known to be excellent simulators of many-
body localization [61,62]. The properties of few-particle
delocalized states can be either studied in systems with ex-
plicitly n particles, or in many-body systems at finite particle
density.

Our simulations indicate that the three-particle delocal-
ization transition occurs at W n=3

c ≈ 1.4, whereas the MBL
transition occurs at a higher critical disorder W MBL

c ≈ 3.6
[39–41]. This means for some part of the many-body ergodic
phase even three-particle states are localized. Because four-
particle states will be more delocalized than three-particle
states, we expect the critical disorder for delocalization to
be higher, W n=4

c > W n=3
c . This generalizes to W n

c > W n−1
c .

Naturally all n-particle states must be localized in a full MBL
state, which provides the limit W n

c < W MBL
c . There must be

therefore a sequence of n-particle delocalization transitions.
On the other hand, the critical disorder for MBL is defined
for a finite density, where the correct thermodynamic limit is
n, L → ∞ with n/L constant. It is therefore plausible but not
necessary that the limit of n-particle transition limn→∞ W n

c
equals the critical disorder for the MBL transition W MBL

c in
the thermodynamic limit.

For a given disorder strength in the ergodic regime, there
is thus a critical number n∗(W ) of particles that need to be in
close proximity in order to delocalization. Clusters of particles
with n > n∗ can diffuse, whereas isolated particle clusters
with n < n∗ will remain localized. In the dynamics of such
a system, the presence of only local interactions means the
delocalized particle states can collide with localized ones,
thereby either breaking up into smaller (and therefore local-
ized) clusters or combining into larger (possibly delocalized)
clusters. From a transport perspective, the dynamics can thus
be described by a combination of random walks, localization,
and transitions between the two. As a result, the larger the n∗
the more rare the n > n∗ clusters become, and the more rare
the periods of diffusion become. This might explain the subd-
iffusive ergodic regime, not in terms of rare regions (“Griffiths
effects”), but in terms of larger and larger clusters of particles
that are needed to delocalize [63]. Similarly, the fact that only
large clusters of particles contribute to ergodic behavior might
explain why there are no signatures of ergodicity in average
properties of integrals of motion [64]. It might be, however,
that many-body delocalization is completely unrelated to de-
localized few-body states. It is an interesting future direction
to detect either numerically or in experimentally cold-atom
gases the role of few-body states.

The existence of an “ergodic bubbles” has been argued
to prevent many-body localization, in particular in higher
dimensions d > 1[11,12,65]. However, such bubbles were
proposed due to local disorder fluctuations—akin to Griffiths
regions—instead of few-particle bound states studied here.
The same mechanism, however, could still lead to the absence
of full MBL in d = 2. In this scenario, the critical disor-
der for n-particle delocalization diverges with large n. As a

consequence, all many-body states in d = 2 are delocalized
but will exhibit subdiffusive behavior for a wide range of
disorder strengths. This might explain the experimentally ob-
served finite-time localization in d = 2 cold atom systems
[66].

Finally, we speculate about the shape of the ergodic many-
body states for low disorder. Just like a superconducting state
can be made out of Cooper pairs, an eigenstates in the many-
body ergodic regime could be constructed out of a finite
density of delocalized three-particle bound states. We leave
an analysis of interactions between such three-particle states,
and how to combine many of them in a variational many-body
wave function, for future research.

Note that many-body localization induced by mobile parti-
cles was also recently discussed in Ref. [67].

VIII. OUTLOOK

we introduced the hypothesis that n-particle states in
d-dimensional interacting disordered systems have a delo-
calization transition when n + d � 4. Our numerical results
for n = 1, 2, 3 and d = 1, together with earlier results in
d > 1, seem to confirm this hypothesis. The transmis-
sion of n-particle bound states can be captured within a
single-parameter scaling theory. We further analyze the delo-
calization in terms of a mapping to symplectic noninteracting
problems.

In our model, Eq. (2), we included spinless fermions and
short-range interactions. It is known, however, that local-
ization is affected by the presence of spin-orbit coupling
or long-range interactions (such as the realistic Coulomb
interaction) [68]. The study of the role of few-body delocal-
ization in models that include such effects is still an open
question.

The main difficulty with the scaling theory presented here
is the limited power of exact numerical solutions, which are at
its heart. New numerical results for larger system sizes might
provide new insights, exemplified by the recent controversy
over whether n = 2 particle states in d = 2 can delocalize
[29,30]. Note that these new results do not necessarily con-
tradict the possibility of a delocalization transition, because
it was shown that for large disorder there is no transition
as a function of interaction strength, whereas Refs. [26–28]
found delocalization at small disorder. A full exploration of
the phase diagram, as a function of both interaction strength,
range, disorder, and energy, would clarify the apparent contra-
diction.

Avoiding the difficulties associated with numerics, recent
developments in cold atoms experiments have been able
to successfully reproduce predictions related to many-body
localization [9]. We hope that the role of few-body delocal-
ization can be similarly confirmed experimentally.
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