
PHYSICAL REVIEW B 104, 205435 (2021)

Neural network architectures based on the classical XY model

Nikita Stroev1 and Natalia G. Berloff 1,2,*

1Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld.1, Moscow 121205, Russian Federation
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom

(Received 31 March 2021; revised 12 October 2021; accepted 1 November 2021; published 30 November 2021)

Classical XY model is a lattice model of statistical mechanics notable for its universality in the rich
hierarchy of the optical, laser, and condensed matter systems. We show how to build complex structures for
machine learning based on the XY model’s nonlinear blocks. The final target is to reproduce the deep learning
architectures, which can perform complicated tasks usually attributed to such architectures: speech recognition,
visual processing, or other complex classification types with high quality. We developed a robust and transparent
approach for the construction of such models, which has universal applicability (i.e., does not strongly connect
to any particular physical system) and allows many possible extensions, while at the same time preserving the
simplicity of the methodology.

DOI: 10.1103/PhysRevB.104.205435

I. INTRODUCTION

The growth of modern computers suffers from many limi-
tations, among which is Moore’s law [1,2], increased energy
consumption connected with the growth of the performance,
intrinsic issues arising from the architecture design like the
so-called von Neumann bottleneck [3], etc. The latter refers
to the internal data transfer process built according to the von
Neumann architecture and usually denotes the idea of com-
puter system throughput limitation due to the characteristic of
bandwidth for data coming in and out of the processor. The
von Neumann bottleneck problem was addressed in various
ways [4,5] including managing multiple processes in parallel,
different memory bus design, or even considering the concep-
tual “non–von Neumann” systems [6,7].

The inspirations for such information-processing archi-
tectures comes from different sources, artificial or naturally
occurring. This concept is usually referred to as neuromor-
phic computation [8,9], which competes with state-of-the-art
performance in many specialized tasks like speech and image
recognition, machine translation, and others. Additionally, it
has the property of distributed memory input and computa-
tion compared to the linear and conventional computational
paradigm [10]. The artificial neural networks (NNs) demon-
strated many advantages compared to classical computing
[11] while offering a solution to the von Neumann bottleneck.

This alternative approach is to encode a particular com-
putational task into the NN coefficients and minimize the
specific cost function instead of performing the predefined
sequence of computations (e.g., logical gates). The nodes’
final configuration, obtained through a nonlinear evolution
of the system, corresponds to the initial problem’s solution.
One of the familiar and famous models of the NNs is the
Hopfield network [12], which serves as a content-addressable

*Correspondence address: n.g.berloff@damtp.cam.ac.uk

or associative memory system with binary nodes. Its mathe-
matical description is similar to the random, frustrated Ising
spin glass [13], for which finding the ground state is known to
be an NP-hard problem [14]. Such correspondence reveals an
interplay between the condensed matter and computer science
areas while offering various physical realizations in optics,
lasers, and beyond.

The Ising Hamiltonian can be treated as a degenerate XY
Hamiltonian. The classical XY model, sometimes also called
classical rotator or simply O(2) model, has been a subject
of the extensive theoretical and numerical research and ap-
pears to be one of the basic blocks in the rich hierarchy of
the condensed matter systems [15–19]. It has an essential
property of universality, which allows one to describe a set
of mathematical models that share a single scale-invariant
limit under renormalization group flow with the consequent
similar behavior [20]. Thus the model’s properties are not
influenced by whether the system is quantum or classical,
continuous or on a lattice, and its microscopic details. These
types of models are usually used to describe the properties of
magnetic materials, superconducting, or superfluid states of
matter [20]. Moreover, the classical XY model can be arti-
ficially reproduced through intrinsically different condensed
matter systems. Among these systems are superconducting
Josephson junction arrays [21,22] and other superconducting
systems [23,24], ultracold bosonic quantum gases in optical
lattices [25,26], and optical, laser, and exciton-polariton sys-
tems [27,28].

Reproducing the Ising, XY, or NN architecture model al-
lows one to utilize a particular physical system’s benefits.
By constructing the specific hardware, we can additionally
solve other computing problems while decreasing the energy
consumption or volume inefficiency or even increasing the
processing speed. The NN implementation has been previ-
ously discussed in the optical settings [29,30], all-optical
realization of reservoir computing [31], or using silicon pho-
tonic integrated circuits [32] and other coupled classical

2469-9950/2021/104(20)/205435(12) 205435-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2114-4321
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.205435&domain=pdf&date_stamp=2021-11-30
https://doi.org/10.1103/PhysRevB.104.205435

NIKITA STROEV AND NATALIA G. BERLOFF PHYSICAL REVIEW B 104, 205435 (2021)

oscillator systems [33]. Exciton-polariton condensates are one
of such systems (together with many others, for instance,
plasmon polaritons [34,35]) that lead to a variety of appli-
cations such as a two-fluid polariton switch [36], all-optical
exciton-polariton router [37], polariton condensate transistor
switch [38], and polariton transistor [39], which can also be
realized at room temperatures [40], spin switches [41], and
the XY-Ising simulators [27,28,42]. The coupling between
different condensates can be engineered with high precision,
while the phases of the condensate wave functions arrange
themselves to minimize the XY Hamiltonian.

There has been recent progress in developing the direct
hardware for the artificial NNs, emphasizing optical and
polaritonic devices. Among them, there is the concept of
reservoir computing in the Ginzburg-Landau lattices, applica-
ble to the description of a broad class of systems, including
exciton-polariton lattices [43], and the consequent experi-
mental realization that demonstrated efficient recognition and
high signal processing rates [44]. The implementation of the
backpropagation mechanism using neurons in an all-optical
training of optical NNs with the pump-probe passive ele-
ments resulted in the state-of-the-art performance [45]. The
near-term experimental platform for realizing an associative
memory based on spinful bosons coupled to a degenerate
multimode optical cavity enjoyed advanced performance due
to the system tuning possibilities [46].

In our paper we show how to perform the NN compu-
tation by establishing the correspondence between the XY
model’s nonlinear clusters that minimize the correspond-
ing XY Hamiltonian and the basic mathematical operations,
therefore, reproducing neural network transformations. More-
over, we solve an additional set of problems using the
properties offered explicitly by the exciton-polariton systems.
The ultrafast characteristic timescale for condensation (of
the order of picoseconds) allows one to decrease computa-
tional time significantly. The intrinsic parallelism, based on
working with multiple operational nodes, can enhance the
previous benefits compared to the FPGA or tensor processing
units. The nonlinear behavior can be used to perform the
approximate nonlinear operations. This task is particularly
computationally inefficient on the conventional computing
platforms where a local approximation in evaluation is com-
monly used. There are many trivial ways of utilizing the
correspondence between the Ising model and the Hopfield NN
in terms of the discrete analog variables. In contrast, we use
continuous degrees of freedom of the XY model. By moving
to continuous variables, we address the volume efficiency
problem since converting the deep NNs to the quadratic binary
logic architecture meets significant overhead in the number of
variables while increasing the range of the coupling coeffi-
cients. The former may be out of reach for the actual physical
platforms, while the latter increases the computational errors.

With the motivation to transfer the deep learning (DL)
architecture into the optical or condensed matter platform,
we show how to build complex structures based on the XY
model’s nonlinear blocks that naturally behave in a nonlinear
way in the process of reaching the equilibrium. The corre-
sponding spin Hamiltonian is quite general because it can
be engineered with many condensed matter systems as we
previously discussed.

The key results we present are as follows.
(i) We show how to realize the basic numerical operations

using some small-size XY networks, which minimize the XY
Hamiltonian clusters’ energy.

(ii) We obtain the complete set of operations sufficient to
realize different combinations of the mathematical operations
and to map the deep NN architectures into XY models.

(iii) We demonstrate that this approach can be applied to
the existing special-purpose hardware capable of reproducing
the XY models.

(iv) We present the general methodology based on sim-
ple nonlinear systems, which can be extended to other spin
Hamiltonians, i.e., with different interactions or models with
additional degrees of freedom and involving quantum effects.

This paper is organized as follows. Section II is devoted to
describing our models’ basic blocks and introducing notations
used. Section III contains the demonstration of our approach’s
effectiveness in approximating simple functions. Section IV
extends this approach to the small NN architectures. Sec-
tion V considers the extensions to the deep architectures
with a particular emphasis on various nonlinear functions’
implementations. Section V A is dedicated to the particular
exciton-polariton condensed matter system as a potential plat-
form for implementing our approach. Conclusions and future
directions are given in Sec. VI. The Appendix provides some
technical details about the NN parameters, approximations,
and corresponding optimization tasks.

II. BASIC XY EQUILIBRIUM BLOCKS

This section is devoted to the description of the basic
blocks of the XY NN with the potential of its upscaling to
the DL architecture. DL is usually defined as a part of the
ML methods based on the artificial NN with representation
learning and proven to be effective in many scientific domains
[11,47–49] ranging from applied fields such as chemistry and
material science to fundamental ones like particle physics and
cosmology [50].

The DL is typically referred to as a black box [51,52] due to
the lack of understanding behind its exceptional performance.
When it comes to DL’s application, one usually asks questions
about adapting the DL architectures to new problems, how to
interpret the results, and how to quantify the outcome errors
reliably. Leaving these open problems behind, we formulate
a more applied task. To build DL architectures, we want
to transfer the pretrained parameters into a realization of a
nonlinear computation. One of the mathematical core ideas
in machine learning (ML) architectures is the ability to build
hyperplanes on each neuron output. The union of such hyper-
planes allows one to approximate the input data efficiently and
adjust it to the output in the case of supervised learning (for
example, in the classification tasks [53]). This procedure can
be paraphrased as the feature engineering that before the mod-
ern DL approaches and the available computational resources
was performed in a manual way [54]. Building hardware that
performs the hyperplane transformation with a specific type of
a nonlinear activation function with a given precision allows
one to separate input data points and present building block
operations for more complex tasks. The hierarchical structures

205435-2

NEURAL NETWORK ARCHITECTURES BASED ON THE CLASSICAL … PHYSICAL REVIEW B 104, 205435 (2021)

constructed with such blocks lead to even more complex ar-
chitectures capable of performing more sophisticated tasks.

Decomposing the nonlinear expressions common in the
ML, such as tanh(w0x0 + w1x1 + · · · + wnxn + b), produces
a set of mathematical operations, which we need to approx-
imate with our system. These are nonlinear operation tanh,
which is conventionally called an activation function, the
multiplication of the input variables xi by the constant (after
training) coefficients wi (also called weights of a NN), and the
summation operation (with the additional constant b, called
bias).

The activation function is an essential aspect of the deep
NNs that brings nonlinearity into the learning process. The
nonlinearity allows modern NNs to create complex mappings
between the inputs and outputs that are vital for learning
and approximating complex data with high dimensionality.
Moreover, the nonlinear activation functions allow for back-
propagation due to the smooth derivative of these functions.
They normalize each neuron’s output, allowing one to stack
multiple layers of neurons to create a deep NN. The functional
form of the nonlinear function is zero centered with the satu-
ration effect, which mimics the binary decision process. We
will see that approximating this operation is straightforward
with the XY networks.

First, we introduce the list of simple blocks corresponding
to the set of operations that are necessary for realization of
the nonlinear activation function, which can be obtained by
manipulating the small clusters of spins with underlying U(1)
symmetry. These clusters minimize the XY Hamiltonian:

H =
N∑

i=1

N∑
j=1

Ji j cos(θi − θ j), (1)

where i and j go over N elements in the system and Ji j is the
interaction strength between ith and jth spins represented by
the classical phases θi ∈ [−π, π]. If we take several spins as
inputs θi in such a system and consider the others as outputs
θk , then we can treat the whole system as a nonlinear function
which returns arg min

θk

H ({θi}, {θk}) values due to the system

equilibration into the steady state. In some cases the ground
state is unique; other cases can produce multiple equilibrium
states.

Above, we referred to the functional form Eq. (1) as the XY
Hamiltonian; however, to be precise, this expression has the
meaning of the configuration functional and does not define
the dynamics of the system. Later on, we will assume that the
couplings in Eq. (1) are directional and consider the systems
that minimize this configurational functional.

It is useful to consider an analytical solution to such a kind
of task, describing the function with one output and several
input variables. We consider the system with N spins: θi, i =
1, . . . , N − 1 are input spins and θN is the output spin coupled
with the input spins by the coupling coefficients Ji ≡ JiN .
The system configuration functional can be written as H =∑N−1

i Ji cos(θi − θN). By expanding H as
∑N−1

i Ji cos(θi −
θN) = ∑N−1

i Ji cos θi cos θN + ∑N−1
i Ji sin θi sin θN we can

FIG. 1. Several examples of basic blocks and their combina-
tions used in the XY NN architectures. (a) The block performing
the function F ((θin| − 1), (π |J)) with one input spin and one
reference/control spin with imposed π value, all coupled with the
output by the ferromagnetic −1 and J (J = 1 is used on the picture).
Depending on J we can realize the operations that approximate
the multiplication by the constant k so that θout ≈ 1.5 tanh (4θin) +
0.5θin with J = −0.9. (b) Two blocks representing F (F ((θ1| −
1), (π |J1))| − 1), (π |J2)). (c) The block F ((θ1| − 1), (θ2| − 1)) for
the half sum of two variables θ1 and θ2. (d) Two blocks performing
the function F (F ((θ1| − 1), (θ2| − 1))| − 1), (π | − 0.9)). Some of
the response functions for these blocks are presented in Fig. 2.

solve for the minimizer θN :

θN ≡ F ((θ1|J1), (θ2|J2), . . . , (θN−1|JN−1))

= arg(A + iB) − π = argC − π, (2)

where A = ∑N−1
i Ji cos θi, B = ∑N−1

i Ji sin θi, and C =∑N−1
i Jieiθi = A + iB. Equation (2) has simple geometrical

interpretation, identifying θN as the unit vector antiparallel
to the weighted sum of unit vectors θ1, . . . , θN−1. The phase
shift π disappears when the configurational functional is given
with the minus sign, so that the direction given by the θN

angle will be parallel to the weighted sum of unit vectors. We
present several basic blocks in Fig. 1 and the outcomes of the
functions’ responses in Fig. 2.

We will use the notation introduced in Eq. (2) to describe
both the activation function and the graph cluster of spins
below. We will use the recurrent notation where the output of
the first block serves as the input to the next one, for example,
F (F ((θ1|J1), (θ2|J2))|J3), (θ4|J4)).

To describe the iterative implementation of many
(k) identical blocks, where the input is defined in
terms of the output of the previous same block, we
rewrite the recurrent formula for one argument as
(F1 ◦ F1 ◦ · · · ◦ F1)(θin) ≡ F1(F1(. . . F1(θin))) ≡ F k

1 (θin),

205435-3

NIKITA STROEV AND NATALIA G. BERLOFF PHYSICAL REVIEW B 104, 205435 (2021)

FIG. 2. Several examples of input-output relations for the basic
blocks and their combinations used in the XY NN architectures.
(a) The parametrized family of F ((θin| − 1), (π |J)) functions, that
corresponds to the basic blocks. Depending on the J coupling
strength parameter we can realize the multiplication by arbitrary k.
(b) The graphs of F ((θin| − 1), (π |J)) functions for various values
of J illustrating the the multiplication by small values of k. (c) The
graphs of F ((θin| − 1), (π |J)) functions for smaller values of J <

0. (d) The graphs of F 3
3 (F2(F 2

1 (θin)|J)) functions, where F1(θin) =
F ((θin| − 1), (π |0.9)), F2(θin|J) = F ((θin|1), (π |J)), and F3(θin) =
F ((θin| − 1), (π | − 0.2)), showing different negative outputs. (e)
The graphs of F ((θ1| − 1), (θ2| − 1)), implementing the block
shown on Fig. 1(c), which approximates the half sum of input
variables. (d) The graphs of 1.5 tanh(4θin) + 0.5θin and F ((θin| −
1), (π | − 0.9)).

where F1(θin) = F ((θin|J1), (θ2|J2)) is a certain block with
the predefined parameters. We separate all possible blocks of
spins into several groups and consider them below in more
detail.

The phases θi are in [−π, π]; however, for an efficient
approximation of the operations (summation, multiplication,
and nonlinearity) we need to limit the domain to [−π/2, π/2],
which we refer to as the working domain. Additionally, we
need to make sure that the values of the working spins (which
are not fixed and are influenced by the system input, thus
serving as analog variables) are located within the limits of the
working domain. This will be implemented below. We made
such a limitation due to several reasons. First, such mapping is
monotonic. Extending [−π/2, π/2] by a small value will ruin
the monotonic properties of the available functions. Secondly,
the set of operations expressed through the family of para-
metric functions Eq. (2) are defined on [−π/2, π/2] domain
without any additional adjustments; see Fig. 2.

Next, we consider the implementation of the elementary
operations.

Multiplication by the constant value k > 0. Connecting
the input spin with the output spin by the “ferromagnetic”
coupling J = −1 will lead to the input spin’s replication.
In this way, we can transmit the spin value from one block
to another. Changing the value of the output spin can be
achieved in many ways. The addition of another spin with
a different value and coupling it to the output spin with a
constant coupling J is one such possibility (for example, with
imposed π value, which we will refer to as a reference/control
spin). If J is in [0,1) (relative to −1 coupling between θin and
θout), then the reference spin influences the output spin value
with the effective “repulsion” and thus, depending on the
relative coupling strength, decreases the output spin value [see
Figs. 2(a) and 2(b) and the corresponding cluster configuration
on Fig. 1(a)]. The resulting relation between the input and
output spin values can be a good approximation to the multi-
plication by certain values lying in the [0,1] range. The block
corresponding to the implementation of F ((θin| − 1), (π |1))
has a peculiarity in the case of θin = 0, which allows the
output to take any value due to the degeneracy of the ground
state. To overcome this degeneracy, we choose J = 0.99. For
J > 0, the linearized Eq. (2) leads to the following expression
for F ((θin| − 1), (π |J)):

argC − π = arctan
|B|
|A| + π − π = arctan

sin θin

cos θin + J

= θin

J + 1
− θ3

in(J2 − J)

6(J + 1)3
+ O

(
θ5

in

)
, (3)

which explains the relationship J (k) ≈ 1
k − 1 for the

approximation procedure and can be seen in Fig. 2 and
Fig. 8. For k > 1 we can use a ferromagnetic coupling J < 0
[see Fig. 2(c) and the corresponding cluster configuration on
Fig. 1(a)]. However, the positive values of J are more reliable
for the implementation since the output functions have small
approximation errors (see the Appendix for the exact values
of this error and further clarification). We can replace the
multiplication by a large factor by the multiplications by
several smaller factors to reduce the final accumulated error.
We can guarantee the uniqueness of the output since the
clusters are small, and the output is defined by Eq. (2), which
gives the unique solution.

Nonlinear activation function. The function F ((θin| −
1), (π | − 0.9)) is similar to the hyperbolic tanh function [see
Fig. 2(c) and the Appendix for the exact difference]. There
are two ways of using such a transformation as an activation
function.

(1) We can use the similarity between the values of the
F ((θin| − 1), (π | − 0.9)) and the function 1.5 tanh(4θin) +
0.5θin [see Fig. 2(f)]. We can train the NN initially with the
1.5 tanh(4θin) + 0.5θin function so that, in the final transfer,
it will not be necessary to adjust the spin system to approxi-
mate the given function. Such a replacement of the activation
function usually does not change the network’s overall func-
tionality as compared with the conventional one.

(2) We can use the similarity with the approximate hy-
perbolic tangent function within the XY spin cluster. In
other words, to execute tanh(θin), we have to perform

205435-4

NEURAL NETWORK ARCHITECTURES BASED ON THE CLASSICAL … PHYSICAL REVIEW B 104, 205435 (2021)

(F ((0.25θin| − 1), (π | − 0.9)) − 0.5θin)/1.5 function using
the spin block operations. This option will be used below.

Multiplication by the constant value k = −1. The main
difficulty of this operation is in finding the set of parame-
ters for the spin block where ∂F

∂θin
< 0. F ((θin|1), (π |J)) is

one example of such a block. To perform the multiplication
by k = −1, we need to embed the whole working domain
into the region where the presented inequality is valid and
return these values with the multiplication by k > 0 factor.
One final realization can be represented as F 3

3 (F2(F 2
1 (θin)))

function, where F1(θin) = F ((θin| − 1), (π |0.9)), F2(θin) =
F ((θin|1), (π |J)), and F3(θin) = F ((θin| − 1), (π | − 0.2)).

Summation. The function F ((θ1| − 1), (θ2| − 1)) gives a
good approximation to the half sum (θ1 + θ2)/2. This block
is presented in Fig. 1(c) and the cross sections of the surface
defined by the function of two variables F ((θ1| − 1), (θ2| −
1)) are plotted in Fig. 2(e). The plots show that the spin
system realizes the half sum of two spin values with a
minimum discrepancy compared to the target function on a
working domain. One can multiply the final result by two
using previously described multiplication to achieve an ordi-
nary summation. In general, such a type of summation can
be extended to multiple spins N > 2, in a similar way by
connecting them to the output spin, with the final value of
(θ1 + · · · + θN)/N . The linearized Eq. (2) leads to the follow-
ing expression for F ((θ1| − 1), (θ2| − 1)):

argC − π = arctan
sin θ1 + sin θ2

cos θ1 + cos θ2
= θ1 + θ2

2
+ O

(
θ

n1
1 θ

n2
2

)
,

(4)
where n1 + n2 = 5 (with integer n1, n2) is the order of approx-
imation is the order of approximation.

Summarizing, we presented a method of approximating the
set of mathematical operations, necessary for performing the
tanh(w0x0 + w1x1 + · · · + wnxn + b) function, using the XY
blocks described by Eq. (2). The output spin value of each
block is formed when a global equilibrium is reached in the
physical system with the speed that depends on a particular
system and its parameters. We kept the model’s universality,
which allows one to implement this approach using various
XY systems. We did not use any assumptions about the nature
of the classical spins, their couplings, or the manipulation
techniques; however, the forward propagation of information
requires directional couplings. As the blocks corresponding
to elementary operations are added one after another, the
new output spins and new reference spins should not change
the values of the output spins from the previous block. The
directional couplings that affect the output spins of the next
block but not the output spins of the previous block satisfy this
requirement. Many systems can achieve directional couplings.
For instance, in optical systems, the couplings are constructed
by redirecting the light with either free-space optics or optical
fibers to a spatial light modulator (SLM). At the SLM, the
signal from each node is multiplexed and redirected to other
nodes with the desired directional coupling strengths [55].

III. ONE-DIMENSIONAL FUNCTION APPROXIMATIONS

This section illustrates the efficiency of the proposed
approximation method on one-dimensional functions of in-
termediate complexity by considering two examples of

mathematical functions and their decomposition into the basis
of nonlinear operations.

For illustration, we choose two nontrivial functions (one
is monotonic and another is nonmonotonic). Extending these
ideas to more complex functions in higher dimensions is
straightforward. In the next section, we will apply this method
to two-dimensional data toy problems.

We consider two functions

F1 = 0.125Ft (1.2x) + 0.125Ft (0.5(x + 1.4)) (5)

and

F2 = 0.125Ft (0.5(x − 1.2)) − 0.03125Ft (0.5(x + 1.2)),
(6)

where Ft (x) = 1.5 tanh(4x). Note that arbitrary functions can
be obtained using a linear superposition of scaled and trans-
lated basic functions Ft (x).

The comparison of the XY blocks’ approximations and
the target functions are given in Figs. 3 and 4, demonstrat-
ing a good agreement in the working domain. We also plot
the explicit structures of the corresponding XY spin clusters
showing a rather small overhead on the number of spins used
per operation.

IV. NEURAL NETWORKS BENCHMARKS

In this section, we test the XY NN architectures and check
their effectiveness using typical benchmarks. For simple
architectures, the classification of predefined data points per-
fectly suits this goal. We consider standard two-dimensional
data sets, which are conventionally referred to as “moons” and
“circles” and can be generated with Scikit-learn tools [56]. An
additional useful property of such tasks is that they are easy
for manual feature engineering.

First, we train a simple NN, the architecture of which
consists of two neurons’ input layer, one hidden layer with
three neurons for each feature, and tanh activation function.
The output layer consists of two neurons, which are trans-
formed with SoftMax function. The corresponding weights
for both cases are given in the Appendix section. The final
performance demonstrates perfect accuracy in both data sets.
Figures 5 and 6 show the decision boundaries with the given
pretrained architectures and the landscape of one of the final
neuron visualizations together with the data points.

Since we are focused on transferring the described archi-
tectures into the XY spin cluster system, we consider the basic
architecture adjustment using the example of one feature.
Suppose we have the expression tanh(w1x + w2y + b). To
repeat the chosen strategy (2) of approximating the nonlinear
activation function, we rewrite the coefficients w1, w2, and
b as, say, wi → (N/K)[(K/N)wi], where K is a parameter
chosen to increase the accuracy of each computation. We ap-
proximate the square brackets’ operations using the building
blocks from Sec. II. The factor N = 3 will be canceled by the
value 1/N during the summation of N spins, while the factor
K = 4 in the denominator will be taken into account during
the operation of the function F ((θin| − 1), (π | − 0.9)) that ap-
proximates tanh(4θin). The resulting procedure achieves good
performance depicted in Fig. 5, while the details are provided
further in the Appendix section.

205435-5

NIKITA STROEV AND NATALIA G. BERLOFF PHYSICAL REVIEW B 104, 205435 (2021)

FIG. 3. Top: demonstration of the approximation quality ob-
tained by using the nonlinear XY spin clusters. The monotonic
analytical function (red dashed line) is given by Eq. (5) and the
orange line is the approximation. Bottom: the graph structure rep-
resenting the basic mathematical operation in Eq. (5) given by the
blocks discussed in Sec. II. The input variables are mapped into the
top spins, after which the cluster is equilibrated before performing
the next operation. The blue empty nodes are working spins that
change according to the variables at a higher block. The black nodes
with the fixed π value are reference/control spins. The black edges
without the notation have the default fixed relative strength −1; oth-
erwise, they have the specified coupling coefficient explicitly written
above. The red color of the edge represents the positive relative
coupling strength 1 unless specified otherwise. The bottom spin gives
the value of the coded function.

The final SoftMax function in the original NN serves as
the comparison function for two features to achieve the final
decision boundary’s smooth landscape. We can omit this func-
tion and replace it with a simpler expression x − y. To achieve
the binary decision boundaries, one can exploit the block
performing F ((θin| − 1), (π | − 0.9)) several times to place
the final spin value either close to π/2 or −π/2. In this way,
we adjusted architecture that performs the same functions as
the described simple NN on a toy model. The final decision
boundary of the XY NN approximation can be seen in Fig. 5,
which is very close to the boundary of the standard trained NN
architecture.

The case of the “moons” data set is a bit different. While
the smooth functions are easy to approximate with the non-

FIG. 4. Top: demonstration of the approximation quality, ob-
tained by using the nonlinear XY spin clusters. The analytical
nonmonotonic function (red dashed line) is given by Eq. (6), the
orange line is the approximation, and the blue line is the linear iden-
tity relation. Bottom: the graph structure, representing the essential
mathematical operation in Eq. (6), given by the blocks, discussed in
Sec. II. The notation used for describing the graph parameters is the
same as in Fig. 3.

linear XY blocks, it is quite complicated to reproduce “sharp”
patterns with the high value of the function derivative. For
this purpose, we adjust the NN coefficients to achieve good
decision boundaries. The difference between the NN and its
approximation and consequent results is shown in Fig. 6.
Adjusted parameters of NN are given in the Appendix section.
Figures 5 and 6 show the XY blocks of the spin architec-
tures. The presented methodology allows us to upscale the XY
blocks for even more complicated ML tasks.

V. TRANSFERRING DEEP LEARNING ARCHITECTURE

Deep NNs are surprisingly efficient at solving practical
tasks [11,47,57]. The widely accepted opinion is that the key
to this efficiency lies in their depth [58–60]. We can transfer
the architecture’s depth into our XY NN model without any
significant loss of accuracy.

So far, we showed how to transfer the predefined architec-
ture into the XY model. This section discusses the transition
of more complex deep architectures, which are considered
conventional across different ML fields without much em-
phasis on the details. To extend the method, we choose two

205435-6

NEURAL NETWORK ARCHITECTURES BASED ON THE CLASSICAL … PHYSICAL REVIEW B 104, 205435 (2021)

FIG. 5. Top row: decision boundaries of the simple (2,3,2) NN
on the left and approximated ones for the XY NN on the right
on the toy 2D circle data set. Black lines represent the bounds for
automatically found features in the middle layer of classical NN and
the approximated features are shown on the right picture. Middle
row: the isosurface for the one particular chosen feature for typical
NN and its corresponding matched XY NN last variable isosurface.
The parameters of both NN and XY NN architectures can be found
in the Appendix. Bottom: the corresponding graph structure.

conventional image recognition task models (the architecture
details are given in the Appendix section).

The focus of the architecture adjustment will be on op-
erations, which were not previously discussed. We list some
of these such operations: Conv2D, ReLU activation function,
MaxPool2D, and SoftMax [47,61,62]. The Conv2d is a simple
convolution operation and does not present any significant
difficulty, since it factorizes into the operations previously
discussed. ReLU activation function can be replaced with its
rough approximation ≈eθin/3, similar to the so-called shifted
exponential linear unit ELU [63]. Using its similarity with the
analytical expression 1.5(1 + tanh 0.8(θin − 1.5)) allows one
to obtain the following set of explicit transformations: z =
F (F ((θin| − 1), (−1.5| − 1))| − 1), (π |1.5)) and the summa-
tion of the three terms 1.5, while F ((z| − 1), (π | − 0.9)) and

FIG. 6. Decision boundaries of the simple (2,3,2) NN on the left
and approximated ones for the XY NN on the right on the toy 2D
moons data set. Black lines represent the bounds for automatically
found features in the middle layer of classical NN; the approximated
features adjusted for this specific task are located in the right picture.
Middle row: the isosurface for the one particular chosen feature for
typical NN and its corresponding matched XY NN last variable
isosurface. The parameters of both NN and XY NN architectures
can be found in the Appendix. We can state that the XY model can
give a good approximation of the classical NN architectures with
not ideally smooth representations, but requires small adjustments
of their parameters, due to difficulties with representing sharp geo-
metric figures (which in general can be multidimensional). Bottom:
the corresponding graph structure.

−0.5z give a good approximation for ReLU. We will denote
the overall function as G(θin).

MaxPool2D relies on max(x, y) realization. We use the
following relationship in further description: max(x, y) =
[max(0, x − y) + y + max(0, y − x) + x]/2. Therefore, it is
convenient to use two similar architectures of spin value trans-
mission, which are symmetrical with respect to variables x
and y. The first one consists of G(x − y) operation, described
previously, and summation with the y variable, while the sec-
ond architecture interchanges x and y and consists of G(y − x)

205435-7

NIKITA STROEV AND NATALIA G. BERLOFF PHYSICAL REVIEW B 104, 205435 (2021)

and +x operations. Summing the results of each architecture
2F (G(x − y) + y| − 1), (G(y − x) − y| − 1)) will give us the
required value of max(x, y).

The SoftMax ezi/
∑K

j=1 ez j is usually used as the final layer
in the NN architectures (see the Appendix) in order to com-
pare the corresponding values of ezi among each other. One
can avoid the complicated approximation by comparing the
arguments directly.

A. Exciton-polariton setting

In this subsection, we discuss the implementation of the
proposed technique using a system of exciton-polariton con-
densates. As we discussed in the Introduction, it is possible
to reproduce the XY configurational functional with a variety
of systems from superconductors and superfluids to optical
and laser systems. Here we present one possible realization
using exciton polaritons [27,28], which are hybrid light-matter
quasiparticles that are formed in the strong coupling regime
in semiconductor microcavities [64]. The condensates of ex-
citon polaritons can be formed. They are described by the
density and phase degrees of freedom, serving as the ana-
log variables for the loss minimization. The exciton-polariton
condensate is a gain-dissipative, nonequilibrium system due
to the finite quasiparticle lifetimes. Polaritons decay emitting
photons. Such emission carries all necessary information of
the corresponding system state and can serve as the readout
mechanism. Redirecting photons from one condensate to an-
other using an SLM allows one to couple the condensates in a
lattice directionally [55].

The system of condensates maximizes the total occupa-
tion of condensates by arranging their relative phases so as
to minimize the losses [27]. The exciton-polariton platform
allows one to manipulate several parameters, such as coupling
strengths between the condensates, which makes it possible
to set up the particular mathematical operation or to fix the
phase of the condensate (through the combination of reso-
nant and nonresonant pumping; see [65]), and thus create
reference/control spins. Each input spin in the whole sys-
tem can be controlled via two fixed couplings with the two
reference/control spins of different values; see, for example,
one of the blocks from Fig. 2. Fixing the coupling coefficients
between spatially located elements is required to perform the
necessary operation and establish the XY network. It can be
further upscaled to approximate a particular ML architecture,
with the final output spin being the readout target.

One additional note is that the same system can be
exploited differently by introducing the spin self-locking
mechanism. It consists of saving the spin value in the system
without coupling connections with the external elements. This
mechanism can be achieved by coupling the local output with
another element(s) with high negative coupling strength and
decoupling it from the previous units. The self-locking allows
one to save the local output and use it for the consequent
operations without significant overhead on elements from
the previously established operations. We demonstrate the
difference in Fig. 7. The presented alternative, requiring a self-
locking mechanism, operates with fewer spins by performing
each action at the same cluster. Hence it is volume efficient,
which is noticeable in the scaling of elements per operation.

FIG. 7. Left: graph representation of the Ft (0.5(x + 1.4)) op-
eration defined in the text. The final spin values are established
through six time units and the measure equals the local characteristic
equilibration time of the XY spin cluster. Right: the alternative ar-
chitecture, which performs each operation at the same cluster while
saving the local output spin value and transferring it the next time
through the self-locking mechanism. The color correspondence is the
same as in XY graphs: blue nodes are the working spins and green
are reference/control spins with π values.

Figure 7 shows the same operation with 16 spins (without
external nodes) and 8 total spins with the self-locking mecha-
nism. The advantage is even more pronounced for larger spin
networks.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced a robust and transparent
approach for approximating the standard feedforward NN ar-
chitectures utilizing the set of nonlinear functions arising from
the classical XY spin behavior and discussed the possible
extensions to other architectures. The number of additional
spins required per operation scales linearly. The best-case sce-
nario has two spin elements per multiplication and nonlinear
operation (not considering the multiplication by a negative
factor), making the general framework quite practical. Some
operation approximations used in this work allow additional
improvements such as the reduction of cumulative errors be-
tween the initial architecture and its nonlinear approximation
(see the Appendix).

The entire spectrum of the benefits dramatically depends
on a particular type of optical or condensed matter platform.
The presented approach has universal applicability and, at
the same time, has a certain degree of flexibility. It preserves
basic blocks’ simplicity, and overall structure works with the
intermediate complexity architectures capable of solving toy
model data scientific tasks. The upscaling to reproduce DL
architectures was discussed.

Our work’s side product is a correspondence that allows
us to adjust every hardware aiming at minimization of the
XY configurational functional into the ML task. It becomes
possible to build DL hardware from scratch and readjust the
existing special-purpose hardware to solve the XY model’s
minimization task.

Finally, we would like to mention the alternative of using a
hybrid architecture. Instead of transferring the operations used
in the conventional NN model, we can introduce the nonlinear

205435-8

NEURAL NETWORK ARCHITECTURES BASED ON THE CLASSICAL … PHYSICAL REVIEW B 104, 205435 (2021)

TABLE I. NN (2,3,2) parameters used for the toy data set “circles.”

w11 w12 b1

−1.3465 −2.4191 1.1582
−3.5880 −0.1474 −1.5228
−1.3565 2.6776 1.5239
w21 w22 w23 b2

−17.8809 16.4797 −18.2794 23.6661
17.3684 −17.0227 18.4634 −23.3256

blocks coming from the presented XY model into the working
functional given by a particular ML library. For example, we
can change the activation function into the one that comes
from the system operation and therefore is easily reproducible
by that system. This would result in the architecture and the
transfer processes that do not require additional adjustments
from the hardware perspective.

The question about the implementation of the backpropa-
gation mechanism, i.e., computing of the gradient of the NN
weights in a supervised manner, usually with the gradient de-
scent method, is still under consideration because we limited
the scope of our work with the transfer of the predefined,
pretrained architecture.

Several possible extensions of our work are possible, such
as extending to k-local Hamiltonians or to other models with
additional degrees of freedom and controls, simplifying differ-
ent mathematical operations and approximations of the basic
functions using many-body clusters in a particular model,
and increasing the presented approach’s functionality (for in-
stance, adding the backpropagation mechanism).

APPENDIX

Here we present the parameters of the NNs used in this
work and details of the training and approximations for the
XY graphs. We also present two DL architectures mentioned
in the main text emphasizing their nonlinear operations. Fi-
nally, we discuss the calculations and estimations of the
approximation quality.

For training simple classical (2,3,2) feedforward NN ar-
chitectures on “moons” and “circle” data sets we used the
Pytorch library [66] and Adam optimizer [67] with batch
size 32 and learning rate 0.01 value. The expected learning
procedure passed without the problems on data sets consisting
of 200 points generated with the small noise of magnitude 0.1.
The final performance gives perfect expected accuracy in both
cases.

For the circles data set, the NN parameters are presented in
Table I.

The first row of mathematical approximations gives us
similar coefficients. We can rewrite in the same manner the
NN parameters with minor adjustments for demonstrative pur-
poses (see the main text for the detailed analysis of possible
assumptions and the improvements such as the multiplication
by the scaling coefficients).

The presented approximation architecture given in Table II
was adjusted for better representation of one final feature,
which is general enough to mark the decision boundaries
for this particular task, while getting rid of the unnecessary

TABLE II. XY NN (2,3,1) parameters used to approximate the
standard NN for the toy data set “circles.”

w11 w12 b1

−0.5 −0.75 0.35
1.0 0.0 0.45
−0.5 1.0 0.6
w21 w22 w23 b2

1.0 1.0 1.0 −0.31

parameters. Another approximation stage leads us to the
final architecture, which is shown in Fig. 5. Let fi denote
the ith feature and R(x) = F ((F1(x)| − 1), (F3(F2(x))| − 1)),
where F1(x) = F ((x| − 1), (π | − 0.9)), F2(x) = F ((x| −
1), (π |1)), and F3(x) = F ((x|1), (π |2)) represent the
approximation of the activation function with the reduced
accuracy; then x11 = F ((F ((x1| − 1), (π |0.99))|1), (π |2)),
x12 = F ((F ((x11| − 1), (π |0.99))|1), (π |2)), y11 =
F ((F ((y1| − 1), (π |0.99))|1), (π |2)), y12 = F ((F ((y11| −
1), (π | − 0.08))| − 1), (π | − 0.08)), f1 = F ((x12| −
1), (y12| − 1), (b1 = 0.35| − 1)), f11 = R(f1); x21 =
F ((F ((x2| − 1), (π |0.99))|1), (π |2)), f2 = F ((x21| −
1), (y2| − 1), (b2 = 0.6| − 1)), f22 = R(f2); f3 =
F ((x3| − 1), (y3|0), (b3 = 0.45| − 1)), f33 = R(f3); G0 =
F ((f11| − 1), (f22| − 1), (f33| − 1)), G = F ((G0| − 1), (g =
−0.1033| − 1)).

This structure is represented in Fig. 5.
The NN parameters for the moons data set are presented in

Table III.
The first row of the approximations’ parameters is given in

Table IV.
The presented architecture was adjusted for better

representation of one final feature. For the case of
moons, the additional adjustment has been added since
the presented XY architecture has lower expressivity for
the case of sharp boundaries. Another approximation
stage leads us to the final architecture, which can be
found in Fig. 6: y11 = F ((F ((y1| − 1), (π |0.99))| −
1), (π |0.99)), y12 = F ((F ((y11| − 1), (π |0.99))|1), (π |2)),
f1 = F ((x1| − 1), (y12| − 1), (b1 = −0.95| − 1)), f11 =
R(f1); y21 = F ((F ((y2| − 1), (π |0.99))| − 1), (π |0.99)),
y22 = F ((F ((y21| − 1), (π |0.99))|1), (π |2)), f2 =
F ((x1| − 1), (y22| − 1), (b1 = 0.9| − 1)), f22 = R(f2); x31 =
F ((F ((x3| − 1), (π |0.99))|1), (π |2)), y31 = F ((F ((y3| −
1), (π |0.99))| − 1), (π |0.99)), y32 = F ((F ((y31| −
1), (π |0.99))|1), (π |2)), f3 = F ((x31| − 1), (y32| − 1), (b1 =

TABLE III. NN (2,3,2) parameters used for the toy data set
“moons.”

w11 w12 b1

6.2888 −3.2930 −3.0992
−3.5880 −4.2940 5.9965
−6.1958 −2.7684 0.6882
w21 w22 w23 b2

−6.1143 −6.8860 −6.8151 −0.0621
6.6825 6.2848 6.8381 −0.0325

205435-9

NIKITA STROEV AND NATALIA G. BERLOFF PHYSICAL REVIEW B 104, 205435 (2021)

TABLE IV. XY NN (2,3,1) parameters used to approximate the
standard NN for the toy data set “moons.”

w11 w12 b1

1.0 −0.125 −0.9
1.0 −0.125 0.9
−0.5 −0.125 0
w21 w22 w23 b2

1.0 1.0 1.0 0.065

0| − 1)), f33 = R(f3); G0 = F ((f11| − 1), (f22| − 1), (f33| −
1)), G = F ((G0| − 1), (g = 0.0216| − 1)).

The presented structure follows the graph structure given
in Fig. 6.

The presented DL architectures are defined with the Py-
torch library’s help in the following Table V.

In Table V, we present the details of two DL architectures
that were discussed in the main text, emphasizing their non-
linear operations.

Finally, we show that the initial task of approximating a
particular set of mathematical operations by the parametrized
family of nonlinear functions can be done more rigorously
with a potential for the accumulated error estimation through
the layers of NN.

The discrepancy between the target function and its ap-
proximation can be estimated with the L1([−π/2, π/2]) norm
on the working domain:

L1 =
∫ π/2

−π/2

∣∣∣∣ − sgn B(x, {Ji})

×
(

π

2
+ arcsin

A(x, {Ji})√
A(x, {Ji})2 + B(x, {Ji})2

)

− f (x)target

∣∣∣∣dx. (A1)

TABLE V. Examples of the simple DL architectures used to
represent nonlinear/unique functions. (a) NN for simple 10 classes
digit recognition. (b) NN for CIFAR10 data set classification.

(a) NN layer
5 × 5 Conv2D(3,6)
2 × 2 MaxPool2D
5 × 5 Conv2D(6,16)
Linear (400,120)
Linear (120,84)
Linear (84,10)
(b) NN layer
5 × 5 Conv2D(1,10)
2 × 2 MaxPool2d
ReLU
Dropout(0.5)
5 × 5 Conv2D(10,20)
2 × 2 MaxPool2D
ReLU
Flatten
Linear (320,50)
ReLU
Linear (50,10)
SoftMax

Starting with the multiplication operation, one can calculate
Eq. (A1) with f (x, k)target = kx and obtain the expression
[depending on the (J, k) parameters] for one block of spins.
Further minimization of Eq. (A1) leads to the expression
for J (k). Evaluating Eq. (A1) analytically can be done in a
simpler way by replacing the expression involving the arcsin
function with the one with arccot, so that initial integral
(in terms of the argument of the complex parameter C =∑N−1

i Jieiθi) contains the following expression for one input
and one control/reference spin:

I =
∫ π/2

−π/2
arccot

B((x| − 1), (π |J))

A((x| − 1), (π |J))
dx

=
∫ π/2

−π/2
arccot

sin(x)

J + cos(x)
dx. (A2)

We evaluate this to

I = x arccot
sin(x)

J + cos(x)
+ 1

4

(
x2 + 2i sgn(J2 − 1)

×
{

i

[
Li2

(
D(1 − E)

1 + E

)
+ Li2

(
D∗(1 − E)

1 + E

)]

+2x arctanh(E−1) − G arctanh(E)

+[G − 2i arctanh(E)]ln
2J (1 + E)

I1[tan(x/2) − i]

+[G + 2i arctanh(E)]ln
2J (1 + E)

I2[tan(x/2) + i]

+lnH e−ix/2[2i arctanh(E)−2i arctanh(E−1)+G]

+lnH eix/2[2i arctanh(E−1)−2i arctanh(E)+G]

})∣∣∣∣
π/2

−π/2

,

(A3)

with variables D(J) = (J2 + 1 + |J2 − 1|)/2J ,
E (x, J) = i|J2−1|

(J+1)2 tan x/2, C(J) = arccos(− J2+1
2J),

H (J) = i|J2−1|
2
√

J
√

J2+2J cos x+1
, I1(J) = 2i(J − 1), if J2 >

1; 2iJ (1 − J), otherwise, I2(J) = 2iJ (J − 1), if J2 >

1; 2J (J − 1), otherwise, and arccot, arctanh, and arccos
denoting the inverse for tangent, hyperbolic tangent, and
cosine functions, respectively, with Lis(x) = ∑∞

k=1 xk/ks

being the polylogarithm function and ∗ denoting the complex
conjugate operation. One can simplify the given formula by
the contraction of the complex pair terms:

I = x arccot
sin(x)

J + cos(x)
+ 1

4

{
x2 + 2i sgn(J2 − 1)

×
[

i

(∞∑
k=1

2 cos(kφ)

k2

)
+2G lnH+(2x − G) arctanh(E)

+ G ln
J (1 + E)2

E2(J + 1)2−(J − 1)2
−2i sgn(J2 − 1)

× arctanh(E)ln
J[E (J + 1) − (1 − J)]

E (J + 1) − (J − 1)

]}∣∣∣∣
π/2

−π/2

, (A4)

205435-10

NEURAL NETWORK ARCHITECTURES BASED ON THE CLASSICAL … PHYSICAL REVIEW B 104, 205435 (2021)

FIG. 8. Top: (a) function J (k) that minimizes Eq. (A1) with
F ((x| − 1), (π |J)), f (x)target = kx and a positive factor k (blue dotted
line), its approximation (light brown dashed line), and the fitted
formula ≈1/k − 1. The supporting plots depict 102L1 (dash-dotted
orange line) and 102L∞ (red) for each value of k. Vertical black
lines denote the points with the minimal accumulated error. (b) Func-
tion J (k) that minimizes Eq. (A1) with F ((x|1), (π |J)), f (x)target =
kx and a negative factor k (blue dotted line), its approximation
(light brown dashed line), and the fitted formula ≈0.4 − 1/k. The
supporting plots depict 2L1 (dash-dotted orange line) and 2L∞ (or-
ange) for each value of k. Bottom: (c) function tanh(4x) + x/2
(blue dotted line) and its approximation with the function F ((x| −
1), (π | − 0.9036)) (dash-dotted orange line) with the optimized pa-
rameter J . The supporting red plot represents the error at each
point on the x axis. (d) The half sums for x and two variables
y = −0.2π, 0.2π (blue dotted lines), which coincide with their ap-
proximations F ((x| − 1), (y| − 1)) (light brown dashed lines) giving
insignificant approximating error 1013L1 (red and orange lines).

where we added a new variable φ = arg[D(1 − E)/
(1 + E)].

To shorten the description of the dependence of the cou-
pling strength J on the multiplication factor k and avoid
overcomplicated analytical expressions, we present the plot
of its approximation, which alternatively can be calculated
numerically and can be approximated by an expression
1/k − 1 with good accuracy. Additionally, we calculated
L1([−π/2, π/2]) according to Eq. (A1) for each value of
k. An additional good measure of the approximation qual-
ity is L∞, which is the maximal discrepancy between the
functions F ((x| − 1), (π |J)) and f (x)target, which has a sim-
ilar behavior as the original norm. Figure 8(a) shows all
the plots corresponding to the multiplication by a positive
factor k > 0 with the special points of the minimal error at
k = 1, 0.5 and k = 0. These graphs explain why the lesser
factors are more reliable for the multiplication and why mul-
tiplying by larger factors without factorization leads to worse
performance.

The same task of multiplication by a negative factor k < 0
is illustrated in Fig. 8(b). The J (k) function can be approxi-
mated with reasonable accuracy by an expression 0.4 − 1/k.
Since the general error has a much higher factor ≈102 for the
negative values, one has to accompany this block with an addi-
tional linear embedding to achieve a good approximation. The
nonlinear function 3/2 tanh(4x) + x/2 and its approximation
with the optimized function F ((x| − 1), (π | − 0.9036)) is de-
picted in Fig. 8(c). The lowest accuracy is observed near the
origin.

The final example of the half-sum approximation is illus-
trated in Fig. 8(d). The surprisingly good agreement (with an
error of 10−13 of the magnitude) between the initial func-
tion and its XY representation F ((x| − 1), (y| − 1)) can be
explained with the help of the Taylor expansion of Eq. (2)
near zeros. It gives the linear coefficient of 1/2 accurate to the
fourth order of approximation. With all the presented infor-
mation, one can estimate the maximal discrepancy between
an arbitrary NN and its transferred XY analog, which will be
a good measure of the approximation quality and adequacy of
the transfer procedure.

[1] G. E. Moore, Electronics 38, 8 (1965).
[2] G. E. Moore, M. D. Hill, N. P. Jouppi, and G. S. Sohi, Readings

in Computer Architecture (Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 2000), pp. 56–59.

[3] J. Von Neumann, IEEE Ann. History Computing 15, 27
(1993).

[4] J. Edwards and S. O’Keefe, 2016 IEEE Symposium Series on
Computational Intelligence (SSCI) (IEEE, New York, 2016), pp.
1–5.

[5] M. Naylor and C. Runciman, Symposium on Implementation
and Application of Functional Languages (Springer, New York,
2007), pp. 129–146.

[6] C. S. Lent, K. W. Henderson, S. A. Kandel, S. A. Corcelli,
G. L. Snider, A. O. Orlov, P. M. Kogge, M. T. Niemier, R. C.
Brown, J. A. Christie, et al., 2016 IEEE International Confer-
ence on Rebooting Computing (ICRC) (IEEE, New York, 2016),
pp. 1–7.

[7] D. Shin and H.-J. Yoo, Proc. IEEE 108, 1245 (2019).
[8] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E.

Dean, G. S. Rose, and J. S. Plank, arXiv:1705.06963.

[9] S. Furber, J. Neural Eng. 13, 051001 (2016).
[10] H. Sompolinsky, Phys. Today 41, 70 (1988).
[11] Y. LeCun, Y. Bengio, and G. Hinton, Nature (London) 521, 436

(2015).
[12] J. J. Hopfield and D. W. Tank, Science 233, 625 (1986).
[13] D. L. Stein and C. M. Newman, Spin Glasses and Complexity

(Princeton University Press, Princeton, NJ, 2013), Vol. 4.
[14] F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982).
[15] P. M. Chaikin, T. C. Lubensky, and T. A. Witten, Principles

of Condensed Matter Physics (Cambridge University Press,
Cambridge, UK, 1995), Vol. 10.

[16] J. Kosterlitz, J. Phys. C 7, 1046 (1974).
[17] R. Gupta, J. DeLapp, G. G. Batrouni, G. C. Fox, C. F. Baillie,

and J. Apostolakis, Phys. Rev. Lett. 61, 1996 (1988).
[18] P. Gawiec and D. R. Grempel, Phys. Rev. B 44, 2613 (1991).
[19] J. M. Kosterlitz and N. Akino, Phys. Rev. Lett. 82, 4094 (1999).
[20] B. V. Svistunov, E. S. Babaev, and N. V. Prokof’ev, Superfluid

States of Matter (CRC Press, Boca Raton, FL, 2015).
[21] P. Martinoli and C. Leemann, J. Low Temp. Phys. 118, 699

(2000).

205435-11

https://doi.org/10.1109/85.238389
https://doi.org/10.1109/JPROC.2019.2897076
http://arxiv.org/abs/arXiv:1705.06963
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1063/1.881142
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/science.3755256
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/PhysRevLett.61.1996
https://doi.org/10.1103/PhysRevB.44.2613
https://doi.org/10.1103/PhysRevLett.82.4094
https://doi.org/10.1023/A:1004651730459

NIKITA STROEV AND NATALIA G. BERLOFF PHYSICAL REVIEW B 104, 205435 (2021)

[22] J. Affolter, M. Tesei, H. Pastoriza, C. Leemann, and P.
Martinoli, Phys. C (Amsterdam, Neth.) 369, 313 (2002).

[23] M. J. P. Gingras and D. A. Huse, Phys. Rev. B 53, 15193 (1996).
[24] M. Franz and A. P. Iyengar, Phys. Rev. Lett. 96, 047007 (2006).
[25] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J.

Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M.
Lewenstein et al., Nat. Phys. 9, 738 (2013).

[26] A. Kosior and K. Sacha, Phys. Rev. A 87, 023602 (2013).
[27] N. G. Berloff, M. Silva, K. Kalinin, A. Askitopoulos, J. D.

Töpfer, P. Cilibrizzi, W. Langbein, and P. G. Lagoudakis, Nat.
Mater. 16, 1120 (2017).

[28] P. G. Lagoudakis and N. G. Berloff, New J. Phys. 19, 125008
(2017).

[29] G. Montemezzani, G. Zhou, and D. Z. Anderson, Opt. Lett. 19,
2012 (1994).

[30] D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, Landmark Papers on
Photorefractive Nonlinear Optics (World Scientific, Singapore,
1995), pp. 541–546.

[31] F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S.
Massar, Opt. Express 20, 22783 (2012).

[32] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M.
Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al.,
Nat. Photon. 11, 441 (2017).

[33] G. Csaba and W. Porod, Appl. Phys. Rev. 7, 011302 (2020).
[34] R. Frank, Phys. Rev. B 85, 195463 (2012).
[35] R. Frank, Ann. Phys. (NY) 525, 66 (2013).
[36] M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti,

M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A.
Bramati, G. Gigli, and D. Sanvitto, Phys. Rev. Lett. 109, 266407
(2012).

[37] F. Marsault, H. S. Nguyen, D. Tanese, A. Lemaître, E. Galopin,
I. Sagnes, A. Amo, and J. Bloch, Appl. Phys. Lett. 107, 201115
(2015).

[38] T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G.
Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis,
Phys. Rev. B 85, 235102 (2012).

[39] D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E.
Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto,
Nat. Commun. 4, 1778 (2013).

[40] A. V. Zasedatelev, A. V. Baranikov, D. Urbonas, F. Scafirimuto,
U. Scherf, T. Stöferle, R. F. Mahrt, and P. G. Lagoudakis, Nat.
Photon. 13, 378 (2019).

[41] A. Amo, T. Liew, C. Adrados, R. Houdré, E. Giacobino, A.
Kavokin, and A. Bramati, Nat. Photon. 4, 361 (2010).

[42] K. P. Kalinin and N. G. Berloff, Phys. Rev. Lett. 121, 235302
(2018).

[43] A. Opala, S. Ghosh, T. C. H. Liew, and M. Matuszewski, Phys.
Rev. Appl. 11, 064029 (2019).

[44] D. Ballarini, A. Gianfrate, R. Panico, A. Opala, S. Ghosh, L.
Dominici, V. Ardizzone, M. De Giorgi, G. Lerario, G. Gigli et
al., Nano Lett. 20, 3506 (2020).

[45] X. Guo, T. D. Barrett, Z. M. Wang, and A. Lvovsky, Photon.
Res. 9, B71 (2021).

[46] B. P. Marsh, Y. Guo, R. M. Kroeze, S. Gopalakrishnan, S.
Ganguli, J. Keeling, and B. L. Lev, Phys. Rev. X 11, 021048
(2021).

[47] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
Learning (MIT Press, Cambridge, MA, 2016), Vol. 1.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(IEEE, New York, 2015), pp. 1–9.

[49] K. He, X. Zhang, S. Ren, and J. Sun, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (IEEE,
New York, 2016), pp. 770–778.

[50] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys.
91, 045002 (2019).

[51] L. Zdeborová, Nat. Phys. 16, 602 (2020).
[52] L. Deng and D. Yu, Found. Trends Signal Process. 7, 197

(2014).
[53] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Art. Intel. Rev.

26, 159 (2007).
[54] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, J. Syst.

Softw. 49, 3 (1999).
[55] K. P. Kalinin, A. Amo, J. Bloch, and N. G. Berloff,

Nanophotonics 9, 4127 (2020).
[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg et al., J. Mach. Learning Res. 12, 2825 (2011).

[57] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, Proceedings of
the IEEE International Conference on Computer Vision (IEEE,
New York, 2017), pp. 843–852.

[58] K. Kawaguchi, J. Huang, and L. P. Kaelbling, Neural Comput.
31, 1462 (2019).

[59] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-
Dickstein, Proceedings of the 34th International Conference on
Machine Learning, Proceedings of Machine Learning Research,
edited by D. Precup and Y. W. Teh (PMLR, 2017), Vol. 70,
pp. 2847–2854.

[60] R. Eldan and O. Shamir, 29th Annual Conference on Learning
Theory, Proceedings of Machine Learning Research, edited by
V. Feldman, A. Rakhlin, and O. Shamir (PMLR, New York,
2016), Vol. 49, pp. 907–940.

[61] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier
neural networks, in Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics (JMLR
Workshop and Conference Proceedings, 2011), pp. 315–323.

[62] V. Nair and G. E. Hinton, Proceedings of the 27th International
Conference on International Conference on Machine Learning
(Omnipress, Madison, WI, USA, 2010), pp. 807–814.

[63] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, ICLR (Poster),
edited by Y. Bengio and Y. LeCun (2016).

[64] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys.
Rev. Lett. 69, 3314 (1992).

[65] H. Ohadi, Y. del Valle-Inclan Redondo, A. Dreismann, Y. G.
Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G.
Savvidis, and J. J. Baumberg, Phys. Rev. Lett. 116, 106403
(2016).

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison
et al., Pytorch: An imperative style, high-performance deep
learning library, in Advances in neural information pro-
cessing systems (Curran Associates, Inc., 2019), Vol. 32,
pp. 8026–8037.

[67] D. P. Kingma and J. Ba, arXiv:1412.6980.

205435-12

https://doi.org/10.1016/S0921-4534(01)01266-7
https://doi.org/10.1103/PhysRevB.53.15193
https://doi.org/10.1103/PhysRevLett.96.047007
https://doi.org/10.1038/nphys2750
https://doi.org/10.1103/PhysRevA.87.023602
https://doi.org/10.1038/nmat4971
https://doi.org/10.1088/1367-2630/aa924b
https://doi.org/10.1364/OL.19.002012
https://doi.org/10.1364/OE.20.022783
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1063/1.5120412
https://doi.org/10.1103/PhysRevB.85.195463
https://doi.org/10.1002/andp.201200188
https://doi.org/10.1103/PhysRevLett.109.266407
https://doi.org/10.1063/1.4936158
https://doi.org/10.1103/PhysRevB.85.235102
https://doi.org/10.1038/ncomms2734
https://doi.org/10.1038/s41566-019-0392-8
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1103/PhysRevLett.121.235302
https://doi.org/10.1103/PhysRevApplied.11.064029
https://doi.org/10.1021/acs.nanolett.0c00435
https://doi.org/10.1364/PRJ.411104
https://doi.org/10.1103/PhysRevX.11.021048
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1038/s41567-020-0929-2
https://doi.org/10.1561/2000000039
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1016/S0164-1212(99)00062-X
https://doi.org/10.1515/nanoph-2020-0162
https://doi.org/10.1162/necoa01195
https://doi.org/10.1103/PhysRevLett.69.3314
https://doi.org/10.1103/PhysRevLett.116.106403
http://arxiv.org/abs/arXiv:1412.6980

