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Superconductor/normal-metal/superconductor junction of topological superconductors revisited:
Fractional Josephson current, fermion parity, and oscillating wave functions
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The fractional Josephson effect is known to be a characteristic phenomenon of topological Josephson junctions
hosting Majorana zero modes (MZMs), where the Josephson current has a 4π (rather than a 2π ) periodicity in
the phase difference between the two topological superconductors. We introduce a one-dimensional model of a
topological superconductor/normal-metal/superconductor (SNS) junction with the normal-metal (N) region of
finite length, which is intermediate regime between the short- and long-junction limits. Assuming weak tunneling
at the SN interfaces, we investigate resonance and finite-size effects on the fractional Josephson effect due to
the existence of several discrete energy levels in the N region in which wave functions have oscillating nodal
structure. Through careful analysis of the sign change in the transmission amplitudes through the junction and
the fermion parity of the two MZMs, we find that the fractional Josephson current is proportional to the parity
of total fermion numbers including both filled normal levels and two MZMs. Furthermore, we elucidate drastic
enhancement of the Josephson current due to the resonance between a discrete level in the N region and MZMs.
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I. INTRODUCTION

Topological phases of matter have recently attracted much
attention in condensed matter physics [1–3]. One of the
characteristic features of topological phases of matter is the
presence of symmetry-protected gapless boundary states that
are robust against weak perturbations respecting relevant sym-
metry. The robustness is related to topology of wave functions
and is important from the perspective of device applications
as well as fundamental physics. Indeed, Majorana zero modes
(MZMs) in a topological superconductor have been expected
to be an essential element for quantum memory and comput-
ing [4–8]. Although many experimental studies have reported
signatures of Majorana fermions so far [9–14], those results
are inconclusive and nothing more than necessary conditions
for the existence of MZMs [15], and a decisive evidence of
their existence has not been obtained yet.

As a promising experimental proof for the existence of
MZMs, previous theoretical studies have suggested a frac-
tional Josephson effect in a topological Josephson junction,
where the Josephson current has a 4π , rather than a 2π ,
periodicity as a function of the phase difference between the
two topological superconductors [4,16–31]. The first paper
presenting this idea is Ref. [4], in which Kitaev introduced
a one-dimensional (1D) lattice model of a spinless p-wave
superconductor (the so-called Kitaev chain), which is a pro-
totypical model of a topological superconductor. He showed
that the ground-state fermion parity (FP) of a topological
Josephson junction switches its sign every 2π change of
the phase difference, resulting in the 4π -periodic Josephson
current. There have been several experimental reports on the
observation of the fractional Josephson effect [9,32–36]. More
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recently, it has been shown that many-body interactions or
impurities can induce an 8π -periodic fractional Josephson
effect, due to the presence of Z4 parafermions or fractional
MZMs [37–42].

Regarding 1D topological superconductors themselves, re-
cent studies have pointed out that the energy splitting of
MZMs in a topological superconductor of finite length is,
under certain conditions, an oscillating function of system
parameters, such as a chemical potential, a superconducting
gap, and a system size [43–53]. In particular, Hegde and
his collaborators have investigated a finite-size Kitaev chain,
and elucidated that the number of times the ground-state FP
switches depends on the chain length, inside the parameter
region which they call the circle of oscillations [52,53]. The
switching behavior is attributed to oscillations in the Majorana
wave function.

Similarly, we expect that a strong finite-size effect
may exist in the fractional Josephson effect of topological
superconductor/normal-metal/superconductor (SNS) junc-
tions that have a MZM at each SN interface, for the following
reasons. First, the number of nodes in the wave function of
the nth lowest energy level in the normal-metal (N) region
depends on n. In other words, the number of oscillations is
controlled by the chemical potential. Second, the fractional
Josephson current is proportional to the first power of the
transmission amplitude of a single electron (rather than that
of a Cooper pair as in conventional Josephson junctions)
between the two superconductors, which necessarily involves
the wave function of the Fermi level in the N region [4,16,17].
Third, when an energy level in the N region coincides with
the Fermi energy of the superconductors (i.e., zero energy),
the supercurrent is expected to be strongly enhanced due
to resonance. These considerations lead us to speculate that
the sign (direction) of the fractional Josephson current can
be switched by changing the chemical potential, due to the
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oscillating behavior of the normal wave functions. However,
to our knowledge, most of the previous studies have either
considered the short-junction limit where there is no normal
discrete levels or paid little attention to the oscillation in
transmission amplitudes [16–31,54,55].

With the above backgrounds, in this paper we revisit the
problem of a 1D topological SNS junction. We consider a
lattice model of an SNS junction in which superconducting
electrodes are represented by two semi-infinite Kitaev chains
that are weakly connected through the N region of L sites.
The transmission through SN interfaces is assumed to be very
small, so that our model actually corresponds to an SINIS
junction (I: insulator); we will nevertheless call it an SNS
junction for simplicity throughout this paper. Importantly, the
total FP is conserved in our model, as our SNS junction is not
coupled to electron reservoirs.

We focus on the intermediate-L regime where there are sev-
eral discrete energy levels in the N region, in which case the
finite-size effects of our interest should be pronounced. Then
we calculate the low-energy spectrum of the model using a
perturbation theory and a recently developed exact diagonal-
ization method of a corner-modified banded block-Toeplitz
matrix [56–59]. The energy splitting of the MZMs obtained
from these calculations gives a direct measure of the frac-
tional Josephson effect. Consequently, we confirm resonant
enhancement of supercurrent to occur every time a discrete
level in the N region and MZMs are in resonance. However, on
the contrary to our naive expectation, we find that the direction
of the supercurrent flow is not reversed by varying chemical
potential in the N region. The latter conclusion is reached by
careful analysis of the interplay between the sign change in
transmission amplitudes (or normal wave functions) and the
FP of the two MZMs. As a result we find that the fractional
Josephson current is proportional to the parity of total fermion
numbers including both filled normal levels and two MZMs.

The paper is organized as follows. In Sec. II our lattice
model of the SNS junction with Kitaev chains as S electrodes
is presented. In Sec. III we obtain the energy spectrum of
the model using second-order and first-order perturbations for
off- and on-resonance cases, respectively. Next, an effective
model interpolating the two cases is constructed and analyzed
with particular attention paid to the total and partial FPs in
Sec. IV. In Sec. V we show results of the (numerical) exact
diagonalization method indicating resonant enhancements of
the fractional Josephson effect, in good agreement with the
perturbation theory. Finally, a brief summary and discussion
are given in Sec. VI.

II. MODEL

First, we introduce a 1D simple tight-binding model de-
scribing an SNS junction with both of the superconductors
being semi-infinite Kitaev chains,

H = HSL + HN + HSR + HT, (1)

HSL = −2
0∑

j=−∞
μ

(
c†

j c j − 1

2

)

−
−1∑

j=−∞
(tc†

j c j+1 − �eiϕL c†
j c

†
j+1 + H.c.), (2)

j

N

L+1 L+2LL−10

interface

−1 1 2 …………………… …

interface

SRSL

FIG. 1. A schematic illustration of the 1D SNS junction de-
scribed by the Hamiltonian (1). The left (SL) and right (SR)
superconducting regions are semi-infinite Kitaev chains with U(1)
phases ϕL and ϕR, respectively. The normal (N) region has finite L
sites.

HN = −2
L∑

j=1

μ

(
c†

j c j − 1

2

)
−

L−1∑
j=1

(tc†
j c j+1 + H.c.), (3)

HSR = −2
∞∑

j=L+1

μ

(
c†

j c j − 1

2

)

−
∞∑

j=L+1

(tc†
j c j+1 − �eiϕR c†

j c
†
j+1 + H.c.), (4)

HT = −λ(tc†
0c1 + tc†

LcL+1 + H.c.), (5)

where c j is a fermionic annihilation operator on jth site. t
and μ represent a hopping parameter and a chemical potential,
respectively, while � is an amplitude of the p-wave supercon-
ducting order parameter. HSL and HSR represent semi-infinite
Kitaev chains with superconducting U(1) phases ϕL and ϕR,
respectively, which are depicted by the blue regions in Fig. 1.
On the other hand, a normal metal in the middle of the junction
(the red region in Fig. 1) is described by HN with finite L sites
(unit cells). Furthermore, the Hamiltonian HT describes the
tunneling across the SN interfaces with the hopping ampli-
tude λt . For simplicity, t,� > 0 and 0 � λ < 1 are assumed
throughout the paper.

For the later discussions, let us rewrite the second-
quantized Hamiltonian [Eqs. (2)–(5)] into a first-quantized
form. The block-structure of the Hamiltonian enables us to de-
compose H into lattice and internal state (particle-hole) spaces
[56–59]. Let {| j〉 | j ∈ Z} be orthonormal bases of the lattice
space; | j〉 corresponds to jth site. Then the first-quantized
Hamiltonian is given by Eq. (1) and

HSL = 1SL ⊗ hS
0 + (

TSL ⊗ hS
1 (ϕL) + T †

SL ⊗ hS
1 (ϕL)†

)
, (6)

HN = 1N ⊗ hN
0 + (

TN ⊗ hN
1 + T †

N ⊗ hN†
1

)
, (7)

HSR = 1SR ⊗ hS
0 + (

TSR ⊗ hS
1 (ϕR) + T †

SR ⊗ hS
1 (ϕR)†

)
, (8)

HT = λ
[
(|0〉〈1| + |L〉〈L + 1|) ⊗ hN

1 + H.c.
]
, (9)

where the identity and left-shift operators for each region are
defined as

1SL =
0∑

j=−∞
| j〉〈 j| , TSL =

−1∑
j=−∞

| j〉〈 j + 1| , (10a)

1N =
L∑

j=1

| j〉〈 j| , TN =
L−1∑
j=1

| j〉〈 j + 1| , (10b)

1SR =
∞∑

j=L+1

| j〉〈 j| , TSR =
∞∑

j=L+1

| j〉〈 j + 1| . (10c)
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Furthermore, hS, L
r represents a matrix in the particle-hole

space associated with r shifts (hoppings) of sites:

hS
0 = hN

0 =
[−μ 0

0 μ

]
, (11a)

hS
1 (ϕ) = 1

2

[ −t �eiϕ

−�e−iϕ t

]
, hN

1 = 1

2

[−t 0
0 t

]
. (11b)

It is well known that a semi-infinite Kitaev chain possesses
a MZM localized at its end, when the chemical potential
satisfies |μ/t | < 1. Throughout this paper, we focus on this
parameter regime since we are interested in the Josephson
effect in the presence of MZMs on both SN interfaces.

III. PERTURBATION THEORY

In this section, we investigate the energy spectrum of the
SNS junction Hamiltonian [Eq. (1)] in terms of a perturbation
theory. Assuming λ � 1, we treat the tunneling Hamiltonian
HT as a perturbation to the Hamiltonian HSL + HN + HSR. The
advantage of this approach is that the unperturbed Hamilto-
nian describes the S and N regions separately and is easy
to solve (Sec. III A). Next, we derive energy level structures
when eigenstates of HN are off (on) resonance with MZMs,
by using a second-order (first-order) perturbation theory in
Sec. III B (Sec. III C).

A. Preliminary

First, we show energy eigenvalues and eigenstates of
the unperturbed Hamiltonian HSL + HN + HSR. The detailed
derivation is given in Appendix.

Since we assume |μ/t | < 1, the semi-infinite left and right
superconducting chains have MZMs localized at j = 0 and
j = L + 1, respectively [60]. The zero-energy eigenstates of
HSL and HSR are given by

|ψSL〉 = NS
0∑

j=−∞

[(
zS

1

)− j+1 − (
zS

2

)− j+1] | j〉
[

eiϕL/2

e−iϕL/2

]
,

(12)

|ψSR〉 = NS
∞∑

j=L+1

[(
zS

1

) j−L − (
zS

2

) j−L] | j〉
[

ieiϕR/2

−ie−iϕR/2

]
,

(13)

where NS is a normalization constant [see Eq. (A17)], and

zS
1,2 = −μ ±

√
μ2 + �2 − t2

t + �
. (14)

Equations (12) and (13) are derived under the assumption that
μ2 + �2 − t2 �= 0, that is, zS

1 �= zS
2; see also Eqs. (A19) and

(A20) for zero-energy eigenvectors when μ2 + �2 − t2 = 0.
Note that zS

1,2 are complex numbers when μ2 + �2 − t2 < 0.
The normal-metal Hamiltonian HN has 2L eigenstates in the
bulk (and no end state), where the coefficient 2 comes from the
particle-hole sectors in our Bogoliubov–de Gennes formalism.

N SRSL

0

(b)

N SRSL

0

(a)

FIG. 2. Schematic illustrations of single-particle energy levels
(a) without and (b) with zero energy states in the N region. The lowest
perturbation theory for the tunneling Hamiltonian HT is (a) second-
order and (b) first-order, respectively. Some transition processes due
to the perturbation are shown by the red and blue arrows.

The eigenenergies and eigenstates are

εN
1,2(q) = ∓

[
μ + t cos

( πq

L + 1

)]
=: ±εN(q), (15)

∣∣ψN
1,2(q)

〉 = NN
L∑

j=1

sin
( πq j

L + 1

)
| j〉
{[

1
0

]
,

[
0
1

]}
, (16)

where NN is a normalization constant [see Eq. (A32)], and
q = 1, 2, . . . , L. |ψN

1 (q)〉 and |ψN
2 (q)〉 correspond to particle

and hole wave functions, respectively; they have energies of
opposite sign, ±εN(q). Note that the qth particle/hole wave
functions |ψN

l (q)〉 possess q − 1 sign changes between j = 1
and j = L.

In the following subsections, we discuss the perturbation
theory with the small parameter λ in the tunneling Hamilto-
nian HT. The tunneling matrix elements of HT between the
superconducting and normal-metal wave functions are given
by

〈
ψN

l (q) | HT | ψSL
〉 = {−t̃ (q)eiϕL/2, l = 1,

+t̃ (q)e−iϕL/2, l = 2,
(17a)

〈
ψN

l (q) | HT | ψSR
〉 = {

it̃ (q)(−1)qeiϕR/2, l = 1,

it̃ (q)(−1)qe−iϕR/2, l = 2,
(17b)

where

t̃ (q) = NSNNλt

√
μ2 + �2 − t2

t + �
sin
( πq

L + 1

)
. (18)

The (−1)q factor in Eq. (17b) reflects the fact that the wave
functions in the N region have q − 1 nodes.

When calculating energy splitting of the MZMs by the
perturbation HT, we need to consider two cases separately:

off-resonance case. All of the normal energy eigenvalues
in Eq. (15) being away from zero energy [Fig. 2(a)], and

on-resonance case. Two (one particle-like and one hole-
like) of the normal energy eigenvalues being close to zero
energy [Fig. 2(b)].

We will discuss the two cases in the following two subsec-
tions, respectively.
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B. Second-order perturbation in off-resonance case

In this subsection, we discuss the off-resonance case, in
which a second-order perturbation theory should be a good
approximation as long as

|t̃ (q)| � |εN(q)|, ∀q = 1, . . . , L, (19)

is satisfied; see Fig. 2(a).
Since our main concern is the mixing of the two MZMs,

initial states are fixed to be |ψSL〉 and |ψSR〉. Introduc-
ing a projection operator P0 = |ψSL〉〈ψSL| + |ψSR〉〈ψSR|, the
second-order perturbed tunneling Hamiltonian is given by

H (2)
T = P0

L∑
q=1

2∑
l=1

HT
|ψN

l (q)〉〈ψN
l (q)|

(−1)lεN(q)
HTP0. (20)

Using the matrix elements in Eq. (17), the second-order
Hamiltonian for the initial states [|ψSL〉 , |ψSR〉] is written in
the matrix form

Ĥ (2)
T = λ2tA(2)(μ̄, �̄, L) cos

(ϕR − ϕL

2

)
σy, (21)

where μ̄ := μ/t , �̄ := �/t , σy is a Pauli matrix, and

A(2)(μ̄, �̄, L) = − 1

λ2t

L∑
q=1

2(−1)q|t̃ (q)|2
εN(q)

= (NSNN)2 |μ̄2 + �̄2 − 1|
(1 + �̄)2

×
L∑

q=1

2(−1)q sin2
(

πq
L+1

)
μ̄ + cos

(
πq

L+1

) , (22)

is a dimensionless “amplitude” function (see Fig. 3). Note
that the diagonal components of the matrix (21), which cor-
respond to to-and-fro procedures such as blue dashed arrows
in Fig. 2(a), are zero because the contributions from the inter-
mediate states +εN(q) and −εN(q) cancel.

Away from resonance, we can obtain the energy splitting
of the MZMs due to the tunneling by diagonalizing Eq. (21),

ε
(2)
± = ±λ2tA(2)(μ̄, �̄, L) cos

(ϕR − ϕL

2

)
. (23)

Equation (23) indicates the existence of degeneracy at ϕR −
ϕL = (2n + 1)π (n ∈ Z) of the zero-energy states, which is
protected by the FP (see also Sec. IV). The ϕR − ϕL depen-
dence of the ground-state energy (the lowest energy in both
FP sectors) is given by

Eoff-res
GS �

∑
σ∈occupied

ε(2)
σ + const

= −λ2t
∣∣∣A(2)(μ̄, �̄, L) cos

(ϕR − ϕL

2

)∣∣∣+ const,

(24)

where const is independent of the relative phase. The ground-
state FP switches at ϕR − ϕL = (2n + 1)π , and for fixed FP
we have 4π periodic (fractional) Josephson effect, as we will
discuss in more detail in Sec. IV [4,16–18,20,23,24].

We here comment on the “amplitude” function
A(2)(μ̄, �̄, L) in Eq. (22). Figures 3(a) and 3(b) show the
(μ̄, �̄) dependence of the function. A(2) obviously changes

FIG. 3. The parameter dependence of the “amplitude” function
[Eq. (22)] in second-order perturbation theory for (a) L = 5 and
(b) L = 6. The top panels in (a) and (b) are heat maps of A(2) in
μ̄–�̄ plane, while the bottom panels show the μ̄ dependence for
�̄ = 0.8 (the black dashed lines in the top panels). The resonance
points where εN(q) = 0 (q = 1, . . . , L) is satisfied are illustrated by
the green solid lines.

its sign L times as a function of the scaled chemical potential
μ̄, reflecting the oscillating behavior of the wave functions
in the N region. Furthermore, the function diverges on the
green lines defined by εN(q) = 0 (q = 1, . . . , L), namely
at the resonance points. The divergent behavior of A(2) is
not surprising, considering that Eq. (19) is not satisfied
around the lines, where the second-order perturbation theory
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breaks down. In the next subsection, we discuss a first-order
perturbation theory that works for the on-resonance region.

C. First-order perturbation in on-resonance case

Let us move on to the on-resonance case, where there exists
an integer q0 (1 � q0 � L) such that εN(q0) = 0. We here
note that the case when the chemical potential μ = 0 is on
resonance for odd L, while it is off resonance for even L (see
also Fig. 3). This fact is used for later discussions in Sec. V B.

On the resonance point, four single-particle eigenstates
|ψSL〉, |ψN

1 (q0)〉, |ψN
2 (q0)〉, and |ψSR〉 are degenerate (in

resonance) at the zero energy [see Fig. 2(b)]. Therefore, a
first-order perturbation theory can be applied to the analysis of
energy level structures around the zero point. Using Eq. (17),
the first-order perturbation Hamiltonian matrix in the basis
[|ψSL〉 , |ψSR〉 , |ψN

1 (q0)〉 , |ψN
2 (q0)〉] is given by

Ĥ (1)
T = λtA(1)(q0, �̄, L)

[
0 ĥ(1)†

T

ĥ(1)
T 0

]
, (25)

ĥ(1)
T = 1

2
s(q0, �̄)

[−eiϕL/2 i(−1)q0 eiϕR/2

e−iϕL/2 i(−1)q0 e−iϕR/2

]
, (26)

where

A(1)(q0, �̄, L) = 2|t̃ (q)|
λt

= 2NSNN

∣∣�̄2 − sin2
(

πq0

L+1

)∣∣1/2

1 + �̄
sin
( πq0

L + 1

)
,

(27)

s(q0, �̄) =
{

1 for|�̄| > sin
(

πq0

L+1

)
,

i for|�̄| < sin
(

πq0

L+1

)
.

(28)

Note that, when εN(q0) = 0, the scaled chemical potential is
determined by the integer q0: μ̄ = − cos( πq0

L+1 ).
Diagonalizing the matrix (25), we obtain the energy split-

ting of the MZMs due to the tunneling:

ε(1)
σ1σ2

= σ1λtA(1)(q0, �̄, L) cos
(ϕR − ϕL + σ2π

4

)
, (29)

with σ1, σ2 ∈ {±1}. Therefore, the dependence of the ground-
state energy (the lowest energy of the two FP sectors) on the
ϕR − ϕL at resonance is given by

Eon-res
GS �

∑
{σ1,σ2}∈occupied

ε(1)
σ1σ2

+ const

= −
√

2λtA(1)(q0, �̄, L)

× max
{∣∣∣cos

(ϕR − ϕL

4

)∣∣∣, ∣∣∣sin
(ϕR − ϕL

4

)∣∣∣}
+ const. (30)

From Eq. (30), one may consider that the Josephson cur-
rent has an 8π -periodicity, rather than the 4π -periodicity in
Eq. (24). As shown in the next section, however, the period-
icity in ϕR − ϕL of the lowest energy and Josephson current
under fixed FP is 4π for both on- and off-resonance cases.

IV. EFFECTIVE MODEL CONNECTING ON-RESONANCE
AND OFF-RESONANCE CASES

In Sec. III B, the energy level structures for the off-
resonance case were discussed by using the second-order
perturbation theory, which however breaks down around the
resonance points. Alternatively, the first-order perturbation
theory is used for the on-resonance case (Sec. III C). In this
section, we discuss an effective four-state model that can give
a unified description of both on- and off-resonance situations.

A. Effective model

Let us consider the situation where the two (left and right)
MZMs and the normal state labeled by q = q0 are the four
energy levels closest to zero energy in the superconducting
gap. An effective model focusing only on these states is thus
constructed, which turns out to be equivalent to the one con-
sidered by Affleck and Giuliano [24]. The Affleck–Giuliano
Hamiltonian is written in the notations used in the present
paper as

HAG = (
c†
〈
ψN

1 (q0) | HT | ψSL
〉
γL + H.c.

)
+ (

c†
〈
ψN

1 (q0) | HT | ψSR
〉
γR + H.c.

)
= −t̃LeiϕL/2c†γL − t̃∗

Le−iϕL/2γLc

− it̃ReiϕR/2c†γR + it̃∗
Re−iϕR/2γRc, (31)

where

t̃L = t̃ (q0), t̃R = (−1)q0−1t̃ (q0). (32)

c is an annihilation operator of the normal mode labeled by
q = q0, while γL and γR represent Majorana fermionic opera-
tors in the left and right superconducting regions, respectively.

The deviation from the resonance is controlled by a finite
energy εN of the normal particle. Then we obtain the effective
Hamiltonian

Heff = εN
(
c†c − 1

2

)+ HAG, (33)

where the constant 1
2 is introduced so that the energy spectrum

of Heff is particle-hole symmetric. The effective Hamiltonian
is solved by introducing

f = 1
2 (γL + iγR), f † = 1

2 (γL − iγR), (34)

which, respectively, represent annihilation and creation oper-
ators of a nonlocal fermion produced from the two Majorana
fermions. Then the Hamiltonian is rewritten as

Heff = εN
(
c†c − 1

2

)− [(t̃LeiϕL/2 − t̃ReiϕR/2)c† f † + H.c.]

− [(t̃LeiϕL/2 + t̃ReiϕR/2)c† f + H.c.].
(35)

The Hamiltonian commutes with the operator

(−1)Feff = eiπ (c†c+ f † f ) = (1 − 2c†c)(1 − 2 f † f ), (36)

whose eigenvalues ±1 indicate the even/odd FP in the effec-
tive model. Note that, since the effective Hamiltonian (35)
is constructed by extracting partial degrees of freedom from
the original Hamiltonian (1), the FP in the former model is
in general different from that in the latter model. For this
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FIG. 4. The ϕR − ϕL dependence of energy eigenvalues in
Eqs. (40) and (41) for (a) |εN/t̃ | = 0, (b) |εN/t̃ | = 0.2, and
(c) |εN/t̃ | = 2. q0 is set to be odd. The blue solid (red dashed) lines
represent the eigenvalues of the pFP-even (pFP-odd) sector. The two
sectors are exchanged when q0 is even.

reason, we call the eigenvalue of (−1)Feff a partial FP (pFP) to
distinguish it from the total FP of the full Hamiltonian (1).

B. Eigenvalues and Josephson current

Next, we solve the eigenvalue problem of Eq. (35). Since
[Heff, (−1)Feff ] = 0, the effective Hamiltonian can be block-
diagonalized into pFP-even and pFP-odd sectors. Let |vac〉 be
a vacuum state such that c |vac〉 = f |vac〉 = 0. Then Eq. (35)
acts on pFP-even states as

Heff|vac〉 = −εN

2
|vac〉

− (t̃LeiϕL/2 − t̃ReiϕR/2)c† f †|vac〉, (37)

Heffc
† f †|vac〉 = εN

2
c† f †|vac〉

− (t̃∗
Le−iϕL/2 − t̃∗

Re−iϕR/2)|vac〉. (38)

The pFP-even sector of the Hamiltonian is thus represented by
the following matrix,

Ĥ even
eff =

[ − εN

2 −t̃∗
Le−iϕL/2 + t̃∗

Re−iϕR/2

−t̃LeiϕL/2 + t̃ReiϕR/2 εN

2

]
,

(39)
which has two eigenvalues,

E even
± = ±

√(
εN

2

)2

+ |t̃L|2 + |t̃R|2 − (
t̃Lt̃∗

Re
i
2 (ϕL−ϕR ) + H.c.

)
.

(40)
In a similar way, eigenvalues of the pFP-odd sector are derived
as

Eodd
± = ±

√(
εN

2

)2

+ |t̃L|2 + |t̃R|2 + (
t̃Lt̃∗

Re
i
2 (ϕL−ϕR ) + H.c.

)
.

(41)
Note that both E even

± and Eodd
± are 4π -periodic functions of

ϕR − ϕL. Figure 4 shows the many-body energy spectrum in
Eqs. (40) and (41) as functions of ϕR − ϕL, where we set t̃L =
t̃R = t̃ (q0) with q0 chosen to be an odd integer.

Now we take a closer look at the energy spectrum with
Eq. (32) for different |εN/t̃ | values. When εN = 0 [Fig. 4(a)],
E even/odd

− is reduced to the simple form

E even
− = −2|t̃ (q0)|

∣∣∣sin
(ϕR − ϕL

4

)∣∣∣, (42a)

Eodd
− = −2|t̃ (q0)|

∣∣∣cos
(ϕR − ϕL

4

)∣∣∣, (42b)

where q0 is assumed to be an odd integer, i.e., t̃L = t̃R.
When q0 is an even integer (t̃L = −t̃R), E even

− and Eodd
− are

exchanged. Equation (42) is consistent with the result of
the first-order perturbation theory [Eq. (30)]. Note that the
lowest energy in each pFP sector E even/odd

− is linear in the
tunneling coupling λt , i.e., the interaction energy between
the two MZMs is proportional to the tunneling amplitude of a
single fermion, rather than to tunneling probability of a single
fermion or to tunneling amplitude of a Cooper pair; the latter
two are proportional to (λt )2. At finite temperature the free
energy of Heff in each pFP sector is given by

F even = − 1

β
ln
{

2 cosh
[
2β|t̃ (q0)| sin

(ϕR − ϕL

4

)]}
, (43a)

F odd = − 1

β
ln
{

2 cosh
[
2β|t̃ (q0)| cos

(ϕR − ϕL

4

)]}
, (43b)
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where β is inverse temperature. Obviously, the free energy has
a period 4π in the phase difference ϕR − ϕL. The dc Joseph-
son current is obtained by differentiating the free energy F
with respect to the phase difference,

I = e

h̄

∂F

∂ (ϕR − ϕL)
. (44)

In particular, in the zero-temperature limit β → ∞, the dc
Josephson current is

Ieven = −e|t̃ (q0)|
h̄

sgn
[
sin
(ϕR − ϕL

4

)]
cos

(ϕR − ϕL

4

)
,

(45a)

Iodd = +e|t̃ (q0)|
h̄

sgn
[
cos

(ϕR − ϕL

4

)]
sin
(ϕR − ϕL

4

)
.

(45b)

The Josephson current is a 4π -periodic function,
which becomes discontinuous in the limit β → ∞ at
ϕR − ϕL = 4nπ in Ieven and at ϕR − ϕL = (4n + 2)π in
Iodd (n ∈ Z). The discontinuities are the consequence of the
level crossings at ϕR − ϕL = 2nπ in Fig. 4(a).

These level crossings are lifted when εN �= 0 [see
Fig. 4(b)]. In other words, the gap opens at E = 0 when
the single-particle energy levels in the middle N region are
not in resonance with the MZMs. When |εN| is much larger
than |t̃ (q0)| [Fig. 4(c)], the ϕR − ϕL dependence of the lowest
energy eigenvalue in each pFP sector is given by

E even
− � −|εN|

2
− 2|t̃ (q0)|2

|εN|
[
1 + (−1)q0 cos

(ϕR − ϕL

2

)]
,

(46a)

Eodd
− � −|εN|

2
− 2|t̃ (q0)|2

|εN|
[
1 − (−1)q0 cos

(ϕR − ϕL

2

)]
,

(46b)

which is consistent with the result of the second-order per-
turbation theory [Eq. (24)]. The dc Josephson current at zero
temperature is thus given by

I = (−1)Feff+q0
e|t̃ (q0)|2

h̄|εN| sin
(ϕR − ϕL

2

)
, (47)

As a result, we have the 4π -periodic Josephson effect [4,16–
18,20,23,24] in the on-resonance case as well as the off-
resonance case. Of course, the magnitude of the Josephson
current in the on-resonance case [Eq. (45)] is much larger than
that in the off-resonance case [Eq. (47)].

C. Discussions about fermion parity

In the previous subsection, we have solved the effective
model connecting the on- and off-resonance cases, and de-
rived the explicit form of the Josephson current for both cases
[Eqs. (45) and (47)]. Comparing these two equations, we
notice that Eq. (47) has a (−1)q0 factor whereas Eq. (45) does
not. One might consider that the (−1)q0 factor would result in
alternating behavior of the Josephson current (for some fixed
phase difference) as a function of the chemical potential μ,
with sign changes happening near resonance points. However,

this would not match enhanced Josephson current in the on-
resonance case (45). This potential inconsistency is resolved
by considering the FP, as we explain below. Recall that the
pFP is different from the total FP of the original Hamiltonian
(1). When the single-particle states with q = 1, . . . , q0 − 1 in
the N region are occupied and those with q > q0 are empty,
the total FP (−1)F is related to the pFP (−1)Feff by

(−1)F = (−1)Feff (−1)q0−1. (48)

Here we note that the pFP Feff is the FP of the q = q0 state
and the MZMs [Eq. (36)]. Changing the chemical potential
can change the FP of all the single-particle states in the N
region, which is compensated by the FP of the MZMs

1 − 2 f † f = iγRγL, (49)

so that the total FP is conserved.
In the off-resonance case where |εN| � |t̃L/R|, we can in-

tegrate out the normal level with energy εN in the effective
Hamiltonian Heff and obtain the effective Hamiltonian for the
MZMs

Hoff
eff = − 1

|εN| (|t̃L|2 + |t̃R|2)

− iγRγL
2(−1)q0 |t̃Lt̃R|

εN
cos
(ϕR − ϕL

2

)
, (50)

which corresponds to the 1/|εN| terms in Eq. (46). We can
generalize it to include the contribution from all the normal
modes (q = 1, . . . , L),

Hoff = iγRγLλ2tA(2)(μ̄, �̄, L) cos
(ϕR − ϕL

2

)
, (51)

where A(2)(μ̄, �̄, L) is defined in Eq. (22) and we have kept
only the terms related to the FP of the MZMs. Differentiating
(51) with respect to the phase difference gives the Josephson
current,

Ioff = −iγRγL
eλ2t

h̄
A(2)(μ̄, �̄, L) sin

(ϕR − ϕL

2

)
. (52)

As we have seen in Fig. 3, the function A(2)(μ̄, �̄, L) has the
alternating dependence on μ, and its sign is equal to the FP
of the single-particle states in the N region (−1)F N

. Since the
product of iγRγL and (−1)F N

is the total FP (−1)F , Eq. (52)
can be rewritten as

Ioff = (−1)1+F eλ2t

h̄

∣∣A(2)(μ̄, �̄, L)
∣∣ sin

(ϕR − ϕL

2

)
. (53)

Equation (53) is a generalization of Eq. (47) for the off-
resonance case. Note that the Josephson current in Eq. (53) is
proportional to the total FP (−1)F and does not oscillate with
the chemical potential μ as long as the total FP is conserved.

Remembering the relation (48) and that Eq. (45) are written
for odd q0, we can restate Eq. (45) in terms of the total FP; the
dc Josephson current through a resonant level q0 is given by

Ion = −e|t̃ (q0)|
h̄

sgn
[
sin
(ϕR − ϕL

4

)]
cos

(ϕR − ϕL

4

)
(54a)

for (−1)F = +1, and

Ion = +e|t̃ (q0)|
h̄

sgn
[
cos

(ϕR − ϕL

4

)]
sin
(ϕR − ϕL

4

)
(54b)
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for (−1)F = −1. We note that Eqs. (53) and (54) are consis-
tent with each other in that they both have the same sign as
(−1)1+F for 0 < ϕR − ϕL � π .

We comment on the related previous work of Affleck and
Giuliano [24]. Assuming the total-FP conservation [61], these
authors have derived the current–phase relation equivalent to
Eqs. (53) and (54) in the short-junction limit where only a sin-
gle level in the N region is involved in the supercurrent flow.
Here we have calculated the Josephson current in the presence
of several occupied levels in the N region and obtained the
dependence on the total FP (−1)F , while taking into account
the oscillatory (−1)q0−1 factor of the wave functions in the N
region of finite length.

We have obtained the expressions for the dc Josephson cur-
rent for the on- and off-resonance cases for the SNS Josephson
junction with multiple levels in the N region. In the next
section we will develop a numerical method that allows us
to quantitatively describe how these limiting formulas are
smoothly connected.

V. EXACT DIAGONALIZATION OF CORNER-MODIFIED
BANDED BLOCK-TOEPLITZ MATRIX

In Secs. III and IV, we have investigated the interaction
between the two MZMs and the Josephson current using
the perturbation theory. In this section we introduce a non-
perturbative, numerical exact diagonalization method for a
more quantitative analysis of the energy structures. Indeed,
the Hamiltonian (1) has the form of a corner-modified banded
block-Toeplitz matrix, for which an efficient numerical diag-
onalization method has been developed in recent theoretical
studies [56–59]. We thus apply the method to our model, and
compare its numerical results with the perturbation theory.

A. Preliminary

Let us consider a problem equivalent to the exact diag-
onalization of the Hamiltonian (1), in the framework of the
corner-modified banded block-Toeplitz matrix [56–59]. In the
method, we first fix a certain initial energy value ε, and then
construct wave functions preserving the translation symmetry,
which are called bulk solutions, in each region of SL, SR, and
N. Next, we obtain a boundary matrix B(ε) taking into account
boundary (interface) conditions between the bulk solutions
[62]. When det B(ε) = 0, ε is an eigenenergy of the original
Hamiltonian, which is exactly what we want. Otherwise, it is
possible to make ε converge to a value satisfying det B(ε) =
0, by using some standard numerical technique. Therefore,
the method can be systematically implemented in numerical
calculations, whose results are shown in Sec. V B.

1. Bulk solutions

Here, bulk solutions of the model are constructed as fol-
lows. Let us consider a certain value ε ∈ R as a given energy
parameter. For the calculations of the bulk solutions, it is con-
venient to treat translation-invariant auxiliary Hamiltonians
[57,58],

HS(ϕ) = 1 ⊗ hS
0 + (

T ⊗ hS
1 (ϕ) + T−1 ⊗ hS

1 (ϕ)†
)
, (55)

HN = 1 ⊗ hN
0 + (

T ⊗ hN
1 + T−1 ⊗ hN†

1

)
, (56)

rather than the original Hamiltonian [Eqs. (1) and (6)–(9)].
Here T = ∑

j∈Z | j〉〈 j + 1| denotes a generator of discrete
translations, and 1 = ∑

j∈Z | j〉〈 j| is a corresponding identity
operator. More specifically, we solve the following eigenvalue
equations,

HS(ϕ)|�S(ε; ϕ)〉 = ε|�S(ε; ϕ)〉, (57)

HN|�N(ε)〉 = ε|�N(ε)〉, (58)

where the eigenvectors |�S(ε; ϕ)〉 and |�N(ε)〉 possess
“translation symmetry”, since HS(ϕ) and HN represent the
Hamiltonian of an infinite system without boundaries (inter-
faces). Then the bulk solutions are defined by [63]

|ψSL(ε; ϕL)〉 :=
(

0∑
j=−∞

| j〉〈 j| ⊗ 12

)
|�S(ε; ϕL)〉, (59)

|ψSR(ε; ϕR)〉 :=
( ∞∑

j=L+1

| j〉〈 j| ⊗ 12

)
|�S(ε; ϕR)〉, (60)

|ψN(ε)〉 :=
(

L∑
j=1

| j〉〈 j| ⊗ 12

)
|�N(ε)〉. (61)

Now we show concrete expressions of the wave functions.
In the left and right superconducting regions, the bulk solu-
tions for an energy ε are given by

∣∣ψSL
m (ε; ϕL)

〉 = 0∑
j=−∞

[
zS

m(ε)
]− j | j〉 ∣∣uS

m(ε; ϕL)
〉
, (62)

∣∣ψSR
m (ε; ϕR)

〉 = ∞∑
j=L+1

[
zS

m(ε)
] j−(L+1) | j〉 ∣∣uS

m(ε; ϕR)
〉
, (63)

with m = 1, 2. For the definition of zS
m(ε) and |uS

m(ε; ϕ)〉, see
Eqs. (A3)–(A8) in Appendix. In the N region, on the other
hand, the bulk solutions are given by

∣∣ψN
lσ (ε)

〉 = L∑
j=1

[
zN

l (ε)
]σ j | j〉 ∣∣uN

l

〉
, (64)

where l = 1, 2 and σ = ±. zN
l (ε) and |uN

l 〉 are defined by
Eqs (A24) and (A25), respectively.

2. Boundary matrix

In the above construction of the bulk solutions, the re-
gions SL, SR, and N have been independently considered.
The tunneling Hamiltonian HT, however, has matrix elements
connecting the wave functions in the neighboring regions.
Therefore, we here construct a boundary matrix reflecting the
boundary (interface) conditions. Let Hε be H − ε1. Then the
8 × 8 boundary matrix [64] is defined by

B(ε) = [BSL(ε) BN(ε) BSR(ε)], (65)
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where

BSL(ε) =

⎡
⎢⎢⎢⎢⎣

〈0 | Hε | ψSL
1 (ε; ϕL)〉 〈0 | Hε | ψSL

2 (ε; ϕL)〉
〈1 | Hε | ψSL

1 (ε; ϕL)〉 〈1 | Hε | ψSL
2 (ε; ϕL)〉

〈L | Hε | ψSL
1 (ε; ϕL)〉 〈L | Hε | ψSL

2 (ε; ϕL)〉
〈L + 1 | Hε | ψSL

1 (ε; ϕL)〉 〈L + 1 | Hε | ψSL
2 (ε; ϕL)〉

⎤
⎥⎥⎥⎥⎦, (66a)

BN(ε) =

⎡
⎢⎢⎢⎢⎣

〈0 | Hε | ψN
1+(ε)〉 〈0 | Hε | ψN

1−(ε)〉 〈0 | Hε | ψN
2+(ε)〉 〈0 | Hε | ψN

2−(ε)〉
〈1 | Hε | ψN

1+(ε)〉 〈1 | Hε | ψN
1−(ε)〉 〈1 | Hε | ψN

2+(ε)〉 〈1 | Hε | ψN
2−(ε)〉

〈L | Hε | ψN
1+(ε)〉 〈L | Hε | ψN

1−(ε)〉 〈L | Hε | ψN
2+(ε)〉 〈L | Hε | ψN

2−(ε)〉
〈L + 1 | Hε | ψN

1+(ε)〉 〈L + 1 | Hε | ψN
1−(ε)〉 〈L + 1 | Hε | ψN

2+(ε)〉 〈L + 1 | Hε | ψN
2−(ε)〉

⎤
⎥⎥⎥⎥⎦, (66b)

BSR(ε) =

⎡
⎢⎢⎢⎢⎣

〈0 | Hε | ψSR
1 (ε; ϕR)〉 〈0 | Hε | ψSR

2 (ε; ϕR)〉
〈1 | Hε | ψSR

1 (ε; ϕR)〉 〈1 | Hε | ψSR
2 (ε; ϕR)〉

〈L | Hε | ψSR
1 (ε; ϕR)〉 〈L | Hε | ψSR

2 (ε; ϕR)〉
〈L + 1 | Hε | ψSR

1 (ε; ϕR)〉 〈L + 1 | Hε | ψSR
2 (ε; ϕR)〉

⎤
⎥⎥⎥⎥⎦. (66c)

The matrix elements of Eqs. (66a)–(66c) are calculated as〈
0 | Hε | ψSL

m (ε; ϕL)
〉 = −zS

m(ε)hS
1 (ϕL)

∣∣uS
m(ε; ϕL)

〉
, (67a)〈

1 | Hε | ψSL
m (ε; ϕL)

〉 = λhN†
1

∣∣uS
m(ε; ϕL)

〉
, (67b)〈

0 | Hε | ψN
lσ (ε)

〉 = [
zN

l (ε)
]σ

λhN
1

∣∣uN
l

〉
, (67c)〈

1 | Hε | ψN
lσ (ε)

〉 = −hN†
1

∣∣uN
l

〉
, (67d)〈

L | Hε | ψN
lσ (ε)

〉 = −[zN
l (ε)

]σ (L+1)
hN

1

∣∣uN
l

〉
, (67e)〈

L + 1 | Hε | ψN
lσ (ε)

〉 = [
zN

l (ε)
]σL

λhN†
1

∣∣uN
l

〉
, (67f)〈

L | Hε | ψSR
m (ε; ϕR)

〉 = λhN
1

∣∣uS
m(ε; ϕR)

〉
, (67g)〈

L + 1 | Hε | ψSR
m (ε; ϕR)

〉 = −[zS
m(ε)

]−1
hS

1 (ϕR)†
∣∣uS

m(ε; ϕR)
〉
,

(67h)

with m = 1, 2; l = 1, 2, and σ = ±. The other matrix ele-
ments are zero.

As mentioned above, if a value ε satisfying det B(ε) = 0 is
found, then it is an exact eigenenergy of the original Hamilto-
nian (1). In this case there exists a nontrivial kernel α of the
boundary matrix [i.e., B(ε)α = 0], which enables us to con-
struct a wave function corresponding to the exact eigenvalue
[56–59].

B. Numerical results

In this subsection, we present numerical results of exact
eigenenergies of the Hamiltonian (1). The energies where the
boundary matrix [Eq. (65)] has a nontrivial kernel can be
obtained by using a conventional root-finding algorithm, such
as Newton’s method. The detailed results are shown below.

Figures 5(a) and 5(c) represent single-particle energy spec-
tra (around ε = 0) of the exact eigenvalues at μ = 0, as
functions of ϕR − ϕL. As noted in the beginning of Sec. III C,
the zero chemical potential corresponds to on-resonance (off-
resonance) regime for odd (even) L. Indeed, the difference
between even and odd Ls is clearly seen; for L = 5 [Fig. 5(a)],
the ϕR − ϕL dependence is consistent with that of the first-

order perturbed energy in Eq. (29), while the dependence for
L = 6 [Fig. 5(c)] is in good agreement with the second-order
perturbation theory [Eq. (23)]. When the chemical potential
slightly deviates from the on-resonance regime [Fig. 5(b)],
the level crossings at ϕR − ϕL = 2nπ are lifted, while those
at ϕR − ϕL = (2n + 1)π remain because of protection by the
FP. This corresponds to the many-body energy spectrum in
Fig. 4(b), which has small gaps at ϕR − ϕL = 2nπ around
the zero energy. Moreover, the magnitude of the energy is
on the order of λt and λ2t for on- and off-resonance cases,
respectively. Therefore, our perturbation theory in Sec. III
describes well the energy structures around the zero energy.

The magnitude of the zero-mode splitting corresponds to
that of the Josephson effect, as discussed in Sec. IV. There-
fore, the numerical exact calculation of energy levels gives us
quantitative estimate of the Josephson current for arbitrary μ

and L, i.e., for any parameter regime including both on- and
off-resonant cases. In Fig. 6 we show the minimum absolute
value of the single-particle eigenenergies, as a function of the
scaled chemical potential μ̄, fixing the relative phase ϕR − ϕL

to zero. Obviously, the exact numerical results (the red lines in
Fig. 6) quantitatively agree with the results of the perturbation
theory (the green and blue markers) for small λ [65]. There-
fore, the perturbation theory (Sec. III) and our effective model
(Sec. IV) help our understanding of the energy structures and
the FP switches.

The numerically exact calculations confirm that the 4π -
periodic Josephson current is strongly enhanced at the
resonance points satisfying εN(q) = 0 (q = 1, . . . , L). The
number of the enhanced peaks is of course determined by that
of the on-resonance points in the parameter space, namely L.
In this sense, the lattice property of the junction is reflected in
the magnitude of the fractional Josephson current.

VI. SUMMARY AND DISCUSSION

In this paper, we investigated the 1D tight-binding model of
the topological SNS junction where two semi-infinite Kitaev
chains (superconducting electrodes) are weakly connected
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FIG. 5. The ϕR − ϕL dependence of the exact energy eigenvalues
near zero energy, for (a) μ = 0, L = 5, (b) μ = 0.001, L = 5, and
(c) μ = 0, L = 6. The other parameters are (�̄, λ) = (0.8, 0.01).

through the N region of L sites. We derived the energy level
structures of the model by using a second-order (first-order)
perturbation theory, when the eigenstates in the N region are
off (on) resonance with MZMs. Then we analyzed the effec-
tive four-state model interpolating the on- and off-resonance
cases, and showed the existence of the fractional Josephson

FIG. 6. The chemical potential dependence of the smallest abso-
lute eigenvalue for (a) L = 5 and (b) L = 6 (the red lines). The other
parameters are (�̄, ϕR − ϕL, λ) = (0.8, 0, 0.01). The green triangles
(blue crosses) represent the results of the first-order (second-order)
perturbation theory. εN(q) = 0 (q = 1, . . . , L) is satisfied on the
green lines.

effect, where the Josephson current has a 4π -periodicity as
a function of the phase difference between the two super-
conductors [4,16–26], in both cases. In particular, resonant
enhancement of the Josephson current is shown to occur. Fur-
thermore, we elucidated that the fractional Josephson current
is proportional to the total FP involving occupied N levels and
two MZMs. Therefore, contrary to the naive expectation dis-
cussed in Introduction, the direction of the supercurrent flow
is not reversed even when the chemical potential is changed,
as long as the total FP is conserved.

Next, we numerically solved the original model using the
exact diagonalization method of a corner-modified banded
block-Toeplitz matrix [56–59]. The calculation results are
well compatible with the perturbation theory. Furthermore, we
showed rapid increase of the energy splitting of the MZMs in
the on-resonance regime. In other words, our results confirm
the drastic enhancement of the fractional Josephson current
to occur whenever a discrete N level and the MZMs are in
resonance, which may be observable as a sizable signal for
MZMs. We expect that the resonant enhancement should also
appear in the fractional ac Josephson current, which can be
observed by the measurement of Shapiro steps [9,32–36].
In experiments it is necessary to distinguish the 4π -periodic
contribution to the Josephson current from the conventional
2π -periodic one. Therefore, our suggestion of the resonantly
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enhanced 4π -periodic Josephson effect would be useful for
the experimental detection.

Finally, we consider possible applications of our study as
future works. An interesting direction to explore is interaction
effects. On the one hand, in a weakly interacting case, the re-
sults of this paper will be qualitatively unchanged. Indeed, the
interacting Kitaev chain has a topologically nontrivial phase
that can be continuously deformed to a topological phase
in the noninteracting Kitaev chain without gap closing [66].
Furthermore, the repulsive interactions in the N region would
not affect the current–phase relation in Eqs. (53) and (54) of
the noninteracting case, whereas its power-law dependence on
the length L is modified [24]. On the other hand, it may be
possible to discuss a Z4 fractional Josephson effect if strong
many-body interactions are taken into account [37–42]. As for
a technical aspect, our calculation method may be applicable
to the study of topological physics of multi-terminal Joseph-
son junctions, which has been discussed in recent studies
[67–83].
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APPENDIX: EXACT SOLUTIONS WITHOUT TUNNELING
HAMILTONIAN

In this Appendix, we solve the eigenvalue equation of the
Hamiltonian (1) for λ = 0. In this case, we can easily derive
eigenenergies and eigenfunctions in the two S and one N
regions, since they are completely decoupled from each other.
The eigenvalue problem can be recast as diagonalization of
corner-modified banded block-Toeplitz matrix [56–59].

1. Superconducting regions: HSL and HSR

First, we consider the two semi-infinite Kitaev chains lo-
cated on either side of the SNS junction.

a. Bulk solutions

In order to construct bulk solutions, we need to consider a
reduced bulk Hamiltonian defined by [56–59]

HS(z; ϕ) = hS
0 + (

zhS
1 (ϕ) + z−1hS

1 (ϕ)†)
= 1

2

[−2μ − t (z + z−1) �eiϕ (z − z−1)
−�e−iϕ (z − z−1) 2μ + t (z + z−1)

]
.

(A1)

Now a certain energy eigenvalue ε is fixed as a given pa-
rameter. Then an equation we should solve is represented as
follows:

z2 det(HS(z; ϕ) − ε12) = 0. (A2)

Solving the equation for z, we obtain four extended solutions,

z = −wS
l (ε) + σ

√[
wS

l (ε)
]2 − 1 (l = 1, 2; σ = ±), (A3)

where

wS
l (ε) = μ̄ + (−1)l−1

√
μ̄2 − (1 − �̄2)(μ̄2 + �̄2 − ε̄2)

1 − �̄2
,

(A4)
and the characters with a bar represent quantities scaled by
the hopping parameter: μ̄ := μ/t , �̄ := �/t , and ε̄ := ε/t .
Furthermore, eigenvectors for internal degrees of freedom
corresponding to the four solutions are given by

[
�̄eiϕ

√(
wS

l (ε)
)2 − 1

σ (ε̄ + μ̄ − wS
l (ε))

]
(l = 1, 2; σ = ±). (A5)

For convenience, we label the roots (A3) and the correspond-
ing eigenvectors (A5) as

zS
1 (ε), zS

2 (ε),
[
zS

2 (ε)
]−1

,
[
zS

1 (ε)
]−1

, (A6)∣∣uS
1+(ε; ϕ)

〉
,

∣∣uS
2+(ε; ϕ)

〉
,

∣∣uS
2−(ε; ϕ)

〉
,

∣∣uS
1−(ε; ϕ)

〉
,

(A7)

where the indices are determined such that

∣∣zS
1 (ε)

∣∣ � ∣∣zS
2 (ε)

∣∣ � 1 �
∣∣zS

2 (ε)
∣∣−1 �

∣∣zS
1 (ε)

∣∣−1
. (A8)

In particular, we discuss MZMs localized at the ends of the
superconductors, considering zero energy ε = 0, for which
the solutions of Eq. (A2) are given by

z = −μ ±
√

μ2 + �2 − t2

t ± �
,
−μ ∓

√
μ2 + �2 − t2

t ± �

=:
(
zS

1

)±1
,
(
zS

2

)±1
(A9)

and the corresponding eigenvectors,

∣∣uS
+(ϕ)

〉
:=
[

ieiϕ/2

−ie−iϕ/2

]
for z = zS

1,2,

∣∣uS
−(ϕ)

〉
:=
[

eiϕ/2

e−iϕ/2

]
for z = (

zS
1,2

)−1
, (A10)

which are independent of l = 1, 2. Supposing that t,� > 0,
we easily prove the following inequalities:

μ < −t −t < μ < t t < μ

|zS
1 | > 1 |zS

1 | < 1 |zS
1 | < 1

|zS
2 | < 1 |zS

2 | < 1 |zS
2 | > 1

(A11)

For simplicity, we assume that zS
1 �= zS

2, namely μ2 +
�2 �= t2. Therefore, wave functions of the MZMs in the left
and right superconducting regions are given by superpositions
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of the following eigenvectors:

∣∣ψSL
lσ

〉 = 0∑
j=−∞

(
zS

l

)σ j | j〉 ∣∣uS
σ (ϕL)

〉
, (A12)

∣∣ψSR
lσ

〉 = ∞∑
j=L+1

(
zS

l

)σ j | j〉 ∣∣uS
σ (ϕR)

〉
, (A13)

where l = 1, 2 and σ = ±.

b. Boundary matrix

Next, we consider boundary conditions. First, let us discuss
the left superconducting chain (−∞ < j � 0). According to
Eq. (A11), two of the four eigenvectors |ψSL

lσ 〉 contribute to
the Majorana wave function such that the wave function de-
cays exponentially in the bulk superconductor. Therefore, the
open boundary condition at j = 0 is represented by a 2 × 2
boundary matrix,

BSL
λ=0(ε = 0)

=
⎧⎨
⎩
[〈0 |HSL

∣∣ψSL
1+
〉 〈0 | HSL

∣∣ψSL
2−
〉]

μ < −t,[〈0 | HSL

∣∣ψSL
1−
〉 〈0 | HSL

∣∣ψSL
2−
〉] −t < μ < t,[〈0 | HSL

∣∣ψSL
1−
〉 〈0 | HSL

∣∣ψSL
2+
〉]

t < μ.

(A14)

Since |uS
+(ϕ)〉 and |uS

−(ϕ)〉 are linearly independent, the
boundary matrix has a nontrivial kernel only when −t < μ <

t . In this case, the boundary matrix is

BSL
λ=0(0) = t − �

2

[ (
zS

1

)−1
eiϕL/2

(
zS

2

)−1
eiϕL/2

−(zS
1

)−1
e−iϕL/2 −(zS

2

)−1
e−iϕL/2

]
,

(A15)
whose kernel is given by [zS

1 −zS
2]

T
. As a result, the wave

function of the MZM in the left superconducting region is

|ψSL〉 = NS
0∑

j=−∞

[(
zS

1

)− j+1 − (
zS

2

)− j+1
]
| j〉 |uS

−(ϕL)〉,

(A16)
where NS is a normalization constant,

NS =
[

2
∞∑
j=1

∣∣(zS
1

) j − (
zS

2

) j∣∣2]−1/2

. (A17)

For the right superconducting region, on the other hand, it
is necessary to consider boundary conditions at j → ∞ and
j = L + 1. By applying a similar discussion to the above, we
can derive the right zero mode wave function:

|ψSR〉 = NS
∞∑

j=L+1

[(
zS

1

) j−L − (
zS

2

) j−L] | j〉 |uS
+(ϕR)〉, (A18)

for |μ| < t .
Note that, if μ2 + �2 = t2, the above superpositions are

not suitable for the zero modes, because the roots z = (zS
1 )±1

are degenerate with z = (zS
2 )±1. Even in the case, we can write

down an exact Majorana wave function by taking into account

an eigenvector with a power-law prefactor [57–59]:

|ψSL〉 = 2ÑS
0∑

j=−∞
(1 − j)

(
zS

1

)− j | j〉 |uS
−(ϕL)〉, (A19)

|ψSR〉 = 2ÑS
∞∑

j=L+1

( j − L)
(
zS

1

) j−(L+1) | j〉 |uS
+(ϕR)〉, (A20)

where

ÑS =
[

8
∞∑
j=1

j2
(
zS

1

)2( j−1)

]−1/2

. (A21)

For the detailed derivation of Eqs. (A19) and (A20), see
Refs. [57,58].

2. A normal-metal region: HN

Now let us move on to solutions for the N region.

a. Bulk solutions

A reduced bulk Hamiltonian for the normal metal is given
by

HN(z) = hN
0 + (

zhN
1 + z−1hN†

1

)
= 1

2

[−2μ − t (z + z−1) 0
0 2μ + t (z + z−1)

]
. (A22)

Then we consider an eigenvalue equation at an energy ε:

z2 det(HN(z) − ε12) = 0. (A23)

Solving the equation for z, we obtain four extended solutions,

z = −(μ + ε) ±
√

(μ + ε)2 − t2

t
,

−(μ − ε) ±
√

(μ − ε)2 − t2

t

=:
[
zN

1 (ε)
]±1

,
[
zN

2 (ε)
]±1

, (A24)

and the corresponding following eigenvectors,

∣∣uN
1

〉
:=
[

1
0

]
for z = (

zN
1

)±1
,

(A25)∣∣uN
2

〉
:=
[

0
1

]
for z = (

zN
2

)±1
,

which are independent of the energy ε. Therefore, a wave
function in the N region is given by superpositions of the
following eigenvectors:

∣∣ψN
lσ (ε)

〉 = L∑
j=1

[
zN

l (ε)
]σ j | j〉 ∣∣uN

l

〉
, (A26)

where l = 1, 2 and σ = ±.
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b. Boundary matrix

We consider (open) boundary conditions at j = 1 and j = L. For the purpose, let us introduce a 4 × 4 boundary matrix,

BN
λ=0(ε) =

[〈1 | (HN − ε1) | ψN
1+(ε)〉 〈1 | (HN − ε1) | ψN

1−(ε)〉 〈1 | (HN − ε1) | ψN
2+(ε)〉 〈1 | (HN − ε1) | ψN

2−(ε)〉
〈L | (HN − ε1) | ψN

1+(ε)〉 〈L | (HN − ε1) | ψN
1−(ε)〉 〈L | (HN − ε1) | ψN

2+(ε)〉 〈L | (HN − ε1) | ψN
2−(ε)〉

]

= t

2

⎡
⎢⎢⎣

1 1 0 0
0 0 −1 −1

(zN
1 (ε))L+1 (zN

1 (ε))−(L+1) 0 0
0 0 −(zN

2 (ε))L+1 −(zN
2 (ε))−(L+1)

⎤
⎥⎥⎦. (A27)

The above matrix has nontrivial kernels [1 −1 0 0]T and [0 0 1 −1]T when[
zN

l (ε)
]L+1 = [

zN
l (ε)

]−(L+1)
, (A28)

therefore

zN
l (ε) = exp

( iπq

L + 1

)
(q = −(L + 1), . . . , L), (A29)

for l = 1 and l = 2, respectively. Substituting Eq. (A29) into the eigenvalue equation, we obtain the eigenenergies

ε = ∓
[
μ + t cos

( πq

L + 1

)]
=: ±εN(q) for l = 1, 2. (A30)

The normal wavefunctions for l = 1, 2 are represented by

∣∣ψN
l (q)

〉 = NN
L∑

j=1

sin
( πq j

L + 1

)
| j〉 ∣∣uN

l

〉
, (A31)

where NN is a normalization constant,

NN =
[

L∑
j=1

sin2
( πq j

L + 1

)]−1/2

=
(

L + 1

2

)−1/2

. (A32)

Now we note that the above function represents the same state for +q and −q. Furthermore, the states for q = 0,−(L + 1)
have no physical meaning since |ψN

l (0)〉 = |ψN
l (−(L + 1))〉 = 0. Therefore, the domain of the integer q should be restricted to

q = 1, . . . , L. As a result, we obtain 2N independent wave functions |ψN
l (q)〉 for l = 1, 2 and q = 1, . . . , L, with eigenenergies

±εN(q).
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