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High-frequency leaky whispering-gallery modes in embedded elastic spheres
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The goal of this paper is to investigate the characteristics of high-frequency whispering-gallery modes in
embedded elastic spheres, that is, surrounded by an infinite elastic matrix. Due to several modeling difficulties,
the high-frequency regime of embedded spheres has remained unexplored in elasticity. Our approach consists
of formulating a specific finite-element method in spherical coordinates. The basic idea is to discretize only
the radial coordinate while describing analytically the angular distribution of elastodynamic fields. Then, we
also introduce a radial perfectly matched layer to cope with the unbounded nature of the external medium. Our
approach yields a linear matrix eigensystem, simple and costless to solve. In order to identify general trends, both
stiff and soft configurations are considered, corresponding to a sphere stiffer and softer than the external medium,
respectively. Including material loss, our results highlight the behavior of leaky elastic whispering-gallery modes
in the high-frequency regime. This work is motivated by the well-known behavior of whispering-gallery modes
in optical resonators, reaching high Q factors as the frequency increases. Identifying high-Q-factor whispering-
gallery modes in elastic spheres could find promising applications for sensing the mechanical properties of
external media.
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I. INTRODUCTION

In this paper, we address the computation of leaky res-
onances of embedded elastic spheres at high acoustical
frequencies. Our aim is to investigate the characteristics of
whispering-gallery modes (WGMs) with particular attention
to their attenuation (Q factor), which has not been considered
yet. This work is motivated by the well-known behavior of
WGMs in optical resonators [1], reaching high Q factors as
the frequency increases. High-Q-factor optical WGMs have
sustained the development of numerous optical sensors [2].
Identifying such modes in elastic spheres could therefore find
many interesting applications, e.g., for sensing the mechanical
properties of a media external to the sphere.

Resonances of elastic spheres have been largely studied
in vacuo, first by Lamb in 1881 as a classical problem in
mechanics [3]. This topic has then drawn the attention of
geophysicists, using the normal modes of the Earth to analyze
the internal structure of our planet [4,5]. More recently, elastic
resonances of nanoparticles have been studied because of their
significant role in Raman scattering [6,7], stimulated Brillouin
scattering [8], or surface plasmonic resonances [9].

However, the case of embedded elastic spheres, i.e., buried
in an external solid matrix, is more intricate than in a vacuum.
As a consequence, this case has been far less considered in
the literature, and the analyses are most often limited to quite
low acoustical frequencies [10–14]. Indeed, the modeling of
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an embedded elastic sphere can be described as an open res-
onator, which raises several difficulties.

First, the physics of open resonators strongly differ from
closed systems: their spectrum involves a continuum of radi-
ation modes, difficult to handle from a mathematical point of
view. This continuum can be approximated by a discrete set,
easier to manipulate, of so-called leaky modes (or quasinor-
mal modes) [15]. Since energy leaks out of the sphere due to
radiative loss, leaky resonances are damped in time: the eigen-
frequencies are hence no longer real but necessarily complex.
However, the behavior of leaky modes is somewhat unusual at
infinity: while exponentially decreasing in time, these modes
exponentially grow in the transverse direction [15,16] (that is,
in the radial direction for our spherical problem).

Second, radiative loss dramatically increases in a low-
frequency range, leading to a drastic drop of Q factors. This
motivates the consideration of high-frequency regimes, i.e.,
normalized frequency greater than 102 in practice. However,
high-frequency modes are difficult to solve by means of
analytical methods because of the instabilities of secular equa-
tions [14,17,18].

To circumvent this problem, our approach consists of for-
mulating a specific finite-element (FE) method in spherical
coordinates. Full three-dimensional or two-dimensional FE
models are prohibited due to their computational cost in the
high-frequency regime [19]. Therefore, the basic idea is to
consider a semianalytical approach, consisting of separating
the angular and the radial variables. The solution along the
angular variables is analytical, decomposed on the basis of
vector spherical harmonics. The solution along the radial vari-
able is discretized, approximated with one-dimensional FE
(see Fig. 1). This semianalytical FE principle was applied
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FIG. 1. Sphere of radius a embedded into an infinite medium
truncated with a PML of thickness h. The PML cancels the natural
growth of leaky modes in the radial direction r, discretized by one-
dimensional FE (indicated by nodes). The spherical coordinates are
the radius r, the polar angle θ (0 � θ < π ), and the azimuthal angle
φ (0 � φ < 2π ).

to compute the resonances of in vacuo spheres in [20,21],
but without taking full advantage of the analytical description
leading to tedious integral calculus. Recently, a compact for-
mulation has been proposed in [22]. The main difficulty to
achieve such a compact form in elasticity is to uncouple the
spherical harmonics, which requires orthogonality relations of
tensor type (the wave equation is vectorial) [23].

The goal of this paper is twofold: extend the formulation
of Ref. [22] to the embedded case and highlight the behavior
of leaky WGMs in the high-frequency regime. Nevertheless,
a major difficulty for numerical methods is raised with the
unbounded nature of the problem. This difficulty is particu-
larly severe due to the exponential growth of leaky modes. A
powerful technique to bound the problem consists in using
a perfectly matched layer (PML). A PML is based on the
complex scaling of the unbounded coordinate [24], which
cancels the growth of leaky modes and allows truncating
the unbounded embedding medium to a user-defined finite
thickness (see Fig. 1). Regardless of spherical problems, this
technique has been used to compute resonances in fluid and
optical open cavities (see Refs. [25–28], for instance).

In this paper, we propose to combine a semianalytical FE
formulation in spherical coordinates with a radial PML in
order to compute leaky modes in embedded elastic spheres
(Sec. II). Our approach yields a linear eigenproblem, which is
very simple and costless to solve, even in the high-frequency
regime (the FE discretization is one-dimensional). Compared
to analytical approaches, our formulation does not suffer from
instabilities and is quite versatile (complex inhomogeneous
spheres, e.g., made of several layers, can be readily consid-
ered).

Last but not least, the formulation remains applicable for
viscoelastic materials (complex elastic constants are allowed).
The intrinsic loss of materials is usually far greater in elas-

ticity than in optics. It is noteworthy that the effects of
viscoelastic loss tend to increase with frequency. Therefore,
in the high-frequency regime, including viscoelastic loss in
addition to leakage loss appears to be essential for a proper
understanding of the physics of leaky WGMs in elasticity.
Numerical results will be presented in Sec. III.

II. SEMIANALYTICAL FE METHOD IN COMPLEX
SPHERICAL COORDINATES

A. Elastodynamic weak form with radial PML

Let us consider an elastic sphere of radius a embedded
into an infinite elastic matrix. With time-harmonic
dependence e−iωt , the displacement field ũ(r, θ, φ) =
[ũr (r, θ, φ), ũθ (r, θ, φ), ũφ (r, θ, φ)]T (T denotes matrix
transpose) is the solution of the weak form of elastodynamics
[29]: ∫

Ṽ
δε̃Tσ̃dṼ − ω2

∫
Ṽ

ρ̃δũTũdṼ = 0, (1)

with dṼ = r̃2dr̃ sin θdθdφ in the spherical frame de-
picted in Fig. 1. Using Voigt notation, the stress and
strain vectors are σ̃ = [σ̃rr, σ̃θθ , σ̃φφ, σ̃θφ, σ̃rφ, σ̃rθ ]T and ε̃ =
[ε̃rr, ε̃θθ , ε̃φφ, 2ε̃θφ, 2ε̃rφ, 2ε̃rθ ]T. The stress-strain relationship
is σ̃ = C̃ε̃, where C̃ is the matrix of material properties. The
external medium is assumed as homogeneous and isotropic.
The sphere can be transversely isotropic and inhomogeneous
(e.g., constituted by several layers). For transversely isotropic
materials, the matrix depends on five independent coefficients
and can be written as

C̃ =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C23 + 2C44 C23 0 0 0
C12 C23 C23 + 2C44 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

⎤
⎥⎥⎥⎥⎥⎦.

(2)

The strain-displacement relationship is ε̃ = L̃ũ with

L̃ = Lr
∂

∂ r̃
+ Lθ

∂

r̃∂θ
+ Lφ

∂

r̃ sin θ∂φ
+ 1

r̃
L1 + cot θ

r̃
L2,

(3)
where

Lr=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎦, Lθ=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎦, Lφ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦,

L1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
1 0 0
0 0 0
0 0 −1
0 −1 0

⎤
⎥⎥⎥⎥⎥⎦, L2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 1 0
0 0 −1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (4)

Along the radius, we introduce a radial PML thanks to
an analytic continuation [24] of the weak form (1) into the
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complex transverse coordinate r̃:

r̃(r) =
∫ r

0
γ (ξ )dξ . (5)

The function γ (r) is a user-defined function, with Im γ (r) >

0 in the PML region, which enables the absorption of outgoing
waves in the embedding medium. The PML is truncated to a
thickness h to obtain a reflectionless bounded problem. In this
paper, we choose a parabolic attenuation profile:

γ (r) =
{

1, if r � a,

1 + 3(γ̂ − 1)
(

r−d
h

)2
, if r > a.

(6)

The PML interface is set at r = a; that is, stick to the physical
interface between the sphere and the embedding medium, to
avoid the computation of spurious eigenvalues [26]. For con-
venience, we define the parameter γ̂ = 1

h

∫ d+h
d γ (ξ )dξ , the

user-defined averaged value of γ (r) inside the PML. At the
end of the PML (r = a + h), a Dirichlet boundary condition
is applied.

Finally, the weak form (1) can be transformed to go back
to the real radial direction r thanks to the following change of
variable r̃ �→ r, for any function g̃(r):

g̃(r̃) = g(r), dr̃ = γ (r)dr,

∂ g̃

∂ r̃
= 1

γ (r)

∂g

∂r
. (7)

B. Semianalytical FE formulation

Since the problem has been bounded by a finite PML, we
can now apply the same procedure as in Ref. [22] to obtain a
semianalytical FE formulation. For brevity, we recall the main
steps of the procedure in the following (readers are invited to
see Ref. [22] for further details).

The basic idea is to treat analytically the angular behavior
of the solution and to use numerical discretization along the
radial coordinate. Based on Refs. [30,31], the displacement
field can be decomposed into vector spherical harmonics:

u(r, θ, φ) =
∑
l�0

∑
|m|�l

Sm
l (θ, φ)ûm

l (r). (8)

The matrix Sm
l (θ, φ) concatenates the vector spherical har-

monics which describe the angular distribution of the three
components of the displacement field. This matrix is explicitly
given by

Sm
l (θ, φ) =

⎡
⎢⎣

Ym
l (θ, φ) 0 0

0 ∂Ym
l (θ,φ)
∂θ

− ∂Ym
l (θ,φ)

sin θ∂φ

0 ∂Ym
l (θ,φ)

sin θ∂φ

∂Ym
l (θ,φ)
∂θ

⎤
⎥⎦, (9)

where Ym
l (θ, φ) corresponds to normalized spherical harmon-

ics of integer degree l and order m (|m| � l) [32]. l and m are
also called polar and azimuthal wave numbers, respectively.
The vector ûm

l (r) = [ûm
l (r), v̂m

l (r), ŵm
l (r)]T is the (l, m) co-

efficient of the vector spherical harmonic transform of the
physical field u(r, θ, φ). With a full analytical method, these
coefficients could be expressed as spherical Bessel functions
(for the interior problem with r � a) and spherical Hankel
functions (for the exterior problem with r > a) [17,31]. In-
stead, a one-dimensional FE approximation is used in this

FIG. 2. Normal displacement distribution for the following
spherical harmonics (from left to right): (l, m) = (100, 0), (l, m) =
(100, 20), (l, m) = (100, 100), corresponding to zonal, tesseral, and
sectoral patterns, respectively (WGMs are of sectoral type).

paper, so that

ûm,e
l (r) = Ne(r)Û

m,e
l , (10)

where Ne(r) is the matrix of interpolating functions and Û
m,e
l

is the vector of degrees of freedom (dofs) at the element level
(e).

To achieve the separation of angular and radial variables,
the key point is to properly choose the arbitrary test fields. We
choose the virtual displacements as

δUeT(r, θ, φ) = δÛ
eT

NeT(r)Sp∗
k (θ, φ), (11)

where the operation ∗ stands for transpose conjugate. Thanks
to this choice, it can be shown that the orthogonality relations
of both vector [31] and tensor [23] spherical harmonics appear
in Eq. (1) when integrating over the angular coordinates (see
Ref. [22] for details). This choice is therefore fundamental to
get uncoupled equations for every spherical harmonics (l, m)
of the displacement field. After lengthy calculations, the fol-
lowing compact matrix system is obtained for a given pair
(l, m):

[K(l ) − ω2M(l )]Û
m
l = 0. (12)

The detailed expressions of the elementary stiffness and mass
matrices are given in Appendix. Equation (12) is a linear
eigenproblem with respect to ω2. For a given value of l , it
yields n = 1, . . . , N eigenfrequencies ω

(n)
l and eigenvectors

Û
(n)
l . The latter corresponds to radial mode shapes.
Regarding analytical approaches [17,30], two main fea-

tures are recovered by the matrix eigensystem (12). First, the
eigensystem can be subdivided into two independent linear
eigenproblems corresponding on the one hand to spheroidal
modes (with nonzero displacements in each direction), and
on the other hand to torsional modes (with zero displacement
in the radial direction). This can be easily deduced from the
structure of matrices in Eqs. (A1)–(A5).

Second, it can be noticed that the eigensystem is degenerate
with respect to the azimuthal wave number m. This means that
2l + 1 modes have the same eigenfrequency and the same
radial mode shape [33]. These multiple modes only differ
from their angular distribution.

Figure 2 shows the angular distribution of the normal
displacement ûm

l , given by Y m
l (θ, φ) [see Eq. (9)], for three

spherical harmonics: (l, m) = (100, 0), (l, m) = (100, 20),
and (l, m) = (100, 100). The distributions corresponding to
m = 0, m �= l , and m = l are the zonal, tesseral, and sectoral
patterns of spherical harmonics, respectively [31,32]. As ob-
served in Fig. 2, sectoral modes are confined at the equator
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(θ = π/2) and are the so-called WGMs, which have found
many applications in optics [1,2,34]. Note that the distribu-
tion of WGMs gets narrower near the equator for increasing
wave numbers l = m. This means that narrow WGMs can be
achieved only at a high-frequency regime in practice.

C. Improved conditioning for large wave number

With Eq. (12), ill conditioning may result for large value
of l . This can be easily deduced from the expression of the
mass matrix, given by Eq. (A1), where terms of order 1 and
l2 occur together in the diagonal inner matrix. To circumvent
this problem, we introduce the following transformation for
l �= 0:

ûm
l =

⎡
⎢⎣

1 0 0
0 1√

l
0

0 0 1√
l

⎤
⎥⎦φ̂

m
l , (13)

which merely consists in dividing by
√

l the angular compo-
nents of the transformed displacement field, denoted as φ̂

m
l .

At the global FE level, we denote this transformation as
follows:

Û
m
l = T(l )�̂

m
l , (14)

where T(l ) is the global transformation matrix. Then, the
initial eigensystem (12) is transformed into

(TTKT − ω2TTMT)�̂
m
l = 0, (15)

where the dependence on l of matrices has been dropped for
conciseness of notations.

With this transformation, it can be checked that the inner
diagonal terms of the element mass matrix (A1) are now all
transformed to unity. The eigensystem (15) hence remains
well conditioned for large l . Note also that the symmetry of
the eigensystem has been preserved.

D. Spectrum characteristics

As outlined in the introduction, the physics of open res-
onators is significantly different from in vacuo systems.
Understanding their spectral behavior is essential to properly
exploit the numerical results.

We define k2
l,s∞ = ω2/c2

l,s∞ , the shear and longitudinal
wave numbers in the infinite medium. Let us first briefly
recall some theoretical results by considering the unbounded
problem without introducing any PML. Theoretically, the
spectrum of an unbounded problem is constituted by a con-
tinuum of radiation modes and proper discrete poles [15,35–
37].

Proper discrete poles are referred to as trapped modes,
having a pure real resonance frequency if material loss is
neglected (infinite Q factor). They are located on the Riemann
sheet Im(kl,s∞ ) � 0, where fields spatially decay at infinity.
The occurrence of trapped modes depends on the configu-
ration of the problem. Actually, such modes never exist in
spherical problems. This can be shown using Rellich’s lemma
[38], stating that if the energy is zero far from the sphere then
the displacement is zero everywhere (that is, only the zero
eigenvalue satisfies the decaying wave condition at infinity).

FIG. 3. Representation of the eigenspectrum of an open res-
onator in the complex frequency plane. Red dashed line: Continuum
of radiation modes without PML [branch cuts Im(kl,s∞ ) = 0]. Red
solid line: Continuum rotated by the infinite PML [branch cuts
Im(γ kl,s∞ ) = 0]. Blue region: Portion of the initial improper Rie-
mann sheets, Im(kl,s∞ ) < 0, accessible thanks to the PML rotation
and containing leaky modes (crosses). Black bullets indicate PML
modes (discretization of the continuum caused by truncation of PML
to a finite thickness).

This a major difference with flat problems, for which trapped
waves can occur (such as Stoneley waves [39]).

As a consequence, only the continuum of radiation modes
theoretically takes part in the solution of our problem. For
elastic waves, this continuum corresponds to the contribu-
tion of two branch cuts given by Im(kl,s∞ ) = 0. These two
branch cuts define a fourfolded Riemann surface for the
square roots of k2

l,s∞ (multivalued functions), according to
the sign of Im(kl∞ ) and Im(ks∞ ). Figure 3 depicts the branch
cuts in the complex frequency plane. Both branch cuts co-
incide with each other for pure real bulk wave speeds cl,s∞
(in the case of viscoelastic materials, the imaginary part of
wave speeds is yet relatively small compared to the real
part so that both branch cuts remain almost coincident in
practice).

Actually, a second type of discrete mode occurs, corre-
sponding to complex-valued poles located in the improper
Riemann sheets [i.e., Im(kl∞ ) < 0 and/or Im(ks∞ ) < 0].
These improper eigenvalues are the so-called leaky modes (or
quasinormal modes). They do not satisfy the spatially decay-
ing wave condition at infinity, and hence, do not theoretically
contribute to the exact solution. However, leaky modes can be
conveniently used to approximate the continuum of radiation
modes as a discrete sum. Besides, they reveal key information,
hidden inside the continuum, about wave properties (group
velocity, attenuation, etc.) [40]. Note that, because trapped
modes do not exist in spherical problems, the WGMs of em-
bedded spheres are indeed necessarily leaky modes.

Now, let us introduce an infinite PML. As demonstrated
in Refs. [26,37], this further modifies the eigenspectrum. For
simplicity, we assume a constant attenuation function γ inside
the PML. Introducing an infinite PML changes the branch
cuts to Im(γ kl,s∞ ) = 0. This corresponds to a branch-cut ro-
tation in the complex-frequency plane by the angle of rotation
−arg γ (see Fig. 3). With a PML, the proper Riemann surface
is now given by Im(γ kl,s∞ ) � 0. This surface contains leaky
modes, revealed by the branch-cut rotation (blue region in
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FIG. 4. Spectrum computed for a steel sphere into concrete
(l = 10, γ̂ = 1 + 2i, h = 0.25a). Black bullets: PML modes; black
crosses: leaky modes identified from the criterion given by Eq. (16).
Red line: Theoretical branch cut (rotated by −arg γ̂ ).

Fig. 3). The number of revealed leaky resonances depends on
the argument of γ .

Finally, let us truncate the infinite PML to a finite thickness
h. Truncation induces discretization of branch cuts: the con-
tinuum of radiation modes is transformed into a discrete set of
radiation modes [26,41], with finer discretization as the PML
thickness increases [15,27,40]. These modes are often called
PML modes (see Fig. 3). They resonate mainly inside the
PML and are hence not intrinsic to the physics (they strongly
depend on the user-defined PML parametrization). Although a
solution of the eigenvalue problem, PML modes are therefore
of little interest for the analysis of this paper.

E. Mode filtering

As a postprocessing step, it is necessary to filter out PML
modes from the solution in order to properly visualize only
the leaky WGMs. Following Refs. [42,43], leaky modes can
be identified efficiently from the following energy-based cri-
terion:

1 − Im(Em
l )

|Em
l | > ηmin, (16)

where ηmin is a user-defined threshold and Em
l =

1
2 |ω2

l |Û
m∗
l MÛ

m
l . Em

l can be interpreted as the kinetic energy
integrated over the radius, including the PML. The imaginary
part of this energy is expected to be much greater inside the
PML for PML modes than for leaky resonances (which are
expected to resonate mostly inside the sphere).

As an example, Fig. 4 shows a typical spectrum computed
with the semianalytical FE formulation. The frequency is
normalized as ωa/cs0 , where cs0 denote the shear bulk wave
velocity of the sphere material. The test case, a steel sphere
buried into concrete, is described later in the next section.
As explained earlier at the end of Sec. II B, the whole spec-
trum consists of two separate sets of modes, spheroidal and
torsional modes (both types of modes have been computed
together and are not distinguished in the figure). The latter are
related to shear waves only [44] and give only one continuous
set. The former are a mixture of longitudinal and shear waves
[44] and give two continuous sets. As observed in Fig. 4, these

continuous sets are discretized by the finite PML, yielding
PML modes which are close to the theoretical branch cuts
(rotated by −arg γ̂ ). Leaky modes have a small imaginary
part (small leakage) and are clearly distinguished from PML
modes. The criterion given by Eq. (16) allows an efficient and
straightforward separation of leaky and PML modes.

F. Remarks on mode normalization

From a theoretical point of view, the exponential growth of
leaky modes raises normalization issues. As proved in optics
(see, e.g., [15]), a PML solves this intricate problem by trans-
forming the divergent field of leaky modes into a decaying
field.

Actually, a PML provides normalization and orthogonal-
ity for both leaky resonances and PML modes. Considering
Eq. (12) and owing to the symmetry of the complex-valued
stiffness and mass matrices, the following orthogonality rela-
tionships holds:

Û
( j)T
l K(l )Û

(i)
l = ω

(i)2
l δi j, (17)

Û
( j)T
l M(l )Û

(i)
l = δi j, (18)

where the superscripts m have been dropped for conciseness
of notations (and since the eigensystem is degenerate with
respect to m). Based on modal expansions, these orthogonality
relationships can be used to compute the forced response of
spheres to optimize the generation of WGMs. Details about
this type of calculation can be found in Ref. [22] for in
vacuo spheres (i.e., without PML). With a PML, the result
remains unchanged because the relationships (18) still hold
in both cases. For paper conciseness, the presentation of the
computation process of the forced response is not repeated
here.

III. RESULTS

This section presents numerical results computed with the
semianalytical FE formulation. In particular, we investigate
the high-frequency behavior of leaky WGMs in embedded
spheres.

As outlined in the introduction, it is of importance to take
into account the material loss. For simplicity, we will consider
a viscoelastic frequency independent hysteretic model. With
this model, the bulk wave velocities c̃l and c̃s of the materials
are complex and given by

c̃l,s = cl,s

(
1 + i

κl,s

2π

)−1
, (19)

where κl and κs denote the bulk wave attenuations in nepers
per wavelength.

Two test cases are considered. The first case is that of a stiff
sphere, that is, a sphere material with bulk wave velocities
greater than the external medium. The second test case is
that of a soft sphere (bulk wave velocities lower than the
external medium). Results computed for embedded spheres
are compared with those for in vacuo spheres. A thorough
investigation of these configurations allows the identification
of general trends about the behavior of leaky WGMs.
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TABLE I. Material properties.

Material ρ (kgm−3) cl (ms−1) cs (ms−1) κl (Npλ−1) κs (Npλ−1)

Steela 7932 5500.7 3175.8 0.003 0.008
Concreteb 2152 3758 2090 0.186 0.229
Epoxyc 1600 2960 1450 0.029 0.043

aProperties taken from Ref. [45].
bProperties taken from Ref. [46].
cProperties taken from Ref. [47].

A. Model parameters

A concrete medium is chosen for the embedment. The
sphere is made of steel in the stiff case and epoxy in the soft
case. Material parameters are given in Table I. A perfectly
bonded interface is assumed between the sphere and the ex-
ternal matrix (i.e., continuity of stress and displacement in the
three directions).

The PML parameters are set to h = 0.25a, γ̂ = 1 + 2i.
This choice follows from a convergence study (not shown
for conciseness), by varying both h and γ̂ . The radial coor-
dinate is meshed with one-dimensional quadratic FE of length
0.005a, yielding 1500 degrees of freedom (dofs) (reduced
to 1200 dofs in the in vacuo case). The eigenproblem (12)
is solved repeatedly for a wide range of wave numbers, l =
0, . . . , 150. In order to compute mainly high-frequency leaky
modes, the normalized eigenvalues ωa/cs0 are solved around
a user-defined shift equal to 1.2l in the eigenvalue solver (see
ARPACK library [48]).

Dispersion curves will be given as a function of l for the
phase velocity vp, the group velocity vg [30], and the Q factor,
defined by

vp = Re(ω(n)
l )a

l + 1/2
, vg = Re

(
∂ω

(n)
l

∂l

)
a, Q = − Re(ω(n)

l )

2Im(ω(n)
l )

.

(20)

The group velocity can be postprocessed as follows (see
Ref. [22] for proof):

vg = Re

{
Û

(n)T
l

(
∂K(l )

∂l − ω
(n)2
l

∂M(l )
∂l

)
Û

(n)
l

2ω
(n)
l Û

(n)T
l M(l )Û

(n)
l

}
a. (21)

Depending on the configuration, the parameter ηmin for filter-
ing PML modes has been set between 0.8 and 0.9.

B. Case 1: Stiff-sphere configuration

Figure 5 shows the dispersion curves of spheroidal modes
for the stiff configuration (steel into concrete), as well as for
the in vacuo steel sphere. The dispersion curves for torsional
modes are shown in Fig. 6.

As a general trend, the phase velocity tends toward cs0 ,
the shear wave bulk velocity of the sphere, as l increases
(i.e., in the high-frequency regime), for all modes except the
fundamental spheroidal modes n = 0 (this particular mode
will be discussed later). This velocity limit can be more clearly
observed for the group velocity. WGMs have hence a nondis-
persive behavior as the frequency increases. Besides, both

phase and group velocities with the embedment remain close
to their in vacuo counterparts.

Compared to torsional modes [Fig. 6(b)], the nonmono-
tonic changes observed in the group velocities of spheroidal
modes [Fig. 5(b)] can be explained by the complex body wave
combination of P waves and SV waves traveling through the
sphere, reflected and converted several times at the surface,
and fulfilling constructive interference conditions [5,44]. As
the polar wave number l increases, the spheroidal modes
become mainly formed from a combination of multiple re-
flected SV waves (the polar displacement uθ nearly goes to
zero), which explains why they tend toward a shear wave
behavior. These modes are the so-called transverse spheroidal
modes, observed for a sphere in vacuum [8], for which the
SV-wave content prevails. Compared to spheroidal modes,
torsional modes rather tend monotonically toward the shear
wave behavior because torsional modes are formed from mul-
tiple reflected horizontal shear waves (SH waves) only (no
conversion) [5,44].

The Q factor behaves completely differently for the em-
bedded sphere [see Figs. 5(c) and 6(c)]. In vacuo, the Q
factor of spheroidal modes quickly decreases toward Qs0 =
π/κs0 , the Q factor of shear waves inside the sphere. The
Q factor of torsional modes remains constant and equal to
Qs0 . Conversely, with embedment, the Q factor is weak in
the low-frequency regime and then slowly increases in the
high-frequency regime, up to Qs0 according to the shear wave
limit.

These results are consistent with the competing effects
of viscoelasticity and leakage found in embedded elastic
waveguides [45]: as the frequency increases, the attenuation
due to viscoelasticity tends to increase while the attenuation
due to leakage tends to decrease. Note that if viscoelastic-
ity was neglected (κs → 0), Q would tend to infinity in the
high-frequency regime, which would be unrealistic (hence the
importance of taking into account material loss).

In a stiff configuration, the Q factor tends to improve as the
mode order n grows. This trend is particularly visible for tor-
sional modes, although less significant for spheroidal modes.
It can be explained by the energy distribution, concentrated
near the interface for low-order modes, hence increasing their
leakage in the external medium.

As far as the fundamental spheroidal mode n = 0 is con-
cerned (see Fig. 5), its in vacuo characteristics tend toward
those of the Rayleigh wave in the high-frequency regime. In
a half space, the Rayleigh wave speed can be approximated
by c̃r0 � c̃s0 (0.862 + 1.14ν̃0)/(1 + ν̃0) [where ν̃0 = 0.5(c̃2

l0
−

2c̃2
s0

)/(c̃2
l0

− c̃2
s0

) is the complex Poisson ratio], yielding a qual-
ity factor roughly equal to Qr0 � −0.5Im(c̃r0 )/Re(c̃r0 ).
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FIG. 5. Stiff-sphere configuration, spheroidal modes. From left to right: Phase velocity, group velocity, and Q factor as a function of the
polar wave number l (ηmin = 0.8). Red: Steel into concrete; blue: steel in vacuum.

Embedded in concrete, the fundamental spheroidal mode
corresponds to a solid-solid interface wave, which hence tends
toward the behavior of a Stoneley wave between two elastic
half spaces. Note that its phase velocity remains higher than
the shear bulk wave velocities so that this Stoneley wave is of
leaky type (attenuating). The Q factor of the n = 0 Stoneley-
like wave is very low compared to the other modes. Such a
wave hence appears of less interest for generating WGMs.

The main conclusion is that the Q factor of leaky WGMs
cannot exceed π/κs0 , the quality factor of shear waves inside
the material constituting the sphere (� 400 for steel). The Q
factor reached by elastic WGMs is hence far weaker than in
optics (Q ≈ 109 for l ≈ 1000 in practice).

Additional numerical tests have been conducted to further
explore the behavior of leaky WGMs (results not shown for
conciseness). By increasing the contrast between materials,
the convergence of the Q factor toward Qs0 for large l becomes
faster (this has been observed by artificially multiplying the
density of steel by 10). As far as Stoneley waves are con-
cerned, their behavior is more complex than Rayleigh waves.
Their existence depends on material combination. This has
been checked by artificially dividing the density of steel by
10. In this case, no Stoneley-like mode has been found. This
is consistent with the theoretical findings of Ref. [49] (the
Stoneley wave disappears if the material of greater density has
a velocity much lower).

C. Case 2: Soft-sphere configuration

A soft-sphere configuration offers a stronger analogy with
WGMs in optics. In optics, total internal reflection can be ob-
tained when light propagates faster in the embedding medium
than in the sphere. In elasticity, total internal reflection is
more complicated to obtain because of multiple reflection,
transmission, and conversion of three kinds of waves (P, SV,
and SH waves) [50]. Yet, we can expect a behavior similar to
light when both shear wave and longitudinal wave velocities
are smaller in the sphere than in the embedding medium, that
is, in the case of a soft inclusion into a stiffer matrix.

For a steel sphere (stiff configuration), there was a critical
angle only for the conversion of SV waves into P waves, there-
fore leading to significant leakage loss and a slow increase of
the Q factor. Let us replace steel with epoxy (soft configu-
ration). The shear and longitudinal bulk waves of epoxy are
slower than in the embedding medium, so that both waves in-
deed admit critical angles in reflection [50] (although P-wave
reflection into a reflected SV wave can still occur).

Figure 7 shows the dispersion curves of spheroidal modes
for the soft configuration, as well as for the in vacuo epoxy
sphere. The dispersion curves for torsional modes are shown
in Fig. 8.

Several differences can be observed compared to the stiff
configuration. First, no Stoneley-like wave is found for this
material combination (as shown in Fig. 7, a Rayleigh wave is

FIG. 6. Same caption as Fig. 5 but for torsional modes.

214101-7



FABIEN TREYSSÈDE AND MATTHIEU GALLEZOT PHYSICAL REVIEW B 104, 214101 (2021)

FIG. 7. Soft-sphere configuration, spheroidal modes. From left to right: Phase velocity, group velocity, and Q factor as a function of the
polar wave number l (ηmin = 0.8). Red: Epoxy into concrete; blue: epoxy in vacuum.

found in vacuo but no Stoneley wave is found in the embedded
sphere). Second, the velocities (both phase and group) are
significantly different from their in vacuo counterparts. Third,
the Q factor tends toward Qs0 far more rapidly than in the
stiff configuration. Fourth, for a given l , the Q factor tends
to decrease as the mode order n increases (as opposed to the
stiff configuration). This behavior is quite similar to those of
WGMs in optics [1,51].

As a side remark, it can be observed that the group velocity
of spheroidal modes [Fig. 7(b)] changes in a strong nonmono-
tonic manner, with maxima of group velocities coinciding
with minima of Q factors (this phenomenon also occurs in
Fig. 5 but is less visible). These maxima correspond to a polar-
ization of spheroidal modes in the azimuthal direction. Such
modes correspond to the so-called pseudolongitudinal modes
of a sphere in vacuum [8], for which the P-wave contribution
is significant. The Q factor of pseudolongitudinal modes and
torsional modes strongly depends on the bonding condition of
the interface, as will be briefly discussed in Sec. III D.

The main result with this test case is that the Q factor
can quickly tend toward Qs0 in a soft-sphere configuration.
However, this advantage is counterbalanced by the fact that
quality factors are usually significantly weaker in soft than in
stiff materials in practice (Qs0 < 100 for epoxy).

D. Perfectly sliding interface

To further illustrate the influence of the polarization of
WGMs, we consider the case of a perfectly sliding interface.
Only the continuity of normal stress and normal displacement
is therefore allowed at the interface between the sphere and
the external medium. The tangential components of the dis-
placement, uθ and uφ , are free.

With a sliding interface, note that the torsional modes are
no longer coupled to the external medium. Their character-
istics are exactly the same as in vacuo (in particular, the Q
factor of torsional modes remains constant and equal to Qs0 );
see blue curves in Figs. 6 and 8.

Conversely, the behavior of spheroidal modes is strongly
affected. Figures 9 and 10 show the Q factor computed with
a sliding interface in the stiff and soft configurations, re-
spectively. As opposed to a perfectly bonded interface, the
Q factor can reach high values in a low-frequency range.
These values appear to be close to the Rayleigh Q factor.
This striking behavior can be explained by the polarization of
spheroidal modes in the low-frequency regime. As mentioned
previously, spheroidal modes in this frequency regime corre-
spond to pseudolongitudinal modes, mainly oriented along the
azimuthal direction, which minimizes their sensitivity to the
external medium.

FIG. 8. Same caption as Fig. 7 but for torsional modes (ηmin = 0.9).
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FIG. 9. Same caption as Fig. 5 but for a sliding interface (for
conciseness, only the Q factor of spheroidal modes is shown).

IV. CONCLUSION

In this paper, we have investigated the characteristics of
high-frequency whispering-gallery modes in embedded elas-
tic spheres. For this purpose, a specific FE method in spherical
coordinates has been proposed. With this method, only the
radial coordinate is discretized while the angular distribution
of elastodynamic fields is described analytically. Besides, a
radial PML is introduced to cope with the unbounded nature
of the problem. Our approach leads to a linear matrix eigen-
system, simple and fast to solve in the high-frequency regime.
The solution of the eigenproblem delivers leaky and PML
modes. The leaky modes are revealed thanks to the PML, by
the rotation of the continuum in the complex frequency plane,
allowing access to the improper Riemann sheets. The PML
modes, related to the continuum of radiation modes, are not

FIG. 10. Same caption as Fig. 7 but for a sliding interface (for
conciseness, only the Q factor of spheroidal modes is shown).

intrinsic to the physics but can be efficiently filtered out, in a
postprocessing step, thanks to an energy-based criterion. Be-
sides, the PML can provide normalization and orthogonality
for the leaky modes, which allows the computation of forced
responses based on modal expansions.

Two configurations have been considered, corresponding
to a stiff sphere and a soft sphere. Material loss has been
included by considering a viscoelastic hysteretic model. Our
results highlight the behavior of leaky elastic WGMs in the
high-frequency regime, not yet considered in the literature.
Except for the Stoneley-like fundamental spheroidal mode
(peculiar to elasticity but of low Q factor), the modal char-
acteristics of leaky WGMs tends, as the frequency increases,
toward the shear wave properties of the material constituting
the sphere. As opposed to leakage, the material viscoelasticity
tends to increase the attenuation of waves with frequency,
leading to relatively low Q factor limits.

In particular, it has been shown that the Q factor of leaky
WGMs tends to slowly increase up to the quality factor of the
shear bulk waves of the sphere. Owing to internal reflection
mechanisms and by analogy with optics, this slow increase
can be enhanced in the case of a soft-sphere configuration.
However, this advantage is counterbalanced by the fact that
quality factors are usually weaker in soft than in stiff materi-
als.

Elastic WGMs in spheres could be of prime interest for
sensing the mechanical properties of an external medium,
e.g., by measuring a shift of their eigenfrequency [52]. More
generally, we expect that elastic WGMs could be optimized
in a more complex configuration, considering multilayered
spheres for instance. The formulation proposed in this paper is
versatile and allows modeling such complex spheres without
difficulties.
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APPENDIX: FE MATRICES

In this Appendix, we give the detailed expression of the FE
matrices involved in Eq. (12).

The elementary mass matrix is given by

Me(l ) =
∫

ρNeT

⎡
⎣1 0 0

0 l 0
0 0 l

⎤
⎦Ner̃2γ dr. (A1)

The stiffness matrix can be written as

K(l ) = K1(l ) + K2(l ) + KT
2 (l ) + K3(l ), (A2)
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with

Ke
1(l ) =

∫
dNeT

dr

⎡
⎣C11 0 0

0 lC55 0
0 0 lC55

⎤
⎦dNe

dr

r̃2

γ
dr, (A3)

Ke
2(l ) =

∫
dNeT

dr

⎡
⎣2C12 −lC12 0

lC55 −lC55 0
0 0 −lC55

⎤
⎦Ner̃dr, (A4)

Ke
3(l ) =

∫
NeT

⎡
⎣ lC55 + 4(C23 + C44) −l[C55 + 2(C23 + C44)] 0

−l[C55 + 2(C23 + C44)] l
2
C23 + lC55 + 2l (l − 1)C44 0

0 0 lC55 + l (l − 2)C44

⎤
⎦Neγ dr. (A5)

The above expressions differ from those of Ref. [22] due to
the introduction of the PML, which yields complex-valued

matrices. Without PML (γ = 1, r̃ = r), the expressions well
degenerate to the in vacuo case treated in [22].
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