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Electron transport probing the electrically tunable topological phase transition in a Dirac semimetal
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Electron transport in a Dirac semimetal (DSM) quantum wire without/with an external electric field is
investigated by using the Green-function-based Landauer-Büttiker formula. Normal-topological phase transition
is certificated by the different characteristics between the DSM quantum wire without and with the electric field,
including the orbital decomposition for the energy bands, transversally local charge and spin polarization density
distributions, topological Chern number, transport behaviors, and disorder effects. Topologically trivial surface
states are found in the former system and their transport can be localized by disorders. However, topologically
nontrivial surface states are generated in the latter one and their transport is robust against strong disorders when
the electric field strength is larger than a critical value. In addition, switching effect of the electron transport in
the DSM quantum wire can be achieved by varying the electric field strength. Further studies indicate that the
switching effect shows a strong robustness against disorder, displaying the feasibility of designing a topological
field effect transistor based on the considered system.
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I. INTRODUCTION

Topological materials, which own nontrivial topologies en-
coded in their electronic energy bands and wave functions,
have drawn enormous attention in the past decade [1–3]. They
can be classified further into topological insulators (TIs) [4,5]
or Dirac semimetals (DSMs) [6–8] by considering if there are
gaps in their energy bands or not. Therefore, the topological
characteristic revolutionized the traditional classification of
materials. Another important feature of topological materials
is that Dirac-electron-like and Fermi arc states can be found at
the boundaries once the TIs and DSMs are confined, respec-
tively [9–11]. These states are spin-momentum locking and
protected by the time reversal symmetry, resulting in the fact
that the backscattering induced by nonmagnetic disorders is
forbidden. Consequently, topological materials may find im-
plications in designing electron or spin devices with ultralow
power dissipation.

Manipulating the boundary states transport in topological
materials by electrical means is one of the most key pre-
requisites during their applications in topological electronic
devices. Both the spin and charge transport of the edge states
in electrically constricted TI quantum point contacts can be
switched on or off thanks to the coupling between the opposite
edge states [12–14]. Spin rotation and analysis are predicted
in a local top-gate modulated TI quantum wire since the
gate voltage brings an external phase to one of the two edge
states [15]. Quantized tunneling probabilities between 0 and
1 can be achieved in a transversal electric field modulated TI
nanoribbon, which may provide a new strategy for the design
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of topological transistors [16]. Meanwhile, a perpendicular
electric field modifies the Fermi velocity and dispersion re-
lation of the surface states in topological semimetal thin film,
which will, in turn, affect the transport properties [17]. Fur-
thermore, the positions of the surface energy subbands of
DSM nanowires can be shifted by the static electric poten-
tial of the lateral gates, leading to the gate-voltage-controlled
surface states transport [18,19].

On the other hand, topological phase transition (TPT) in
topological materials is another important issue in the design-
ment of topological electronic devices because of the different
transport properties in different phases. Oscillating topologi-
cally trivial and nontrivial phases are found in both TI [20,21],
DSM [8,22,23], and Weyl semimetal [24] thin films when
varying the thickness of the thin film. Moreover, normal-
topological phase transition can also be driven by an electric
field in these systems. It is found that the intrinsic built-in
electric field in GaN/InN/GaN [25] and GaAs/Ge/GaAs [26]
quantum well will reduce their band gaps and enhance the
spin-orbit coupling strength, leading to a normal-topological
insulator transition. Recently, a similar TPT is also predicted
theoretically in a DSM thin film by applying a perpendicular
electric field [27,28]. Later, the angle-resolved photoelectron
spectroscopy and scanning tunneling spectroscopy measure-
ments have verified this prediction. The experimental results
indicate that a TI phase with bulk band gaps greater than
300.0 meV and a conventional insulator phase with a band
gap of 90.0 meV can be achieved in the monolayer Na3Bi
by tuning the perpendicular electric field strength [29]. There-
fore, the monolayer Na3Bi may be suitable for the designment
of a room-temperature topological transistor. However, the
electron transport measurement, which is an intuitive method
for the verification of the TPT and important for practical
applications as well, has not been performed in the DSM up to
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FIG. 1. Schematic figure showing the two- (a) and four-terminal (b) DSM quantum wire with an external electric field along the z-axis
direction.

date. Therefore, a natural question is raised if the TPT can be
verified by the transport measurement since it can be carried
out easily in DSM quantum wires.

In this paper we investigate the orbitally resolved energy
bands, transversally local charge and spin polarization density
distributions, topological Chern number, transport behaviors,
and disorder effects of the DSM quantum wires without/with
an external electric field. The obtained results indicate that
electric-field-induced TPT happens in the DSM. Moreover,
alternative switch on and off states of the electron transport
in the two-terminal DSM quantum wires can be obtained
by varying the electric field strength. Further studies also
show that the electron transport is robust against disorders.
Therefore, we propose an all-electric topological field effect
transistor based on the considered system.

The rest of this paper is arranged as follows. In Sec. II,
theoretical model of the considered system and calculation
methods are presented. In Sec. III, numerical results and
discussions are demonstrated. Finally, Sec. IV concludes the
paper.

II. MODEL AND METHODS

Figures 1(a) and 1(b) schematically show the two- and
four-terminal DSM quantum wires subject to an electric field
along the z-axis direction, respectively. The results obtained
in this paper do not depend on the particular DSM material.
Here, for concreteness, we take Na3Bi as an example, which
has been experimentally demonstrated as a three-dimensional
(3D) DSM material [30]. Its low-energy physics is described
by the four-band model around the � point of the Brillouin
zone. Written in the basis of |S+

1
2

, 1
2 〉, |P−

3
2

, 3
2 〉, |S+

1
2

,− 1
2 〉, and

|P−
3
2

,− 3
2 〉, where S and P denote, respectively, the electron and

hole subbands, the 4 × 4 Hamiltonian takes the form [7]

H (k) = h0(k) +
(

h↑
k 0

0 h↓
k

)
, (1)

in which

h↑
k =

(
M(k) Ak+
Ak− −M(k)

)
= M(k)σz + A(kxσx − kyσy),

h↓
k =

(
M(k) −Ak−
−Ak+ −M(k)

)
= M(k)σz − A(kxσx + kyσy),

and h0(k) = C0 + C1k2
z + C2(k2

x + k2
y ), M(k) = M0 −

M1k2
z − M2(k2

x + k2
y ), k± = kx ± iky, k = (kx, ky, kz ) is the

wave vector, σi (i = x, y, z) is the ordinary Pauli matrix, and
↑ / ↓ denotes the spin up/down state.

Solving the secular equation of the Hamiltonian in Eq. (1),
we find the energy band of the DSM is E± = h0 ± h,
where + (−) denotes the conduction (valence) band, h =√

h2
x + h2

y + h2
z with hx = Akxsz, hy = Aky, and hz = M(k),

sz = ±1 indicates the spin up/down. The corresponding wave
functions are

ψ±,k = eik·r
√

2h(h ∓ hz )

(
hx + ihy

±h − hz

)
, (2)

where ψ+,k (ψ−,k) is the wave function of the conduction
(valence) band.

As the transport properties of the considered system in the
present work are mainly determined by the confinement and
electric field effects along z-axis direction, we only calculate
the z component of Berry curvature

�n(k) = i
∑
n′ �=n

〈ψnk| ∂H
∂ px

|ψn′k〉〈ψn′k| ∂H
∂ py

|ψnk〉 − (x ↔ y)

(En − En′ )2
.

(3)
After some tedious deductions, the spin-resolved Berry curva-
ture in the conduction band is obtained as

�sz
c (k) = sz

A2
(
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s

)
2
[
A2k2

s + (
B − M2k2

s

)2]3/2 = �sz
c (−k), (4)

where ks =
√

k2
x + k2

y and B = M0 − M1k2
z . According to the

equation of Berry curvature, in the valence band, we have
�

sz
v (k) = −�

sz
c (k). At the same time, for the opposite spin,

we have �−sz (k) = −�sz (k). Consequently, the spin-resolved
topological Chern number for the conduction band is given by

Csz = sz

2

∫ ∞
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2
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By definingF = B−M2k2
s√

A2k2
s +(B−M2k2

s )2
, we have ∂F

∂k2
s

= −�sz

sz
so that

the spin-resolved topological Chern number of each conduc-
tion band is

Csz = − sz

2
F |∞0 = sz

2

[
sgn(M2) + sgn

(
M0 − M1k2

z

)]
. (6)
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FIG. 2. Orbital decompositions for the energy band of the infinitely long DSM quantum wire along the x-axis direction with different
electric field strengths Ez = 0.0 (a), 67.6 (b), 102.5 (c), 126.5 (d), and 149.0 mV/az (e). Thicker lines indicate a more dominant contribution.
The transversal widths of the quantum wire are taken as Wy = 20ay and Wz = 6az. Inset in (b) showing the orbital decompositions for the
energy band of a DSM thin film with the thickness Wz = 6az. (f) The energy band gap (blue dashed line), lowest conduction (black solid line),
and highest valence (red solid line) subbands of the DSM quantum wire at kx = 0.0 as a function of the electric field strength.

The transport properties of the two- and four-terminal
DSM quantum wires are studied using the Landauer-Büttiker
formalism combined with nonequilibrium Green’s function
method. The total transmission probability of all the propa-
gating modes between any two leads is given by [31]

Tβα = Tr[�βGr�αGa], (7)

where Gr/a is the retarded/advanced Green’s function of the
whole two- or four-terminal DSM quantum wire, �α/β is the
linewidth function describing the coupling between the lead
and DSM quantum wire, and the trace takes over both the
spatial and spin degrees of freedom. The linewidth functions
can be obtained from �α = i(	r

α − 	a
α ), where 	r/a

α is the
retarded/advanced self-energy for the lead α (α = 1, 2, 3, or
4). In the modeling we assume that all the leads are semi-
infinite and have the same widths as the contacted surfaces of
the DSM quantum wires. The self-energies of the leads 	r/a

α

as well as the Green’s function Gr/a can be computed by using
a recursive method [32].

III. NUMERICAL RESULTS AND DISCUSSIONS

According to the finite-difference method, we model
the DSM quantum wires in Fig. 1 by discretizing Eq. (1)
onto a 3D cubic lattice with the lattice constants ax = ay =
0.5448 nm, and az = 0.4828 nm [27]. The parameters in
Eq. (1) are obtained by fitting the ab initio calculation
results, namely C0 = −63.82 meV, C1 = 87.536 meV nm2,
C2 = −84.008 meV nm2, M0 = −86.86 meV, M1 =
−106.424 meV nm2, M2 = −103.610 meV nm2, and
A = 245.98 meV nm [7]. In the following numerical
calculations, the transversal widths of the DSM quantum

wires in Fig. 1 are Wy = 20ay and Wz = 6az. The length of
the DSM quantum wire is Lx = 50ax in Fig. 1(a) and 20ax in
Fig. 1(b). In general, the leads can be any metals since the
essential physics that we discuss below is independent of the
particular leads. However, in order to minimize the contact
resistance, we model the leads by using the same H (k) in
Eq. (1). The effects of the electric field can be introduced
by adding an external term eEzz to the on-site energy of
the lattices, where −e and Ez are the electron charge and
electric field strength, respectively. In addition, for the DSM
quantum wire, the spin-orbit interaction term B1kz, where
B1 is estimated to be 6.22 meV nm, should be included in
the original Hamiltonian Eq. (1) since its threefold rotational
symmetry is broken [7]. However, we found that this term
does not change the intrinsic results obtained in this work so
that it is neglected for simplicity.

A. Energy bands and electronic states of the DSM quantum wire

According to the discretized Hamiltonian of Eq. (1), the
energy band E (kx ), the orbital- and spin-resolved transversal
wave function φ

o,sz

m,n,kx
(y, z) of the DSM quantum wire can be

obtained numerically. Here m and n are the subband indices
along the y and z axis, o and sz denote the orbital (S and P)
and spin (↑ and ↓) degrees, respectively. Figures 2(a)–2(e)
show the orbital decomposition

∑
sz,y,z

|φo,sz

m,n,kx
(y, z)|2 for the

energy bands of the infinitely long (along the x axis) DSM
quantum wires with different electric field strengths Ez =
0.0, 67.6, 102.5, 126.5, and 149.0 mV/az, respectively. The
blue lines represent the contribution from S orbital and the
red lines stand for that from P orbital. The thickness of lines
is proportional to normalized orbital contribution. Due to the
finite size effect, energy band gap Eg ≈ 128.0 meV is opened
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FIG. 3. (a)–(d) The transversally local charge density distributions of the DSM quantum wire for the four points A1, B, C, and D indicated
in Figs. 2(a) and 2(c)–2(e), respectively. (e)–(h) The corresponding local spin polarization density distributions with respect to (a)–(d),
respectively.

at the original Dirac point kx = 0.0, as shown in Fig. 2(a).
Moreover, the first pair of the discretized z-axis wave vector
kzn = ±nπ/Wz are kz1 = ±1.08 nm−1, which locate outside

the two Dirac point kD
z = ±

√
M0
M1

= ±0.90 nm−1. Therefore,

no subband is inverted so that the DSM quantum wire is a
normal band insulator. Meanwhile, the orbital contributions
to the energy band display a normal order, i.e., the conduction
and valence bands are contributed by the S and P orbits,
respectively. As an electric field along the z-axis direction
is applied to the DSM quantum wire, it couples with the
subbands, which leads to the fact that the conduction sub-
bands are lowered while the valence subbands are lifted first
[27]. As a result, the band gap of the DSM quantum wire
decreases as the increasing electric field strength, as shown
in Fig. 2(b). Here the electric field is taken as Ez = 67.6
mV/az, which corresponds to the critical value of the TPT
of the DSM thin film with the same thickness Wz = 6az. In
this case, the band gap of the DSM thin film is closed, as
displayed by the inset in Fig. 2(b). However, for the DSM
quantum wire, the confinement is also applied along the y-axis
direction, which enlarges the band gap. Therefore, a band gap
with the value Eg ≈ 53.0 meV is still observed. Furthermore,
the orbital contributions to the energy band also display the
normal order. However, the band gap will be closed when
the electric field strength is increased to Ez = 102.5 mV/az,
as shown in Fig. 2(c). As this electric field strength is larger
than the critical value of the TPT, the DSM quantum wire is
transformed into a TI. Consequently, parts of orbital contribu-
tion order are inverted, as shown by the bottom of the second
conduction subband and the top of the first valence subband.
However, differing from that of the DSM thin film, the band
gap of the DSM quantum wire will be reopened, and then
closed again as the electric field strength is increased further,
as shown in Figs. 2(d) and 2(e), respectively. Here the electric
field strengths are Ez = 126.5 in Fig. 2(d) and 149.0 mV/az

in Fig. 2(e). In addition, more parts of the orbital contribution
order are inverted. However, it is noteworthy that the lowest
conduction subband of the DSM quantum wire is contributed
from the S orbit for all the different electric field strengths.
For the sake of showing the effects of the electric field on the
energy band more clearly, Fig. 2(f) displays the band gap (blue
dashed line), the first conduction (black solid line) and valence
subbands (red solid line) at kx = 0.0 of the DSM quantum
wire as a function of the electric field strength. We can see that
the band gap shows an oscillating behavior with increasing
electric field strength, which is consistent with evolution of
the energy bands in Figs. 2(a)–2(e). The oscillating changes of
the band gap upon application of the electric field are different
from those of the DSM thin film, where only bulk subbands
are generated in the energy band. However, for the DSM
quantum wire, the surface subbands due to the confinement
along the y axis also emerge in the energy band besides the
bulk subbands caused by the confinement along the z axis.
For example, the first conduction subband in Figs. 2(a)– 2(e),
which is verified by the transversally local charge and spin
density distributions of the DSM quantum wire shown in
Fig. 4. Therefore, the alternative band gap closure and reopen-
ing are the behaviors of the whole energy band gap but not the
bulk band gap.

The transversally local charge density distributions ρC =∑
o,sz

|φo,sz

m,n,kx
(y, z)|2 of the infinitely long DSM quantum wires

(along the x axis) with different electric field strengths are
demonstrated in Figs. 3(a)–3(d), which correspond to the
four electron states A1 (E = 76.3 meV), B (E = 80.0 meV),
C (E = 106.0 meV), and D (E = 105.0 meV) indicated in
Figs. 2(a) and 2(c)–2(e), respectively. For the DSM quantum
wire without electric field, as shown in Fig. 3(a), the transver-
sally local charge density distribution is mainly localized
inside the bulk of the DSM quantum wire. However, the local
charge density inside the bulk will be depleted gradually and
moved toward the surfaces when the electric field is applied
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FIG. 4. (a) The first conduction (black solid line) and valence
(red solid line) subbands and band gap (blue dashed line) of the DSM
thin film at ks = 0 as a function of the perpendicular electric field
strength. The thin film thickness Wz = 6az is the same as that of the
DSM quantum wire along the z-axis direction. (b) The spin-resolved
topological Chern number of the first conduction subband of the
DSM thin film as a function of the electric field strength.

and its strength is increased, as shown in Figs. 3(b)–3(d).
Additionally, the symmetry of the transversally local charge
density distributions along the z axis is broken and they are
moved progressively toward the z-axis direction. This effect
originates from that the electron is driven by the electric
field force f = −eEz z0 (here z0 is a unit vector along the
z axis), which affects the local charge density distributions
along the z-axis direction. The local spin polarization density
distributions ρS = ∑

o[|φo,↑
m,n,kx

(y, z)|2 − |φo,↓
m,n,kx

(y, z)|2] corre-
sponding to Figs. 3(a)–3(d) are shown in Figs. 3(e)–3(h),
respectively. For the DSM quantum wire without electric field,
the local spin polarization density is almost zero everywhere
due to the overlap of the two different spin states, as shown in
Fig. 3(e). However, for the DSM quantum wires with electric
field, there are only oppositive spin-polarized charge densi-
ties near the two surfaces y = 0 and y = 20ay since the bulk
charge densities are eliminated, as shown in Figs. 3(f)–3(h),
demonstrating that the helical surface states present in the
system. The evolution of the transversally local charge and
spin polarization density distributions of the DSM quantum
wire under the varied electric field may prove indirectly that
the TPT happens in this system.

In order to comprehend the evolution of the orbital-
resolved energy bands and electronic states with increasing
electric field strength shown in Figs. 2 and 3 more clearly,
we calculate the spin-resolved topological Chern number of
the considered system. For simplicity we take a DSM thin
film with z-axis confinement as an example to clarify the
effect of the electric field on the spin-resolved topological
Chern number since it is kz dependent, as shown in Eq. (6).
Figure 4(a) shows the first pair of energy subbands and band
gap of the DSM thin film at ks = 0 as a function of the electric
field strength. The thickness of the thin film is chosen as the
same as that of the quantum wire along the z-axis direction,
i.e., Wz = 6az. The first conduction subband EC1 decreases
monotonously while the first valence subband EV1 increases
when the electric field strength is increased, as shown by the
black and red solid lines in Fig. 4(a), respectively. Finally,
they cross at EC

z = 67.6 mV/az. As a result, the band gap
of the DSM thin film is decreased gradually to be closed at
the critical electric field strength. After that, the band gap is

0 50 100 150
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2
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on on
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FIG. 5. (a) The transmission probability spectra of the two-
terminal DSM quantum wire with different electric field strengths
Ez = 0.0 (black solid line), 102.5 (red dashed line), 126.5 (blue
dotted line), and 149.0 mV/az (dark cyan dash-dotted line) as a
function of the electron energy. The length of the DSM quantum
wire is taken as Lx = 50ax . For clarity, the red dashed, blue dotted,
and dark cyan dash-dotted lines are lifted entirely by 2.0, 4.0, and
6.0, respectively. (b) The same as (a) but as a function of the electric
field strength. The electron energy E = 72.0 meV, as indicated by
the vertical olive dotted line in (a).

reopened and its value is increased with increasing electric
field strength, as shown by the blue dashed line in Fig. 4(a).
Figure 4(b) demonstrates the spin-resolved topological Chern
number of the first conduction subbands of the DSM thin
film as a function of the electric field strength. According to
Eq. (6), the spin-resolved topological Chern number of each
subband of the DSM thin film without electric field is 0 so
that it is a normal band insulator. However, for the DSM thin
film with electric field, the spin-resolved topological Chern
number of each conduction subband is computed by

Csz

Cn = sz

2

[
sgn(M2) + sgn

(
M0 − M1k2

zn

− |ECn| + |EVn|
2

)]
, (8)

in which ECn and EVn are the varied energy of the nth
conduction and valence subbands at ks = 0 after the electric
field is applied. Therefore, the topological Chern numbers of
both the first spin up and down conduction subbands keeps
0 until the band gap is closed, as shown by the dark cyan
solid and magenta dashed lines, respectively. However, they
transit to ±1, which means that electrons with different spin
states have oppositive group velocity, as the electric field
strength is increased to EC

z = 67.6 mV/az. The abrupt change
of the spin-resolved topological Chern number indicates that
normal-topological phase transition emerges at this critical
electric field strength.

B. Electron transport in the two- and four-terminal DSM
quantum wires

Figure 5(a) shows the total transmission probabilities spec-
tra of the two-terminal DSM quantum wire with different
electric field strengths as a function of the electron energy.
The electric field strengths are the same as those in Figs. 2(a)
and 2(c)–2(e), respectively. For clarity, the red dashed, blue
dotted, and dark cyan dash-dotted lines are lifted wholly by
2, 4, and 6, respectively. Quantized steps with the values 2 j
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FIG. 6. The transmission probability spectra for the spin-up electrons in the four-terminal DSM quantum wire with different electric field
strengths Ez = 0.0 (a), 102.5 (b), 126.5 (c), and 149.0 mV/az (d). (e)–(h) The same as (a)–(d) but for the spin-down electrons. The length of
the DSM quantum wire is taken as Lx = 20ax .

( j = 0, 1, 2, . . . ) are obtained in the total transmission prob-
ability spectra. This transport behavior can be understood by
the energy bands of the DSM quantum wires in Figs. 2(a) and
2(c)–2(e) since each occupied subband contributes a transmis-
sion quantum. It should be noted that no transmission gap is
found for the case of Ez = 102.5 and 149.0 mV/az, as shown,
respectively, by the red dashed and dark cyan dash-dotted
lines; resulting from that the band gap of the DSM quantum
wire is closed. For showing the electric field effects on the
electron transport more clearly, Fig. 5(b) depicts the total
transmission probability of the two-terminal DSM quantum
wire as a function of the electric field strength. The electron
energy E = 72.0 meV, as indicated by the vertical olive dotted
line in Fig. 5(a). As the electron energy situates within the
band gap of the DSM quantum wire first, the transmission
probability keeps 0 until the strength of the electric field is
increased to 81.0 mV/az. And then the lowest conduction
subband of the DSM quantum wire is occupied so that the
total transmission probability is transited to 2, i.e., the electron
transport in the DSM quantum wire is switched on. As the
electric field strength is increased further to 112.0 mV/az,
the electron energy locates within the band gap again, leading
to the switch-off of the electron transport. However, electron
transport in the DSM quantum wire still can be turned on as
the electric field strength is increased to 144.0 mV/az. The
electron transport behaviors above indicating that it can be
controlled by tuning the external electric field strength.

The transmission probability spectra of the four-terminal
DSM quantum wire with different electric field strengths
are shown in Fig. 6. As the electric field does not mix
the two spin-dependent Hamiltonians h↑

k and h↓
k in Eq. (1)

and there is no spin flipping mechanism in the investigated

system, the spin-dependent transmission probability between
any two leads can be computed independently. The transmis-
sion probability spectra for the spin-up electron are shown
in Figs. 6(a)–6(d) while those for the spin down electron
are given in Figs. 6(e)–6(h). The electric field strengths are
also the same as those in Figs. 2(a) and 2(c)–2(e), respec-
tively. Due to the structural symmetry of the four-terminal
DSM quantum wire, the longitudinal transmission probabil-
ities for the spin-up and spin-down electron are the same,
that is, T ↑↑

21 =↓↓
21 , as represented by the black solid lines. In

addition, the four-terminal DSM quantum wire without/with
an electric field also owns the time reversal symmetry so
that the transversal transmission probabilities obey the rule
T ↑↑

31 (T ↑↑
41 ) = T ↓↓

41 (T ↓↓
31 ), as shown by the red dashed and blue

dotted lines. These transversal transport behaviors coincide
well with the transversally local charge and spin density
distributions demonstrated in Fig. 3. For the DSM quantum
wire without electric field, the spin-dependent transmission
probabilities vary with the increasing electron energy within
the region where the lowest conduction band is occupied,
as shown in Figs. 6(a) and 6(e). These results indicate that
a variable spin Hall transmission probability T SH = (T ↑↑

41 −
T ↑↑

31 ) + (T ↓↓
31 − T ↓↓

41 ), i.e., spin Hall effect can be observed in
the considered system. However, for the DSM quantum wire
with electric field, the transversal spin-dependent transmis-
sion probabilities are quantized (T ↑↑

41 = T ↓↓
31 ≈ 1 and T ↑↑

31 =
T ↓↓

41 ≈ 0), as shown in the red regions in Figs. 6(b)–6(d) and
6(f)–6(h). More importantly, the longitudinal spin-dependent
transmission probabilities T ↑↑

21 and T ↓↓
21 almost drop to 0.

This transport effect agrees with the spin-resolved topological
Chern number shown in Fig. 4(b). Therefore, quantum spin
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FIG. 7. (a) The ensemble average transmission probability spec-
tra of the disordered DSM quantum wire as a function of the disorder
strength. The electron energies are the same as those of the points
A2, B, C, and D in Figs. 2(a) and 2(c)–2(e), respectively. (b) The
same as (a) but as a function of the electric field strength. Except
for the disorder strength, other parameters are the same as those in
Fig. 5(b). The error bars in (a) and (b) denote the transmission prob-
ability fluctuations and the number of the disordered DSM quantum
wire samples is chosen as 200. For clarity, the red circle, blue right
triangle, and dark cyan inverted triangle lines are lifted entirely by
2.0, 4.0, and 6.0, respectively.

Hall (QSH) effect can be achieved in these cases, indicat-
ing that the spin-momentum locked helical surface states in
this system. The change of the transport behaviors of the
four-terminal DSM quantum wire without and with exter-
nal electric field proves further that the TPT happens in the
system.

C. Disorder effects on the electron transport

The robustness of the electron transport against disorders
is another important feature to distinguish the topologically
trivial and nontrivial phases. Therefore, the disorder effects on
the electron transport in the two-terminal DSM quantum wire
with different electric field strengths are investigated in this
subsection. The effects of the disorder-induced scattering on
the total transmission probability can be modeled by applying
a random fluctuation potential within the range [−w

2 , w
2 ] to

the on-site energies of the discretized Hamiltonian in Eq. (1)
[22,27]. Here the fluctuation amplitude w represents the dis-
order strength. In the following numerical calculations, the
disorders are assumed to only exist in the DSM quantum
wire (scattering region) and be distributed randomly in the
whole wire (the disorder density is 100%), namely a stochastic
potential is added to all the lattices of the discretized quantum
wire.

Figure 7(a) shows the average total transmission probabil-
ity T a

21 = 〈T21〉 spectra of the disordered two-terminal DSM
quantum wire with different electric field strengths as a func-
tion of the disorder strength. Here 〈· · · 〉 means averaging over
an ensemble of samples with different realizations of disorder.
Number of the disordered DSM quantum wire samples taken
for the calculations is 200. The electron energies are taken as
those for the points A2, B, C, and D indicated in Figs. 2(a) and
2(c)–2(e), respectively. The error bar in each line represents
the fluctuation of the two-terminal transmission probability
T f

21 = (〈T21
2〉 − 〈T21〉2)1/2. For the purpose of clearness, the

red circle, blue right triangle, and dark cyan inverted trian-
gle lines are lifted wholly by 2, 4, and 6, respectively. For
the DSM quantum wire without electric field, the average
total transmission probability decreases as the electric field
strength is increased, as shown by the black diamond line.
Furthermore, the average total transmission probability ar-
rives at 0 when the disorder strength is increased to about
1000.0 meV, namely electrons will be localized inside the dis-
ordered DSM quantum wire. However, for the DSM quantum
wire with electric field, the average total transmission proba-
bility remains unchange first and then drops slowly with the
increasing disorder strength, as shown by the red circle, blue
right triangle, and dark cyan inverted triangle lines. More im-
portantly, the average total transmission probability maintains
a finite value even when the disorder strength is increased to
1200.0 meV, indicating that the transport in DSM quantum
wire is robust against strong disorder in these cases. The
different transport behaviors between the disordered DSM
quantum wire without and with the electric field also verify
that normal-topological phase transition is generated in the
considered system. Figure 7(b) shows the average total trans-
mission probability spectra of the two-terminal DSM quantum
wire without (w = 0.0) and with weak (w = 300.0 meV),
medium (w = 600.0 meV), and strong (w = 900.0 meV) dis-
orders as a function of the electric field strength. The electron
energy is the same as that in Fig. 5(b). The idea transmission
probability plateaus within the electric field strength windows
displayed by the black dotted line are destroyed as the disorder
effects are taken into account, as show by the red circle, blue
right triangle, and dark cyan inverted triangle lines. How-
ever, a relative large transmission probability still can survive
even when a strong disorder is added, as shown by the dark
cyan inverted triangle line, especially within the first elec-
tric field strength window. Moreover, the switch-off regions
where T a

21 = 0 is not influenced by the disorder. Therefore, the
switching effect controlled by the external electric field can
also be achieved in the disordered DSM quantum wire. Note
that the results above are obtained by varying the fluctuation
potential amplitude while fixing the disorder density. How-
ever, similar results can also be achieved when the disorder
density is varied while the fluctuation potential amplitude is
fixed since these two parameters are equivalent in describing
the disorder strength.

IV. CONCLUSIONS

In conclusion, we have investigated the orbital-resolved
energy bands, electronic states, topological Chern number,
transport properties, and disorder effects of DSM quantum
wire without/with an external electric field. By the compar-
ison of the features of the DSM quantum wire without and
with electric field, TPT controlled by the electric field in
the DSM is identified. Furthermore, it is also found that the
electron transport in the DSM quantum wire can be turned on
or off by varying the electric field strength and shows a strong
robustness against disorder. Consequently, a topological field
effect transistor may be designed based on the considered
system.
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FIG. 8. The same as Fig. 2 but the lattice constants are set at a′
x = a′

y = 0.2724 nm and a′
z = 0.2414 nm.
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APPENDIX: VALIDITY OF THE LATTICE HAMILTONIAN
BASED ON THE FINITE-DIFFERENCE METHOD

The energy bands of the DSM quantum wire in Fig. 2,
which are calculated from the discretized Hamiltonian of
Eq. (1), is dependent on the choose of the number of nodes

or the lattice constants. For the same quantum wire, the larger
number of nodes (smaller lattice constants) are taken, the
more precise energy bands can be obtained. In order to show
the validity of the numerical results obtained in the main text,
we give another set of the orbit-decomposed energy bands of
the DSM quantum wire in this Appendix, as shown in Fig. 8.
All the parameters are the same as those in Fig. 2 but the lattice
constants are taken as a′

x = a′
y = 0.2724 nm and a′

z = 0.2414
nm, which are a half of those in the main text, respectively.
The results indicate that the energies of each subband in Fig. 2
are underestimated slightly (about 3–5 meV for the lower
subbands). However, the intrinsic behaviors of the energy
bands of the DSM quantum wire with increasing electric field
strength are the same as those in Fig. 8. Therefore, the numeric
results in the main text are reliable.
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