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Electromagnetically induced transparency from first-order dynamical systems
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We show how a strongly driven single-mode oscillator coupled to a first-order dynamical system gives
rise to induced absorption or gain of a weak probe beam and associated fast or slow light depending on
the detuning conditions. We derive the analytic solutions to the dynamic equations of motion, showing that
the electromagnetically induced transparency- (EIT-) like response is a general phenomenology, potentially
occurring in any nonlinear oscillator coupled to first-order dynamical systems. The resulting group delay (or
advance) of the probe is fundamentally determined by the system damping rate. To illustrate the practical
impact of this general theoretical framework, we quantitatively assess the observable consequences of either
thermo-optic or free-carrier dispersion effects in conventional semiconductor microcavities in control/probe
experiments, highlighting the generality of this physical mechanism and its potential for the realization of
EIT-like phenomena in integrated and cost-effective photonic devices.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1] and its
analogs [2] gathered high interest over the past few decades.
In its broadest definition, the phenomenon consists of the
appearance of a narrow transmission window in an otherwise
absorptive medium, such as an atomic cloud or a solid-state
medium. This is typically associated with a steep normal
dispersion, owing to the analytic relation between the real
and the imaginary parts of the dielectric response function,
which gives rise to large group delays (slow light) for light
pulses within the induced transparency spectral window [3]
with applications ranging from optical delay lines to photonic
quantum memories [4].

After the first experimental evidence shown on atomic
clouds [5], and the subsequent demonstration of slowing light
down to 17 m/s in an ultracold gas [6], several EIT analogs
have been reported in solid-state systems, such as semicon-
ductor quantum dots [7,8], coupled resonators [9], metama-
terials [10], cavity optomechanics [11,12], and acousto-optic
resonators [13,14] with group delays or advances as high as
a few microseconds. The possibility to achieve optical delay
was specifically investigated in integrated photonics due to
the interest for the implementation of small-footprint delay
lines with applications ranging from optical memories [15] to
quantum computing [16].

All the EIT analogs quoted above share a common feature:
the electromagnetic field coherently interacts with a physical
system displaying a second-order dynamic response, charac-
teristic of harmonic oscillators. This may be either a �-type
three-level system in the case of conventional EIT [1] or a

*dario.gerace@unipv.it

mechanical harmonic oscillator in the case of optomechan-
ically induced transparency [11,12,17] or again an acoustic
mode of the structure in the case of Brillouin scattering in-
duced transparency [13,14]. Intuitively, all these examples
have in common the coherent exchange of energy between
the field and the harmonic degree of freedom, which results
in the emergence of the induced transparency window and the
associated slow or fast light effects [12].

In contrast, little effort has been devoted so far to investi-
gate the interaction between the electromagnetic field and a
first-order (i.e., dissipative) system. In this paper, we present
a theoretical model of a generic single-mode oscillator driven
by an intense control and a weak probe field and nonlinearly
coupled to a first-order dynamical system. We show how this
very general physical configuration gives rise to an EIT-analog
response. In light of the several possible physical realizations
of this model, our approach represents a novel framework
to investigate EIT and its peculiar consequences on light
dispersion in various and unconventional experimental set-
tings. In particular, we first show that any dynamical quantity
characterized by a decay rate γ and mediating an effective
Kerr-type nonlinear interaction on the localized electromag-
netic field gives rise to a spectral hole or antihole. These can be
experimentally evidenced by a weak probe superimposed to
an intense control beam, associated group advance, or delay,
respectively.

We then show how this phenomenology stems from two
paradigmatic examples of effective nonlinearities in semi-
conductor resonators: the first-order dynamical response
associated with the thermo-optic (TO) effect, and the one due
to free-carrier dispersion. As a consequence, any resonator re-
alized in material platforms subject to such types of nonlinear
behavior can be potentially engineered to display an EIT-
like response and to exploit their observable consequences,
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FIG. 1. Scheme of the physical system under analysis. An optical
resonator, characterized by an intracavity field amplitude a(t ), bare
resonance frequency ω0, and intrinsic decay rate �, is coherently
driven by a control (red arrow) and a probe (blue arrow) input
fields. The confined mode is coupled to a first-order system (yellow),
uniquely characterized by a dynamical variable x(t ) and an incoher-
ent dissipation rate γ through the coupling parameters G and β.

i.e., large group delays or advances. We note that, whereas
the first experimental evidences for thermo-optically induced
transparency have already been reported [18,19], the free-
carrier induced transparency phenomenon predicted here has
not been observed, nor theoretically described, up to date.
Although this paper aims at providing a theoretical framework
for the formulation and interpretation of a general class of
phenomena, our purpose is also to introduce the key ana-
lytic tools to design the practical implementation of large
group delays and advances in actual photonic devices based
on conventional material platforms, thus, fostering future ex-
periments allowing to leverage the stringent requirements of
typical EIT-analog physics.

The paper is organized as follows. In Sec. II we show how
EIT can emerge from the interaction between a confined opti-
cal mode and a first-order system within a general theoretical
framework. First, we present the relevant equations of mo-
tion, their steady-state solutions (Sec. II A), and a linearized
solution assuming a control-probe excitation (Sec. II B). In
Sec. III, we predict how this phenomenon can be observed
in actual state-of-art semiconductor microcavities, mediated
either by the thermo-optic effect (Sec. III A) or by the free-
carrier dispersion effect (Sec. III B), and we finally provide a
comparison of the relevant figures of merit (Sec. III C).

II. GENERAL MODEL

Consider a single-mode oscillator, which for simplicity
might be thought of as an optical cavity (e.g., sketched in
Fig. 1), characterized by a time-dependent classical field am-
plitude a(t ), a bare resonance frequency ω0 a decay rate �,
and driven by a forcing amplitude sin. Next, let us consider
a second physical system, described by a classical degree
of freedom x(t ) and obeying the following first-order rate
equation:

d

dt
x(t ) = β|a(t )|2 − γ x(t ), (1)

where the forcing term is proportional to the intracavity en-
ergy |a(t )|2 through the absorptive parameter β, whereas the
dissipation rate γ represents the intrinsic system damping
(decay).

We will, henceforth, assume that the actual resonance fre-
quency parametrically depends on x(t ) such that ω0 = ω0 +
Gx(t ) in which G is a coupling term and ω0 is the resonance
frequency in the presence of the nonlinear shift. We assume
the field amplitude to obey the following dynamical equation:

d

dt
a(t ) =

(
iω0 − �

2

)
a(t ) + iGx(t )a(t ) +

√
η�sin(t ), (2)

in which η represents the in-coupling efficiency to the single-
mode oscillator such that the in-coupling rate is given as �in =
η�. The interaction term in Eq. (2) can be easily interpreted
as a Kerr-type (i.e., intensity-dependent) shift of the cavity
resonance frequency, typically observed in nonlinear optical
resonators. However, in contrast with the instantaneous Kerr
response, the timescale of such an interaction is here governed
by the characteristic damping rate γ , typical of effective non-
linearities. In analogy with the usual phenomenology of the
Kerr response, we will assume G < 0 for the moment, with
straightforward generalization.

We will now study the dynamics of the system response
first in the presence of a single driving field with a constant
amplitude and then in a control-and-probe excitation configu-
ration.

A. Steady-state solution: optical bistability

Consider a monochromatic driving field (henceforth, re-
ferred to as the “control field”) in the form

sin(t ) = sineiωct . (3)

The steady-state solutions to Eqs. (1) and (2) are as follows:

a =
√

η�

i� + �/2
sin, x = β

γ
|a|2, (4)

where � = ωc − ω0 = ωc − ω0 − Gx is the detuning be-
tween input and intracavity field renormalized by the presence
of a power-dependent shift and |a|2 represents the intracavity
energy.

By analogy with the theory of optical bistability for a
localized mode coupled to a Kerr medium [20], Eqs. (4) can
be rewritten in the form

|a|2
|sin|2

= 4η/�

1 + (2�/� + |a|2/|ab|2)2
, (5)

where we defined the characteristic bistability energy |ab|2 =
−γ�/(2Gβ ). The solution of Eq. (5) may exhibit a charac-
teristic “sawtooth” lineshape as a function of the detuning
� = ωc − ω0 and depending on |a|2 as shown in Fig. 2 and as
already reported [21]. In fact, in the presence of a sufficiently
intense driving field (|a|2 � |ab|2) and appropriate detuning
conditions (� >

√
3

2 �) there are three possible solutions to
the nonlinear equation, associated with two stable and one
unstable equilibrium states, respectively [21,22]. In actual
physical systems, the appropriate stable solution should be
chosen according to the experimental conditions.
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FIG. 2. Normalized intracavity energy as a function of the detun-
ing between the control and the bare cavity frequencies � = ωc − ω0

in the presence of a constant driving field sin. The increased coupled
power (and, consequently, resonance shift) at lower detuning results
in a characteristic sawtooth lineshape typical of bistable systems.
The blue line represents the system response at low control power
(peak cavity energy: |a|2 = 10−3|ab|2), the red (peak |a|2 = |ab|2)
and yellow (peak |a|2 = 2|ab|2) curves represent the system response
at increasing input power.

B. Dynamic solution: induced absorption and gain

1. Linearized dynamics

We will now investigate the system response in the pres-
ence of an intense control field in the form given in Eq. (3),
and a weak “probe field” δsin(t ) = spei(ωc−
)t such that the
overall driving term can be written as

sin(t ) = sineiωct + spei(ωc−
)t , (6)

where |sp|2 � |sin|2. Note that the input intensity displays
an optical beating occurring at the control-probe detuning
frequency, 
.

Under this assumption, we will model both the optical
resonator and the first-order system responses as a steady
state (i.e., mean-field) value, adding on top of it a small time-
dependent perturbation,

a(t ) = aeiωct + δa(t ), (7a)

x(t ) = x + δx(t ). (7b)

The weak probe field can then be included in the model by
linearizing the dynamical Eqs. (1) and (2) at the equilibrium
point, following a conventionally employed approach [11]. By
inserting the dynamical variables defined in Eqs. (7) into the
coupled differential equations we get

d

dt
δa(t ) =

(
iω0 − �

2

)
δa(t ) + iGa δx(t ) +

√
η�δsin(t ),

(8a)

d

dt
δx(t ) = β[a∗δa(t ) + aδa∗(t )] − γ δx(t ). (8b)

The solution can be found under the following ansatz:

δa(t ) = A−
p ei(ωc−
)t + A+

p ei(ωc+
)t ,

δx(t ) = Xe−i
t + X ∗e+i
t .

After including the latter into Eqs. (8) and separating terms
according to their time dependence, we finally derive the
following expressions for the oscillation amplitudes:

A−
p = iGaX + √

η�sp

i(� − 
) + �/2,
(9a)

A+
p = iGa

i(� + 
) + �/2
X ∗, (9b)

X = β

−i
 + γ
[a∗A−

p + a(A+
p )∗]. (9c)

2. Analytic solution

The formal expressions given in Eqs. (9) can now be used
to derive explicit analytic expressions for A−

p , A+
p , and X . In

particular,

X = β

−i
 + �IT

a∗√η�

i(� − 
) + �/2
sp . (10)

Here we defined an “induced transparency linewidth,” whose
physical meaning will become clear in the next subsection, in
particular, after Eq. (16),

�IT = γ

(
1 + |a|2

|ab|2
χ̃ (�)

)
, (11)

where |ab|2 represents the characteristic energy for optical
bistability already introduced in Sec. II A, whereas the param-
eter,

χ̃ (�) ≈ 4�/�

4�
2
/�2 + 1

(12)

can be interpreted as an effective susceptibility for this non-
linear phenomenology [23] as it clearly appears from its plot
in Fig. 3(a).

The physical meaning of Eq. (10) can be summarized
as follows. The term on the right-hand side of the product
represents the optical response of the cavity under external
excitation in the absence of the induced transparency effect.
This is described by a Lorentzian lineshape, centered at 
 =
� and with full width at half maximum �. Conversely, the
term on the left-hand side of the product is associated with the
first-order response of the physical system. It also consists of
a Lorentzian function, centered in 
 = 0 and with halfwidth
at half maximum �IT .

Thus, the oscillation amplitude X [Fig. 3(b)] can be ap-
preciably different from zero only if the control field is tuned
in frequency within the optical resonator response (� ∼ �),
and the probe field is at the same time sufficiently close to
the control frequency (
 ∼ �IT ). In the case that the first-
order system response is much slower than the optical one
(γ � �) as we will assume from now on, the overall spectral
response of X is dominated by the linewidth �IT and can
be itself approximated by a Lorentzian curve. Note that the
width of the oscillation curve �IT (i.e., the effective dissipa-
tion rate) depends on the control energy |a|2. In particular,
it increases (�IT > γ ) in the blue-detuning regime (� > 0),
and it decreases (0 < �IT < γ ) in the red-detuning regime
(� < 0). In both cases, for a given control energy |a|2, �IT is
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(a) (b)

(c) (d)

FIG. 3. (a) Susceptibility of the induced transparency as a func-
tion of the detuning between the control field and the shifted
resonator mode frequencies. (b)–(d) Oscillation amplitude/Stokes
and anti-Stokes sidebands amplitude as a function of the probe-
control detuning frequency, 
. The calculations were performed
with system parameters γ = 10−3�, G = −10−1�, β = 10−2�,
and driving parameters |sp|2 = 0.1|sin|2, � = +�/2, and |a|2 =
(|ab|2, 3|ab|2, 5|ab|2) from the blue to the yellow curve, respectively.
All curves are spaced by a vertical offset of 0.15 for clarity.

either maximized or minimized when � = ±�/2. Thus, the
effective dissipation rate of the first-order system is controlled
by the action of the strong control field. This behavior is
typical of EIT phenomenology, and it was also reported in
connection with several EIT analogs in the literature, such as
Refs. [11,12].

Given the expressions (10) and (11), the anti-Stokes A+
p

field can be analytically derived from Eq. (9b),

A+
p ≈ 1

i
 + �IT

iGβa2√η�

�
2 − 
2 + �2/4

s∗
p. (13)

The overall spectral lineshape of A+
p is also a Lorentzian

curve [see Fig. 3(d)], with half-width at half maximum �IT .
Briefly, the field amplitude A+

p can be interpreted as a sideband
generated by the modulation of the control field inside the
cavity by the oscillation X , and similar considerations as for
the X solution lineshape apply.

A similar expression for the Stokes field amplitude A−
p can

be analytically derived from Eq. (9a),

A−
p =

(
1 + 1

−i
 + �IT

iGβ|a|2
i
(
� − 


) + �/2

)

×
√

η�

i(� − 
) + �/2
sp. (14)

In this case, the coherent mixing between the input probe
field and the sideband generated by the modulation of the
control field produces an asymmetric Fano-type lineshape [see
Fig. 3(c)].

3. Output signal

We will now employ the analytic expressions derived
above to construct the output signal. In particular, within

an input-output formalism the output field can be expressed
as [24]

sout (t ) = −
√

η�a(t ), (15)

in which one assumes that the outcoupling rate �out = �in =
η� is essentially the same as the input for the sake of sim-
plicity and as it is common in many experimental situations.
Being directly proportional to the intracavity field amplitude,
the output field contains three frequency components, oscil-
lating at the carrier (ωc), Stokes (ωc − 
), and anti-Stokes
(ωc + 
) frequencies, respectively. Note that all the compo-
nents’ amplitude and phase depend both on the control and on
the probe fields.

Focusing our attention to potential technological applica-
tions (e.g., optical pulse delay), we will define an output signal
based on the optical beating occurring on the output field
intensity, i.e., I (t ) = |sout (t )|2 where the output field ampli-
tude is given by Eq. (15). This depends on all the frequency
components involved, and it is explicitly given as

I (t ) = η�|a + A−
p e−i
t + A+

p e+i
t |2

= 2η� Re{a∗A−
p + aA+∗

p } cos 
t

+2η� Im{a∗A−
p + aA+∗

p } sin 
t + · · · ,

where in the last two lines we considered only the components
oscillating at frequency 
. As aforementioned, the latter can
be seen as the beating frequency between control and probe
fields. Although an optical beating is observable also on the
input field intensity |sin(t )|2, the amplitude and phase of this
oscillation on |sout (t )|2 depend exclusively on the underlying
induced transparency phenomenology.

In the frequency domain, the oscillation on the out-
put intensity can be expressed in the complex form
Ĩ (
) = 2η�(a∗A−

p + aA+∗
p ). From comparison with Eqs. (9c)

and (10), this is finally calculated as

Ĩ (
) =
(

1 − �IT − γ

−i
 + �IT

)
2a∗(η�)3/2

i(� − 
) + �/2
sp . (16)

In the blue- (red-) detuning regime, the multiplying term
within brackets represents a Lorentzian dip (peak) of width
�IT and visibility |V|, respectively, such that

V = 1 − γ

�IT
, (17)

where we have defined the visibility as the height of the dip
(peak) spectral feature divided by the value of the unperturbed
cavity response.

The amplitude of the output signal Eq. (16) is explicitly
shown in Fig. 4 for different driving and detuning condi-
tions. As is evidenced, the typical system response displays
very narrow absorption or gain features within the broader
Lorentzian response of the shifted resonator mode, similar
to the phenomenology already observed for optomechanically
coupled oscillators [12].

4. Phase response and group delay

The visibility of the induced absorption or gain phe-
nomenon is directly related to the already defined linewidth
�IT . As we will see, this has a crucial role in the determination
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Output signal amplitude (normalized by the peak cavity response at 
 = �) and phase in blue- (a)–(c) and red- (d)–(f) detuning
regimes, respectively. The calculations assume the following physical parameters: γ = 10−3�, G = −10−1�, β = 10−2�, and driving
parameters � = +�/2, |a|2 = (|ab|2, 3|ab|2, 5|ab|2) (a)–(c); � = −�/2, |a|2 = (0.2|ab|2, 0.4|ab|2, 0.6|ab|2) (d)–(f).

of the phase response, and, hence, the associated group delay
or advance.

First, the phase associated with Eq. (16) can be expressed
as

φ(
) = − arg {Ĩ (
)} ≈ arctan

{

(�IT − γ )


2 + γ�IT

}
, (18)

where we neglected the bare resonator phase response. Note
that the above definition assumes an optical beating in the
form I (t ) = |Ĩ| cos(
t + φ). The above function has absolute
maximum and minimum in 
 = ±√

γ�IT , which corre-
sponds to a phase shift,

φpeak = ± arctan

{
1

2

V√
1 − V

}
. (19)

The effect of this dispersive system response on an optical
pulse can be qualitatively understood as a phase shift, i.e.,
given by Eq. (18), acting on all its frequency components. In
the region where |
| <

√
γ�IT , the phase response is approx-

imately linear, and the overall effect on the optical pulse is a
time delay or advance. This group delay is hereby defined as

τg(
) = − dφ

d



→0≈ −V
γ

, (20)

which absolute value is clearly maximized for 
 ∼ 0. Note
that in the blue-detuning regime the delay is negative (group
advance), and it asymptotically reaches the value of τmin

g =
−1/γ for unit visibility. Conversely, in the red-detuning
regime the delay is positive, and it diverges for �IT → 0. The
calculated phase response for different driving and detuning
conditions is shown in Figs. 4(c) and 4(f), and its phenomenol-
ogy is consistent with the one commonly observed in bulk
fast- and slow-light media [3].

The visibility V and the associated peak phase shift φpeak

as defined by Eqs. (17) and (19), respectively, are plotted in
Fig. 5 as a function of the cavity energy |a|2 and detuning

parameter χ̃ . The red- and blue-detuning regimes are explic-
itly indicated in the panels, respectively.

III. APPLICATION TO SEMICONDUCTOR
MICROCAVITIES

The model and the solutions discussed so far are general,
the only requirement being the coupling of a single-mode
Kerr-type nonlinear oscillator to a dissipative first-order

FIG. 5. (a) Calculated trend for dip visibility as a function of
the |a|2χ̃ product, which value is determined by the control field
intensity and detuning conditions. Negative values indicate a peak
spectral feature. (b) Calculated trend for peak phase shift Eq. (19).
The + sign, associated with the local maximum/minimum at 
 =
+√

γ�IT , was chosen. Red (blue) shaded regions are associated with
the respective detuning regimes.
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system. We have shown that induced absorption and gain
phenomena can easily be evidenced in such systems as well
as the associated group advance or delay.

We will now discuss the actual relevance of these results
in practical realizations of this model. In particular, we con-
sider conventional semiconductor microcavities in standard
material platforms, such as silicon or III–V alloys, which
are typically characterized by intensity-dependent effective
nonlinearities, such as thermo-optic or free-carrier dispersion
effects [25].

A. Thermo-optically induced transparency

1. Induced absorption and gain from thermo-optic nonlinearity

The TO nonlinear effect consists of a local variation of
the refractive index due to the heating of an optical medium.
In a semiconductor microcavity, a variation of the refractive
index in the region where the field is localized translates into a
variation of the resonance frequency. According to first-order
perturbation theory, the resonance shift is given by [21]

�ω0

ω0
= −�n

n
= −1

n

dn

dT
�T = α �T, (21)

where for simplicity we assumed the temperature variation
�T (with respect to room temperature) to be uniform over the
whole cavity region and the field to be completely confined
within the optical medium subject to the TO effect. More-
over, we are neglecting any other temperature-related effect
(e.g., thermal expansion) which may induce, by any extrin-
sic mechanisms, a further shift of the resonance wavelength.
Although these mechanisms are usually present in real-world
microresonators, their impact can be quantified either from
first principles [26] or by experimental measurement [27] of
the resonance shift. The overall effect can be modeled in the
limit of a small temperature variation by a correction to the
TO coefficient α.

In the case in which linear absorption is the origin of the
heating, and the optical intensity is time varying, the temper-
ature variation is also time dependent. Its dynamics is then
governed by the following rate equation [21]:

Cp
d

dt
�T (t ) = �abs|a(t )|2 − K �T (t ), (22)

where Cp is an effective heat capacity, �abs = ηabs� is the
optical absorption rate, and K is an effective heat conductance.

With these definitions, it is straightforward to recast
Eqs. (1) and (2) to appropriately describe the thermo-optic
dynamics. This can be accomplished by formally identifying
x(t ) = �T (t ), β = �abs/Cp, γ = K/Cp, and G = ω0α. As a
consequence, all of the results discussed in Sec. II can be
applied to single-mode optical resonators subject to linear ab-
sorption and the TO nonlinear shift of its resonance frequency.

Although thermal bistability is a well-known phenomenon
in the domain of optical microcavites [21,28], thermo-
optically induced transparency (TOIT) has been demonstrated
only very recently [18,19], and it can be regarded as a peculiar
example of induced transparency from a first-order dynamical
system obtained through mechanisms discussed in the pre-
vious section. Within this context, the previously introduced

characteristic bistability energy is given by

|ab|2 = − γ�

2Gβ
= − K

2Qαηabs
, (23)

where Q = ω0/� is the quality factor of the bare cavity reso-
nance and ηabs = �abs/� is the absorption efficiency, i.e., the
fraction of optical loss associated to light absorption. Note that
the formal expression of the bistability energy above does not
depend on any dynamical parameter (such as γ ) as it describes
the static behavior of the resonator in the presence of a control
field with constant amplitude.

The value of |ab|2 can be very small for integrated res-
onators with values of less than 1 fJ for silicon photonic
crystal (PhC) cavities [28] and few femtojoules in microring
resonators [29] to name some of the most widespread mi-
crocavity designs. Nevertheless, this nonlinearity has already
been explored in the past for applications, such as low-power
all-optical switching [30]. In the framework of TOIT, this
translates in a very low threshold for the activation of the
observed phenomenology [18].

The dynamical properties of the induced absorption or
gain are governed by the thermal decay rate γ . As Eq. (11)
suggests, the already defined induced transparency linewidth
�IT will be (in most practical cases) quite close to γ as an
order of magnitude. This value is, in general, larger for smaller
sized microcavities as highlighted by recent experiments. In
particular, a linewidth in the submegahertz range has been
reported in the case of TOIT measured in an integrated silicon
PhC cavity [18] and a sensibly slower dynamics in the case
of a bulk Fabry-Pérot system with a linewidth of the order
of 100 Hz [19]. Indeed, typical orders of magnitude for inte-
grated resonators are in the range of γ /2π ∼ 1 MHz for both
silicon PhC cavities [28,31] and microring resonators [32,33],
respectively.

2. Modeling thermal diffusion

The model for the TOIT effect detailed in the previous
paragraph describes the thermal dynamics by means of a
single temperature offset �T (t ) associated with a discrete
thermal decay rate γ = K/Cp by means of the first-order
differential equation (22). Although this discretization allows
to find a direct correspondence with the general case, i.e.,
Eqs. (1) and (2), it is usually quite a rough approximation for
the modeling of actual system dynamics. Here, to complete
this section, we provide a generalization of TOIT based on a
more accurate model of heat diffusion within a microstructure.

In the most general description, temperature is an intensive
time-dependent quantity governed by the heat diffusion equa-
tion,

ρcp
∂

∂t
T (r, t ) + ∇[−κ∇T (r, t )] = ∂

∂t
u(r, t ), (24)

where ρ is the medium density, cp is the mass specific heat,
κ is the thermal conductivity, and ∂u

∂t is a source term de-
scribing the heat flux density towards the system, in this case
associated with the absorbed optical power. In this context,
Eq. (22) represents a discretized version of the heat diffusion
equation where the temperature offset with respect to room
temperature is considered uniform over a finite volume region,
i.e., �T (r, t ) → �T (t ). In this “lumped elements” model, the
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Δ 2, ,2

2

1
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FIG. 6. Discretized heat diffusion model. Each shell is character-
ized by a heat-capacity Cp,i, and it exhibits a heat diffusion constant
Ki and a temperature offset �Ti with respect to the next outer shell.

intensive physical quantities, cp and κ , appearing in Eq. (24),
are replaced by extensive ones, respectively Cp and K .

Following an approach already suggested in previous
works [21,34,35], a more accurate description of the problem
can be formulated by slicing the thermal distribution into n
concentric regions, whose definition depends on the detailed
geometrical aspects of the system. A schematic is reported in
Fig. 6 for completeness. Each region is labeled from 1 to n
such that i = 1 is the innermost thermal shell where the field
is mainly confined, and i = n is the outermost one. The ith
region is characterized by a heat-capacity Cp,i, an effective
temperature offset �Ti with respect to the (i + 1)-th one, and
a heat diffusion constant Ki towards it. Given these definitions,
Eqs. (1) and (2) are straightforwardly generalized as follows:

d

dt
a(t ) =

(
iω0 − �

2

)
a(t ) + iG �T (t )a(t ) +

√
η�sin(t ),

(25a)

d

dt
�T1(t ) = β|a(t )|2 − γ1,1�T1(t ), (25b)

d

dt
�T2(t ) = γ1,2�T1(t ) − γ2,2�T2(t ), (25c)

. . .

d

dt
�Tn(t ) = γn−1,n�Tn−1(t ) − γn,n�Tn(t ), (25d)

where the overall temperature offset experienced by the field
is �T (t ) = ∑n

i=1 �Ti(t ), whereas the rates connecting dif-
ferent regions are defined γi, j = Ki/Cp, j and β = �abs/Cp,1.
With these definitions and the assumptions made in the pre-
vious paragraph, Eqs. (25) describe with arbitrarily high
accuracy any thermal diffusion process that is consistent with
the symmetry and geometrical details of the problem.

In the presence of a monochromatic control field, a solution
formally similar to Eq. (4) can be derived

a =
√

η�

i(ω − ω0 − G �T ) + �/2
sin, (26a)

�T = �abs

K
|a|2, (26b)

where �T = ∑n
i=1 �T i is the overall temperature offset and

K = (
∑n

i=1 K−1
i )−1 is the total series conductance. With these

definitions, the steady-state result obtained from the general-
ized model is formally identical to the one obtained in the
simplified one nicely. This result justifies a posteriori the
simplified description in the steady-state condition, which can
be effectively described by a single temperature offset �T and
a single heat conductance K .

Following the steps discussed in Appendix A, it is possible
to derive an analytic expression for the temperature oscillation
amplitude T (
) and the output signal Ĩ (
) in the framework
of this generalized model,

T (
) = ξ (
)
β

−i
 + �IT (
)

a∗√η�

i(� − 
) + �/2
sp, (27)

Ĩ (
) =
(

1 − �IT (
) − γ1,1

−i
 + �IT (
)

)
2a∗(η�)3/2

i(� − 
) + �/2
sp, (28)

in which

�IT (
) = γ1,1

(
1 + |a|2

|ab|2
ξ ′(
)χ̃ (�)

)
, (29)

where ξ ′(
) = Kξ (
)/K1 and

ξ (
) = 1 +
n∑

j=2

(
j∏

i=2

γi−1,i

−i
 + γi,i

)
. (30)

The latter expression clearly displays a recursive hierarchical
structure. Note that �IT (
) is now a frequency-dependent
quantity, and it cannot be simply interpreted as a linewidth
as done before in connection with Eq. (11). However, this
quantity still provides relevant information for the description
of the induced transparency visibility. In fact, the thermal
response function ξ (
) (plotted in Fig. 7) and its normalized
form ξ ′(
) contain all the information about the thermal
process dynamics, quantified by the decay rates γi, j . A com-
parison between this result (by assuming n = 3) and the
simplified model with a single thermal decay time is explicitly
shown in Fig. 7. As it can be noted, the simplified model is a
reasonably good approximation for the quantitative estimation
of the zero-detuning response, but it fails to correctly capture
the detailed lineshapes, which may significantly deviate from
a single Lorentzian.

Similar figures of merit as for the general model can be de-
rived. In particular, the expression for the visibility is basically
the same as the one previously introduced in Eq. (17), and it
reads

V = 1 − γ1,1

�IT (0)
. (31)

In contrast, the expressions for the phase and the group delay
become more complicated in this case than the ones intro-
duced in Eqs. (18) and (20), respectively. A full derivation
is detailed in Appendix A for completeness. In particular, for
small values of 
 it is found that the group delay as a function
of V shows a trend similar to the one given by Eq. (20),

τg(
 → 0) ≈ − V
γeff

(32)

205434-7



CLEMENTI, GALLI, O’FAOLAIN, AND GERACE PHYSICAL REVIEW B 104, 205434 (2021)

(a) (b)

(c) (d)

FIG. 7. Comparison between the TOIT response for the gener-
alized (blue solid line) and the simplified (red dashed line) models,
respectively. (a) Thermal response function ξ (
) as a function of
the probe-control detuning. (b) Temperature oscillation amplitude.
(c) Amplitude and (d) phase response for the output signal. The
calculation assumes the following parameters: G = −10−1�, β =
10−2�, � = +�/2, and |a|2 = |ab|2. For the nonrefined model
(n = 1) we chose γ = 10−3�, whereas for the refined model (n =
3) we chose γ1,1 = 3 × 10−3�, γ1,2 = γ2,2 = γ1,1/4, γ2,3 = γ3,3 =
γ1,1/8. Note that by this choice of parameters, the static temperature
offset �T is the same in both scenarios.

where γeff is an effective thermal decay rate, which is a func-
tion of the γi, j parameters. The minimum (negative) group
delay achieved asymptotically in the blue-detuning regime is
then given by τmin

g = −1/γeff . As an example, for the case of
n = 3, this is given by

τmin
g = −γ1,2/γ

2
2,2 + (γ2,2 + γ3,3)γ1,2γ2,3/γ

2
2,2γ

2
3,3

1 + γ1,2/γ2,2 + γ1,2γ2,3/γ2,2γ3,3
.

B. Free-carrier induced transparency

Free-carrier dispersion (FCD) is an ubiquitous phe-
nomenon in semiconductor microcavities, and its behavior has
been extensively studied in silicon devices [25,36]. It consists
of a modification of the refractive index induced by the pres-
ence of hot carriers in the valence or conduction bands of a
semiconductor material, which can be modeled by a simple
Drude theory to a first approximation [37].

If a localized resonant mode is confined in a region af-
fected by FCD, the associated resonance shift will be, to
first-order [26],

�ω0

ω0
= −�n

n
= −1

n

dn

dN
N = ζN, (33)

where N is the effective carrier density, which we assume
to have a uniform distribution over the whole cavity region.
We also assume the field to be completely confined within
the optical medium subject to FCD. The FCD coefficient ζ is
typically positive, i.e., the presence of a carrier density yields
a blueshift of the cavity resonance.

If the population of free carriers is the result of an excita-
tion by the electromagnetic field associated with the localized
mode, FCD phenomenologically behaves as an effective non-
linearity, similar to the TO effect but with an opposite sign.
Specifically, if the free-carrier population is generated by
linear absorption (e.g., absorption from defect states), the
free-carrier dynamics is described by the following rate equa-
tion [35]:

d

dt
N (t ) = �abs

V h̄ω
|a(t )|2 − 1

τc
N (t ), (34)

where ω is the electromagnetic-field frequency �abs is the
absorption rate, τc is the free-carrier recombination lifetime,
and V is an effective volume occupied by the free carriers.

Again, it is immediate to recast Eqs. (1) and (2) to properly
describe the FCD dynamics. Specifically, here we formally
identify x(t ) = N (t ), β = �abs/V h̄ω, γ = 1/τc, and G =
ω0ζ . As a consequence, the predicted phenomenology de-
scribed in Sec. II is observable in semiconductor optical
cavities affected by linear absorption and FCD. In contrast to
TOIT, this phenomenon, which we will refer as free-carrier
induced transparency (FCIT) has not been predicted, nor ex-
perimentally reported, to date. The resonance shift induced by
FCD has been investigated in the past mainly in the framework
of fast all-optical switching [38,39]. In this context, the FCD
mechanism typically consists in a much faster response time
and a comparable characteristic bistability energy as com-
pared to the TO effect. Similar considerations then apply to
FCIT as compared to TOIT.

In fact, the characteristic bistability energy is here given by

|ab|2 = − γ�

2Gβ
= − h̄V

2τcζηabs
, (35)

where we assumed ω ≈ ω0. Note that, since the sign of inter-
action is opposite to the case of the TO effect (here, G > 0),
FCD gives rise to a reversed sawtooth-shaped response in the
steady-state scenario as compared to the one already reported
in Fig. 2. In practical cases, a combination of TO and FCD
nonlinearities may occur, which may manifest into the dy-
namical cavity response. In some circumstances, this gives
rise to an unstable behavior, such as self-pulsations as already
reported [33].

In the case of FCIT, the most remarkable consequence
of the reversed sign of the interaction is an opposite phe-
nomenology when compared to the TOIT scenario: in the
blue-detuning regime (� > 0), a FCIT peak is expected, asso-
ciated with a narrowing of the induced transparency linewidth
(�IT < γ ). Conversely, a FCIT dip with associated linewidth
broadening (�IT > γ ) is expected in the red-detuning regime
(� < 0). Apart from this difference, the phenomenology to
be expected with these two nonlinear processes is essentially
identical, and a generalized model accounting for the spatial
carrier diffusion can be formulated with an approach similar to
the one presented in the previous paragraph. The formulation
of such a model, based on the carrier diffusion equation rather
than the heat diffusion law, is straightforward but goes beyond
the scope of the present paper.

In practical semiconductor devices, FCIT exhibits a higher
characteristic bistability energy |ab|2 as compared to TOIT.
The existing literature reports all-optical switching energy
values ranging from ∼100 fJ to ∼10 pJ in silicon PhC
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cavities [39,40], and sub-femtojoules values reported for
III–V devices exploiting the band-filling dispersion nonlin-
earity [38], an analogous but physically different dispersive
mechanism to FCD. Switching energies on the order of 1 pJ
have been reported for microring resonators [41].

C. Discussion and comparison

We have shown two different examples of effective non-
linearities that could be treated within the unified framework
introduced in the previous section, yielding remarkably simi-
lar phenomenology associated with EIT physics. In particular,
applications requiring slow and fast light may benefit from the
engineering of such first-order dynamical systems.

In this respect, it is worth recalling that a fast response time
is particularly beneficial for applications requiring a wide op-
erational bandwidth, such as fast optical memories. However,
the overall delay (or advance) achievable is limited, in general,
by a key figure of merit, such as the delay-bandwidth product
�t �ω � 2π . Hence, the narrower the bandwidth, the larger
the delay time that could be achieved. Within this context, it
is worth stressing that TOIT allows great flexibility offered
at a design level by the engineering of the resonator thermal
properties [35]. Another key feature of TOIT is the possibility
to overcome the delay-bandwidth limit by cascading multi-
ple resonators [42]. This solution is practically hindered in
many EIT analogs due to the tight requirements of matching
an optical and an atomic, mechanical or acoustic resonance,
whereas it would be relatively easy to implement in TOIT-
based devices.

Despite the higher threshold energy as compared to TOIT,
FCIT has significant advantages in terms of bandwidth, which
is determined by the free-carrier lifetime τc rather than the
thermal decay time. Typical values can be on the order of
100 ps for PhC cavities [25,43] and on the order of 1 ns for
whispering gallery mode resonators [44]. In both cases, τc can
be further reduced by ion implantation [31,41]. The resulting
induced transparency linewidth and, hence, slow or fast light
bandwidth, lies in the gigahertz range, opening a pathway to
applications, such as broadband delay lines and optical mem-
ories, even at room temperature and in cost-effective material
platforms. Finally, although it is worth noting that the max-
imum delay or advance theoretically achievable with FCIT
would be much lower than the TOIT case, also FCIT can be
easily cascaded along multiple resonators, thus, considerably
extending the potential delay achievable above these limits.

IV. SUMMARY AND OUTLOOK

We have presented a general model describing a physical
system governed by first-order dynamics and coupled to
a single-mode optical resonator, showing how its solution
can lead to the observation of analog EIT phenomenology
in a driving configuration in which a weak probe beam
is superimposed to a strong control field. From a set of
two coupled equations of motion, we have derived analytic
expressions for the key physical quantities involved both in
the steady state and in a control and probe scenario. For the
latter case, we showed that induced transparency emerges
as an interference effect between the cavity control and
probe fields, mediated by the effective interaction provided

by the first-order dynamical system. This results in induced
absorption (spectral hole) in the control-cavity blue-detuning
regime (� > 0) and induced gain or amplification (spectral
antihole) in the red-detuning regime (� < 0) for a Kerr-type
effective interaction (G < 0). The former case is associated
with fast light and the broadening of the induced transparency
linewidth, whereas the latter case is associated with slow
light and the narrowing of the induced transparency feature.
The relevant figures of merit, including the spectral linewidth
�IT , the visibility V , and the group delay τg were explicitly
derived, and linked to the properties of the physical system,
such as the characteristic optical bistability energy |ab|2 and
the first-order system damping rate γ .

In Sec. III, we discussed the specific correspondence of this
general model to the physics of semiconductor microcavities
subject to effective Kerr-type nonlinearities. In particular, our
focus was on two different dispersive mechanisms, namely,
the thermo-optic effect and the free-carrier dispersion, which
are typical of several semiconductor photonic devices. We
evidenced how both effects can be driven by the absorption
of the cavity field, and they can, thus, be regarded as effective
Kerr-type nonlinearities, each described by a characteristic
first-order differential equation. The resulting induced trans-
parency effects are theoretically predicted to yield a group
advance or delay in the microsecond range for TOIT and
in the nanosecond range for FCIT both hardly achieved on
chip by current photonic technology [15]. As a comparison,
a microsecond-scale delay achieved in an on-chip delay line
would require an ∼100-m-long integrated waveguide with
the current silicon photonics technology. Moreover, the two
effects are associated with operational bandwidths in the
megahertz and gigahertz ranges, respectively, which could be
further increased by cascading multiple resonators without
the need to match any mechanical or acoustic resonance.
Furthermore, the transparency bandwidth could be controlled,
in principle, by engineering the thermal or free-carrier proper-
ties of the microstructured resonators, for instance, by heat
diffusion design [35] or ion bombardment [40]. It is also
worth stressing that TOIT has recently been observed in two
different experimental scenarios [18,19], whereas FCIT has
not been reported at time of writing, which we believe will
stimulate new experimental research in this direction.

Finally, the general and unified framework presented in this
paper can be extended to other physical systems displaying a
first-order response and coupled to a single-mode oscillator,
opening a pathway towards the demonstration of generalized
induced transparency analogs and the achievement of slow
light in yet unforeseen platforms, thus, revealing novel viable
approaches towards the realization of optical and quantum
memories.
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APPENDIX: DERIVATION FOR THE REFINED TOIT
MODEL

Following the steps already discussed in Sec. II B, we will
now derive the linearized equations of motion in the hypothe-
sis of a weak probe field. The procedure is formally identical
to the previous one for what concerns the field amplitude,
whereas for the effective temperature the following additional
assumptions are made:

�Ti(t ) = �T i + δTi(t ), (A1a)

δTi(t ) = Tie
−i
t + T ∗

i e+i
t , (A1b)

where

�T =
n∑

i=1

�T i, δT =
n∑

i=1

δTi, T =
n∑

i=1

Ti.

The linearized equations of motion, thus, read

d

dt
δa(t ) =

(
iω0 − �

2

)
δa(t ) + iG, aδT (t ) +

√
η�δsin(t ),

(A2a)

d

dt
δT1(t ) = β[a∗δa(t ) + a δa∗(t )] − γ1,1δT1(t ), (A2b)

d

dt
δTi(t ) = γi−1,iδTi−1(t ) − γi,iδTi(t ) (i > 1). (A2c)

We note that the solution is formally similar to the one already
found for a single thermal rate, Eqs. (9), although the tem-
perature oscillation T now derives from all the temperature
offsets Ti,

A−
p = iGaT + √

η�sp

i(� − 
) + �/2
, (A3a)

A+
p = iGa

i(� + 
) + �/2
T ∗, (A3b)

T1 = β

−i
 + γ1,1
[a∗A−

p + a(A+
p )∗], (A3c)

Ti = γi−1,i

−i
 + γi,i
Ti−1 (i > 1). (A3d)

From the last equation,

Ti = γi−1,i

−i
 + γi,i

γi−2,i−1

−i
 + γi−1,i−1
· · · · · γ1,2

−i
 + γ2,2
T1 (A4)

which is valid for any i > 1. We can find a general relation
between T and T1,

T =
n∑

i=1

Ti = ξ (
)T1. (A5)

In the last step we defined the thermal response function ξ (
)
such that

ξ (
) = 1 + γ1,2

−i
 + γ2,2

+ γ1,2γ2,3

(−i
 + γ2,2)(−i
 + γ3,3)

+ · · · +
n∏

i=2

γi−1,i

−i
 + γi,i
. (A6)

Note that ξ (
) has an absolute maximum in 
 = 0 for which
ξ (0) = K1/K .

Applying this relation to the field components (A3), it is
immediately possible to recover the formal expressions for the
fields derived in the general model. In particular, by directly
comparing with Eq. (A3c), we note that all the expressions
previously obtained, including β and �IT , can be general-
ized by substituting β → ξ (
)β and γ → γ1,1. The resulting
expressions for T (
), Ĩ (
), and �IT (
) are reported in the
main text.

In calculating the phase response associated to the output
signal, we first subdivide ξ (
) in a real and an imaginary
part,

ξ (
) = ξ r + iξ i,

�IT (
) = γ1,1 − ξ (
)ζ .

We then express

Ĩ (
) = −i
 + γ1,1

−i
(
 + ξ iσ ) + (γ1,1 − ξ rσ )

2a∗(η�)3/2

i(� − 
) + �/2
sp,

where σ = 2Gβ|a|2�/(�
2 + �2/4). From the above expres-

sion, the phase can be approximated as

φ(
) ≈ arctan

(γ1,1 − ξ rσ ) − γ1,1(
 + ξ iσ )


(
 + ξ iσ ) + γ1,1(γ1,1 − ξ rσ )
,

where we neglected the bare resonator phase response. We
will now assume the peak group delay to have a functional
form analogous to Eq. (20),

τg(
 → 0) ≈ − V
γeff

, (A7)

where γeff is an effective decay rate that depends on the
parameters γi, j . With this hypothesis and in the presence of
linear dispersion at 
 → 0, the asymptotic group delay can
then be expressed as

τg = lim

→0

− φ



= − 1

γ1,1

[
1 − γ1,1

�IT
(1 + ξ i/
σ )

]
σ→∞≈ − 1

ξ r

dξ i

d

= τmin

g ,

where in the last step we assumed �IT (0) � γ1,1 and, thus,
V → 1 in the blue-detuning regime. The final analytic result
for the case n = 3 is reported in the main text.
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