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Influence of the spin-orbit split-off valence band on the hole g factor in semiconductor nanocrystals
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We present results of k · p calculations of the effective g factor of holes confined in spherical, cube, and
planar semiconductor nanocrystals (NCs). We use the six-band Luttinger model for semiconductors with the
zinc-blende crystal structure and study the size dependence of the �8 top valence subband hole g factor caused by
the admixture of the spin-orbit split-off valence subband �7. We present semianalytical expressions for the hole g
factor which depends on the light- to heavy-hole effective mass ratio β and on the ratio between spin-orbit energy
splitting of valence band �SO and the hole quantization energy Eh. The admixture of �7 states is significant for
small �SO/Eh and, in spherical and cube NCs, leads to a strong size dependence of the hole g factor. In thin
planar nanoplatelets (NPLs) with infinite or large lateral sizes, the dependence of the heavy-hole g factor on
NPL thickness is relatively weak. It is drastically enhanced and may become nonmonotonic in NPLs with finite
in-plane sizes due to the additional hole states mixing. We discuss our results in comparison with published
experimental data for CdSe- and InP-based spherical NCs and NPLs and point out the specificity of extracting
hole g factor from the data measured on excitons.
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I. INTRODUCTION

Since their discovery four decades ago, semiconductor
nanocrystals (NCs) have become the most studied among
nanoscale semiconductors [1]. By now, their synthesis by
colloidal chemistry has passed into the state of mature tech-
nology and provides precise control over the size, shape, and
composition [2–4]. Today, a wide area of NCs application
includes solar cells, displays, photodetectors, and molecular
sensors [5–11]. All these applications are mostly based on the
emission or absorption of light by spatially confined electron-
hole pairs. Control over the spin state of localized carriers is
important for the promising application of NCs in spintronics
and quantum computing devices [12–16] and requires among
other the knowledge about their g factors.

The g factor (Lande factor) determines the response of
electrons, holes, or their complexes to the external magnetic
field including the Zeeman energy splitting between spin
sublevels and the Larmor frequency of the spin precession.
Comprehensive experimental and theoretical studies are being
performed in this direction. Using different magneto-optical
techniques g factors of electrons, holes, and excitons were
measured [17–23]. Theoretical understanding of experimental
data on the electron g factor in semiconductor nanostructures
of different size, shape, and dimensionality were developed
within the multiband k · p theory [24–27] and the tight-
binding method [28–30].

In the low-field regime, the energy splitting of electron
states with opposite spin projections on magnetic field direc-
tion is linear on magnetic field strength B and is defined by
electron effective g factor ge. The corresponding Zeeman part
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of electron Hamiltonian is

Ĥ (e)
Z = μBge(SeB), ge = E1/2 − E−1/2

μBB
. (1)

Here μB = eh̄
2m0c is the Bohr magneton, m0 is the free-electron

mass, e = |e| is the absolute value of electron charge, and
E±1/2 are energies of states with spin projection Sez = ± 1

2 on
the magnetic field direction. The scheme of electron energy-
level splitting is shown in Fig. 1.

The value of the bulk electron g factor at the bottom
of the conduction band in typical semiconductors with the
zinc-blende (zb) crystal structure can be calculated within the
second-order k · p theory. It was first made to account the
contributions from the �8 and �7 valence subbands [31] and
phenomenologically taking into account the remote conduc-
tion band contribution grb [32]:

ge ≈ g0 + grb − 2Ep

3

(
1

Eg
− 1

Eg + �SO

)
. (2)

Here Ep = 2|〈X | p̂x|S〉|2/m0 is the Kane energy expressed via
the interband momentum matrix element, Eg is the band gap,
�SO is the spin-orbit splitting of the valence band. In most
cases, grb can be treated as a fitting parameter in order to
obtain the experimental value of ge, if parameters Ep, Eg,
and �SO are known. In wurtzite (wz) semiconductors the
crystal field splits the fourfold-degenerate �8 valence subband
into two twofold-degenerate �9 and �7 subbands resulting in
anisotropy of the electron g factor. If the crystal field energy
splitting �cr is much smaller than �SO and Eg, Eq. (2) still
describes the electron g factor in the isotropic approximation.

As it can be seen from Eq. (2), ge differs from the value
of free-electron g factor g0 = 2 [31] due to nonzero �SO,
and in case �SO/Eg → 0 we would have ge → g0. In semi-
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conductors with parametrically strong spin-orbit coupling the
difference can be large and ge can even change the sign. For
example, ge = −0.44 in GaAs [33], ge = 0.42 in zb-CdSe
[34], ge = 0.68 in wz-CdSe [35], ge = −1.66 in CdTe [36],
and ge = 1.2 in InP [36].

Spatial localization of electrons in nanostructures leads to
the renormalization of the g factor and even to its spatial
anisotropy [24–27,29,37,38]. The main contribution to the
g-factor renormalization comes from the effective renormal-
ization of the band gap: in Eq. (2) one has to change Eg →
Ẽg = Eg + Ee with Ee being the electron size quantization
energy (for details see Appendix A). In small NCs, where the
electron localization length at least in one dimension is about
1–2 nm, the contribution of the valence band to the electron g
factor decreases with �SO/Ẽg → 0 and ge(Ee) → g0. Impor-
tantly, the eight-band k · p calculations of the electron g factor
in spherical NCs provide a very good agreement with results
of the tight-binding calculations from Ref. [29] and allow to
describe the experimentally observed electron g-factor size
dependence (see Appendix A).

The electron localization leads also to the renormalization
of the orbital effective g factor (orbital magnetic momentum)
[26,39]. While for electrons the orbital contribution is rela-
tively small, it becomes an important effect for the valence
band holes due to the complex valence band structure. As a
result, there is a substantial variation of hole g factors between
nanostructures and their dependence of the actual type of
confining potential [30,40–43].

In most k · p calculations of the g factor of a hole from
the upper valence band, only the four-band Luttinger model
is considered while the impact of the interaction with the
conduction band as well as with the spin-orbit split valence
band is neglected. As a result, in contrast with electrons, in
such an approximation the hole g factor is independent of
the nanostructure size [42–44]. However, this result holds true
until the hole quantization energy Eh is small enough as com-
pared with �SO and Eg. In small colloidal NCs with diameter
2–3 nm, or especially in colloidal nanoplatelets with thickness
only 1–2 nm, Eh may first become comparable with �SO.
In this case �SO/Eh → 0, so that a strong admixture of the
spin-orbit split subband and a consequent change of the hole
g factor is to be expected. For quantum wells, the size depen-
dence of the hole g factor was predicted theoretically within
the eight-band Kane model [45] and studied experimentally
[38,46,47]. The Kane eight-band model was also used to study
the hole g-factor height dependence in cylindrical narrow band

gap InAs/InP quantum disks [48]. However, the effect of the
spin-orbit split valence band contribution to the hole g factor
in general form was not consistently considered.

The aim of this paper is to study the effect of admixture
of the spin-orbit split-off �7 valence subband on the g factor
of hole from the top valence subband in nanostructures of
different shapes and sizes. We consider the six-band Lut-
tinger model for semiconductors with the zinc-blende crystal
structure and show that results are applicable to wurtzite
semiconductors with �cr � Eh. Dependencies of the hole g
factor on the light- to heavy-hole mass ratio β are calculated
for spherical, cubic, and planar NCs with different types and
sizes of the confining potential. The size dependencies of
the hole g factor in CdSe- and InP-based NCs are calculated
and compared with the values obtained within the four-band
model.

The rest of the paper is organized as follows: In Sec. II we
introduce a Hamiltonian of the hole in an applied magnetic
field and discuss existing definitions of the hole g factor.
In Sec. III we present the calculation results for the hole g
factor in spherical and cube NCs, and discuss the influence
of a moderate uniaxial shape anistoropy in spheroidal and
cuboid NCs. In Sec. IV the hole g factor in thin, close to
two-dimensional (2D) nanoplatelets and platelets with finite
lateral sizes is considered.

We compare the results of our calculations with published
theoretical and experimental data with special attention paid
to the method used for the hole g-factor measurement. In
this context we discuss also the Zeeman splitting of different
exciton states. We summarize our results in Sec. VI and give
the additional details in Appendices A, B, and C.

II. VALENCE BAND HOLE IN THE EXTERNAL
MAGNETIC FIELD

A. Definition of the hole g factor

We consider a hole from the �8 valence subband and take
into account the admixture of the spin-orbit split-off �7 va-
lence subband. To simplify the further analysis we neglect the
cubic symmetry of the crystal lattice resulting in the valence
band warping or anisotropy of �SO. Then, the holes in the
external magnetic field are described by the following Hamil-
tonian, which we rewrite in the hole representation as the sum
of four contributions:

Ĥ = Ĥ6×6 + Ĥ (h)
Z + ĤB + Vext (r). (3)

Here

Ĥ6×6 = h̄2

2m0

[
(γ1 + 4γ )k2 − 6γ

( ∑
α=x,y,z

k2
α Î2

α + 2
∑
α �=β

{kαkβ}{Îα Îβ}
)]

− 1

3
�SO[(Îσ̂h) − 1] (4)

is the six-band Luttinger Hamiltonian [49,50] describing the
hole kinetic energy in spherical approximation in zero mag-
netic field in the hole representation. Here γ1 and γ = (2γ2 +
3γ3)/5 are Luttinger parameters related to the bulk light-hole
mlh = m0/(γ1 + 2γ ) and heavy-hole mhh = m0/(γ1 − γ ) ef-
fective masses, k is the hole wave vector, Î ≡ Îh is the

hole orbital angular momentum operator I = 1, sh = 1/2σ̂h

is the hole effective spin 1
2 (σhα the Pauli matrices with

α = x, y, z), and {ab} = (ab + ba)/2. In the limit of large
spin-orbit interaction �SO → ∞, the top of the valence band
can be described by the four-band Luttinger Hamiltonian
[51,52].
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Following the classical approach introduced by Luttinger
[51], the Zeeman part of the hole Hamiltonian in bulk material
Ĥ (h)

Z in the hole representation has the form

Ĥ (h)
Z = −μB(1 + 3κ)(ÎhB) + 1

2μBg0(σ̂hB), (5)

where B is the external magnetic field, κ is the magnetic Lut-
tinger parameter [51]. In the electron representation kinetic
energy Eq. (4) changes sign and instead of Îh one has to take
the electron orbital momentum Îe = −Îh and the electron spin
operator with the Pauli matrices σ̂e = −σ̂h. As a result, in
both the electron and hole representations, the relative sign
between the Zeeman term (5) and kinetic energy (4) remains
the same as a change of representation results in sign inversion
of both energy and spins. The operator of the hole internal
angular momentum is

J ≡ Jh = Îh + 1
2 σ̂h. (6)

For the �8 subband J = 3
2 and for the �7 subband J = 1

2 .
We use the following definition of the effective g factor of

a bulk hole from the �8 subband with J = 3
2 [44,53]:

gh = E−Jhz − E+Jhz

2JhzμBB

= E−3/2 − E+3/2

3μBB
= E−1/2 − E+1/2

μBB
, (7)

where Jhz is the hole spin projection on the magnetic field
direction. A positive gh corresponds to the hole ground state
with a positive spin projection Jhz. It is convenient to write the
effective Zeeman Hamiltonian (5) as

Ĥ (h)
Z = −μBghJhzB. (8)

The Hamiltonian (8) describes the splitting of the otherwise
fourfold-degenerate hole ground state in bulk crystals, as well
as in spherically symmetric structures. For example, in bulk
semiconductors with large �SO, the Zeeman effect for both
light (Jhz = ± 1

2 ) and heavy (Jhz = ± 3
2 ) holes is characterized

by the same g factor gh ≡ gbulk
h = 2κ. Note that the actual

Zeeman splitting of heavy holes is three times larger than
that of light holes for the same g factor: �E3/2 = 3�E1/2.
The scheme of hole energy-level splitting both in the electron
and hole representations for noninteracting electron and hole
is shown in Fig. 1. As we are interested in holes in the �8

subband we do not show here the �7 valence subband. The
definition (7) and the Hamiltonian (8), which will be used
hereafter, are widely used in the physics of colloidal nanocrys-
tals with Jhz being changed by the total angular momentum
projection M [22,44,54–57].

Another definition of the hole g factor with the opposite
sign as compared with (7) and (8) is also used in the literature
(see, for example, Refs. [45,50,58,59]). For structures with a
large light- and heavy-hole splitting, the heavy-hole g factor
is often defined as �E3/2 = E+3/2 − E+3/2 = μBghhB with
ghh = −3gh = −6κ [45,58] describing the whole Zeeman
splitting of heavy holes. While all definitions of the hole g
factor follow from the same Zeeman contribution to the hole
Hamiltonian (5) and describe the same energy splitting of hole
states in the magnetic field, one should carefully consider the
chosen definition when comparing of the calculated g factors
with experimentally evaluated data.

FIG. 1. The scheme of Zeeman energy-level splitting of electrons
and �8 holes in bulk zb semiconductor (a) in electron and (b) in
mixed electron-hole representations. Eh and Ee are hole and electron
energy levels in zero magnetic field calculated from the top of the
valence band Ev = 0 and the bottom of the conduction band Ec = Eg,
respectively. The order of electron and hole levels is shown for
ge > 0, gh > 0, in the limit μBB � �SO. The circularly polarized
optical transitions are denoted by σ+ and σ−.

The orbital contribution from the magnetic field to the hole
Hamiltonian ĤB comes from the hole wave vector k being
replaced by k − e

c A, with A being the vector potential of mag-
netic field. For simplicity, we consider the magnetic field B
directed along the z axis being also one of the crystal axis. As
we consider the hole Hamiltonian in spherical approximation,
doing so does not lead to the loss of generality of results. The
explicit form of ĤB can be found in Appendix B (in the units
of μBB), in the limit �SO → ∞ its part corresponding to �8

holes coincides with the Hamiltonian presented in Ref. [42].
For a bulk hole ĤB contribution vanishes in weak magnetic
field.

In semiconductors with the cubic lattice symmetry, one can
also separate the cubically symmetric contribution to the Zee-
man part of the hole Hamiltonian, originating from the valence
band warping ∝q(BxJ3

x + ByJ3
y + BzJ3

z ). However, generally
parameter q is small, and the cubic contribution to the hole
Zeeman splitting is much smaller than the isotropic Ĥ (h)

Z and
ĤB [60].

B. Renormalization of the hole effective g factor
in low-dimensional structures

The last term Vext (r) in Eq. (3) is a nanostructure potential
acting on the hole. The main effect of Vext (r) on the hole g
factor is the mixing of hole states from different subbands.
As a result, for localized holes, the internal angular momen-
tum and its projections are not good quantum numbers. In
spherically symmetric systems, the states can be classified
by the hole total angular momentum [52,61–63]. In axially
symmetric structures the total angular momentum projection
on the symmetry axis can be used [62,64]. In structures with
an inversion center, one can use a state “parity” as a quantum
number to classify hole states [64,65]. The states with odd and
even parity are an analog of electron spin-up and -down states
and are degenerate in zero magnetic field.

The hole states in nanostructure are characterized by the
total angular momentum projection M on its symmetry axis,
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which coincides with the z direction. With the magnetic field
B ‖ z one can use the definitions similar to Eqs. (7) and (8)
for the hole effective g factor and Zeeman term, respectively,
with Jhz replaced by M. Except for the spherically symmetric
structures, the Zeeman splitting of light and heavy subbands
might be controlled by different g factors depending on |M|,
so we define

gh,|M| = E−M − E+M

2MμBB
, Ĥ (h)

Z = −μBgh,|M|MB. (9)

The first correction to the hole effective g factor as com-
pared with the bulk case comes from the renormalization of
the Zeeman term (∝κ for holes from the �8 valence band if
admixing of spin-split holes is negligible), Eq. (5). This renor-
malization 〈�M |Ĵhz|�M〉/M is a function of the mass ratio β =
mlh/mhh = (γ1 − 2γ )/(γ1 + 2γ ) and �SO/Eh and is caused
by the mixing of hole states from different subbands with
different bulk g factor. The second one is related to the orbital
contribution ∝γ1, γ and is also controlled by some function
of β and �SO/Eh. For numerical calculations, we considered
zinc zb-CdSe and InP and wurtzite modification of CdSe,
where the crystal field energy �cr � �SO. In relatively small
NCs with �cr � Eh, our numerical calculation has shown that
the crystal field effect can be treated as a small perturbation. It
results in the splitting of the states with |M| = 3

2 and 1
2 in zero

magnetic field � �cr without modification of the hole wave
function. In this case, the effective crystal field perturbation
∝ �cr does not affect the hole g factors, while magnetic field
is weak enough. Thus, the crystal field and magnetic field
perturbations can be taken into account separately, and both
the light- and heavy-hole Zeeman splitting in wurtzite NCs
can be described by our calculation for zinc-blende NCs with
the same set of the valence band parameters.

III. HOLE g FACTOR IN SPHERICAL AND CUBE
NANOSTRUCTURES

A. Spherical nanocrystals

A spherically symmetric external potential represents the
special case of the highest possible symmetry, in which hole
states are classified by their total angular momentum [52,61–
63]. Following [66] we write the six-component hole envelope
function as

�M =
√

2 j + 1
∑

l

(−1)l−J+M (i)lR jlJ (r)

×
∑

m+μ=M,J=3/2,1/2

(
l J j
m μ −M

)
Yl,muJ,μ. (10)

Here j = J + l is the hole total angular momentum with M
being its z-axis projection, l is the hole orbital momentum, Ylm

are spherical harmonics [67], (i k l
m n p ) are 3 j Wigner symbols,

and uμ are the Bloch functions of the �8 and �7 top valence
subbands with spin z-axis projection μ [49,68] [for details
see Appendix B, Eq. (B1)]. We will study the g factor of the
fourfold-degenerate hole state with j = 3

2 which consists of
functions with l = 0 and l = 2 (SD-like state). In the limit
�SO → ∞ it is the ground state of the hole both in the boxlike
and parabolic potentials [69]. We denote the respective radial
functions as R3/2,0,3/2 ≡ R0, R3/2,2,3/2 ≡ R2, R3/2,2,1/2 ≡ Rs.

Taking into account the spherical symmetry of the structure,
one can simplify the Schrödinger equation to the system of
three equations for R0, R2, and Rs [66,70], which reduces
to the system of two equations for R0 and R2 in the limit
�SO → ∞ [52]. For the boxlike infinite potential radial wave
functions R0, R2 and Rs have analytical form (see Ref. [70])
(the limit �SO → ∞ was studied in Refs. [71,72]). For the
parabolic potential, calculations were made numerically us-
ing the generalized for the six-band Hamiltonian numerical
method introduced in Refs. [42,43]. While the energy of the
SD-like state in zero magnetic field E0 depends on β, its
dependence on the NC radius a is controlled by the character-
istic heavy-hole quantization energy Eh = h̄2π2/2mhha2 for
the boxlike potential and Eh = 3h̄2/2mhhL2

h for the parabolic
potential with Lh being the heavy-hole oscillator length. Note
that Eh corresponds to the hole quantum size quantization
energy in the respective potential in the case β = 1 (the limit
of the simple valence band), while the level energies increase
with decrease of β < 1 in both potentials [43].

In the external magnetic field the fourfold-degenerate
ground state splits into four equidistant levels with M =
± 3

2 ,± 1
2 . As in the bulk case, such a splitting is characterized

by a single g factor gh,3/2 = gh,1/2 = gh ≡ gsph
h according to

Eq. (9). The expression for gh ≡ gsph
h in the four-band Lut-

tinger model was first obtained in Ref. [53] for the hole bound
to the acceptor Coulomb potential. We generalize it for the
six-band model as

gsph
h = 2κ + 4

5 Ig
1 + 4

5 Ig
2 (γ1 − 2γ − 2κ)

+ 2
5 Ig

3 (−1 − 3γ1 − 7κ) − 2
5γ Ig

4 − 8
5 Ig

5 (1 + κ),

(11)

Ig
1 = 1

2

∫
r3dr

(
R2

dR0

dr
− R0

dR2

dr
− 3

r
R0R2

)
,

Ig
2 =

∫
r2dr R2

2, Ig
3 =

∫
r2dr R2

s ,

Ig
4 =

∫
r3dr

(
(R2 + 3R0)

dRs

dr
+ 9

r
Rs(R0 − R2)

)
−

∫
r3dr

(
3Rs

dR0

dr
+ Rs

dR2

dr

)
, Ig

5 =
∫

r2dr R2Rs.

Integrals Ig
1–5, for a given potential profile and fixed ratio

between the hole quantization energy Eh and �SO depend only
on the light- to heavy-hole effective mass ratio β. Integrals
Ig
1 and Ig

2 were first derived within the four-band Luttinger
model [53]. If the hole wave function vanishes at the NC
surface, one can simplify the expression for the Ig

1 [53] and
Ig
4 by partial integration. To separate the renormalization of

the Zeeman and orbital contributions to the hole g factor we
rewrite Eq. (11) as

gsph
h = 2[κS(β ) − Sc(β )] + γ1I (β ), (12)

where

S(β ) = 1 − 4

5
Ig
2 − 7

5
Ig
3 − 4

5
Ig
3 , Sc(β ) = 1

5

(
Ig
3 + 4Ig

5

)
,

I (β ) = (1 − β )

5(1 + β )

(
4Ig

1 − Ig
4 + 6Ig

3

) + 4β

5(1 + β )

(
2Ig

2 + 3Ig
3

)
.
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FIG. 2. Functions S(β ), Sc(β ), and I (β ) in NCs with
(a) parabolic and (b) abrupt boxlike potential, calculated for
�SO much larger (solid black curves), much smaller (dotted red
curves), and comparable (dashed blue curves) with heavy-hole
characteristic energy Eh defined in the text.

Functions S(β ) and Sc(β ) describe the renormalization of
the Zeeman contribution Ĥh

Z and function I (β ) describes the
orbital contribution to the g factor stemming from ĤB. In the
limit �SO/Eh → ∞ the radial function Rs vanishes as well as
quantities it is contained in, Ig

3–5 and function Sc(β ). The hole
g factor in this case is expressed by classical formula from
Ref. [53]. In the opposite limit of a weak spin-orbit coupling
�SO/Eh → 0, it can be shown that R2 ≡ Rs and Ig

2 ≡ Ig
3 ≡ Ig

5 .
In Fig. 2 we show the dependencies of functions S(β ),

Sc(β ), and I (β ) for the parabolic [Fig. 2(a)] and boxlike in-
finite [Fig. 2(b)] potentials, calculated for �SO much larger,
much smaller and comparable with the heavy-hole ground-
state size quantization energy Eh. In the limit �SO � Eh,
which corresponds to NCs of large radius, the admixture of
�7 holes is negligible and presented curves can be calculated
using the four-band Luttinger Hamiltonian. S(β ) and Sc(β )
are always positive, while I (β ) is negative. The resulting sign
of the hole g factor depends on the interplay of all contribu-
tions, tending to be negative in semiconductors with relatively
large γ1.

B. Cube nanocrystals

Here we consider NCs with an infinite potential of cubic
shape or cube NCs with an edge length L (see details in
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FIG. 3. The dependencies Q1,3/2(β ) and Q2,3/2(β ) for the quan-
tum state E0 in cube NCs for �SO much larger (solid black curves),
much smaller (dotted red curves), and comparable (dashed blue
curves) with the heavy-hole quantization energy Eh = 3h̄2π 2/mhhL2.

Appendix C), still neglecting the effects of cubic symmetry of
the crystal structure. In this case, the system under study loses
its spherical and axial symmetry. The total angular momentum
and its projection on the magnetic field direction (unless the
magnetic field is directed along one of the cubic axes) are not
good quantum numbers. In zero magnetic field, the two lowest
hole states originating from the �8 subband remain fourfold
degenerate since cubic anisotropy does not split states with
a total angular momentum less than 5

2 (as it would be in
spherically symmetric NC) [73]. Depending on β, the hole
ground state in cube NCs might be a PF -like (with energy E1)
state instead of a SD-like (with energy E0) state even in the
�SO/Eh → ∞ limit [see Fig. 12(a)]. In the following, we will
focus only on the SD-like state.

The hole effective g factors for the light- (|M| = 1
2 ) and

heavy- (|M| = 3
2 ) hole states can be written as

gh,|M| = 2[κQ2,|M|(β ) + Q0,|M|(β )] + γ1Q1,|M|(β ). (13)

Function Q1,|M|(β ) describes the orbital contribution to the
hole g factor and Q2,|M|(β ) and Q0,|M|(β ) describe the renor-
malization of the spin contribution. In contrast to the spherical
case, these functions are different for heavy and light holes.
The dependencies Q0,|M|(β ), Q1,3/2(β ), and Q2,3/2(β ) for the
quantum state E0 calculated numerically for �SO much larger,
much smaller, and comparable to the heavy-hole characteristic
energy Eh = 3h̄2π2/mhhL2, corresponding to the hole size
quantization energy for β = 1, are shown in Fig. 3.

In contrast with spherical NCs, while the SD-like hole
state in cube NCs is fourfold degenerate in zero field, the g
factors of heavy and light holes are different and can have
opposite signs. This effect is a manifestation of the breaking of
spherical symmetry and can be qualitatively described by the
cubic contribution Q(BxJ3

x + ByJ3
y + BzJ3

z ) to the spherically
symmetric hole Hamiltonian with large Q (unlike neglected
term with a small q, originating from the cubic symmetry
of the crystal lattice). As for spherical NCs, the admixture
of �7 holes and the related difference between the six- and
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FIG. 4. Hole 1S3/2 state g factor gsph
h in (a) CdSe (zinc blende and wurtzite) and (b) InP-based spherical NCs as a function of NC diameter

for different parametrizations from Table I. In (c) the hole ground-state g factor gcube
h,3/2 dependence on the cube edge length in cube nanocrystals

is presented. The values of �SO are �SO = 420 meV for CdSe and �SO = 100 meV for InP, respectively. The numbers in brackets correspond
to the parametrization in Table I, the numbers given near the curves represent the value of the hole g factor calculated within the four-band
model.

four-band models are more important for smaller β, including
values relevant for real semiconductors.

The size dependencies of the hole g factor for spherical and
cube CdSe and InP NCs are shown in Fig. 4. For the sake of
comparison, we define the diameter d = 2a of a NC with the
parabolic potential as d = 4Lh. For both types of confining
potential the hole g factor decreases towards small NCs, while
for the boxlike potential, the absolute value is larger and the
relative change of the g factor is larger for sets of Luttinger
parameters corresponding to a smaller effective mass of a
heavy hole, i.e., larger quantization energy. One of the main
points of Fig. 4 is a strong dependence of calculated value of
the hole g factor on the chosen set of valence band parameters,
which are listed in Fig. 4. The size dependencies of the hole
g factor in Fig. 4 also demonstrate the importance of taking

TABLE I. Parametrizations of the valence band parameters.

No. Material γ1 γ κ gbulk
h = 2κ β Refs.a

1 zb-CdSe 5.51 1.78 0.46 0.93 0.22 [74]
2 zb-CdSe 3.27 1.33 0.46 0.93 0.1 [75]
3 zb-CdSe 3.8 1.65 0.81 1.62 0.07 [75]
4 zb-CdSe 2.52 0.83 −0.12 −0.25 0.2 [76]
5 wz-CdSe 2.04 0.58 −0.38 −0.76 0.28 [77]
6 wz-CdSe 1.7 0.4 −0.57 −1.13b 0.36 [78]
7 wz-CdSe 2.1 0.55 −0.45 −0.9 0.31 [66]
8 wz-CdSe 1.67 0.56 −0.29 −0.58 0.2 [79]
9 InP 5.05c 1.68c 0.45 0.9 0.2 [80]
10 InP 4.6c 1.68c 0.6 1.2 0.15 [80]
11 InP 5.25 1.9 0.75 1.5b 0.16 [81]
12 InP 4.94 1.79 0.67 1.34 0.16 [76]

aReferences are given for the γ1, γ2, and γ3 Luttinger parameters. We
use relations γ = (2γ2 + 3γ3)/5 [82] and κ ≈ −2/3 + 5γ /3 − γ1/3
[31].
bExperimental g factors of a bulk hole determined by Landau level
spectroscopy.
cExperimental values from the hot photoluminescence
measurements.

into account of the �7 band admixture in spherical and cube
NCs with the sizes up to 12 nm. We remind that with the
increase of NC size and the consequent decrease of the hole
size quantization energy, the admixture of the �7 spin-split
holes become negligible and the results of the six-band model
tend to the results of the four-band model. The corresponding
limiting values of the hole g factor are given near the curves,
while the bulk g factor values gbulk

h are given in Table I.

C. Spheroidal and cuboid nanocrystals

Here we briefly consider the uniaxial shape distortion of
spherical and cube NCs. We assume that the symmetry axis
is directed along z. Such an axially symmetric perturbation
splits the hole ground state with the total angular momentum
j = 3

2 into two Kramers doublets with momentum projections
M ± 3

2 and M ± 1
2 on the crystal axis, similarly to the ef-

fect of the internal crystal field in wurtzite semiconductors.
The anisotropy-induced splitting for hole states described by
the four-band Luttinger Hamiltonian in NCs with the box-
like infinite potential and the smooth parabolic and Gaussian
potentials was studied in Refs. [43,54,72,83]. For the vast
majority of Luttinger parameter sets in oblate NCs the ground
state has the angular momentum projection M = ± 3

2 on NC
axis (it will be referred as heavy holes as it consists mostly
of Bloch states with J = 3

2 and Jhz = ± 3
2 ), and M ± 1

2 (light
holes) in prolate NCs [42,43,72]. Below we generalize the
calculation of the effect of such NC anisotropy on the heavy-
and light-hole g factors gh,3/2 and gh,1/2 for the six-band hole
Hamiltonian (4).

For NCs with the parabolic confining potential

Vext(r) ≡ V an
p (ρ, z) = κρ

2
ρ2 + κz

2
z2,

where κz (κρ ) is the potential stiffness along (perpendicular) z
axis, we introduce parameter of the shape anisotropy of NC μ

as anisotropy of its potential [43]:

μ = 3

2

(κρ − κz )

(2κρ + κz )
.
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FIG. 5. The dependencies of the light-hole gh,1/2 and heavy-hole
gh,3/2 g factors on the anisotropy parameter μ in (a) spheroidal NCs
with the parabolic potential with d = 200 nm and d = 4 nm and
(b) cuboid NCs with the boxlike infinite potential with edge length
L = 200 nm and 4 nm. The calculations are done for zb-CdSe pa-
rameters given by parametrization 1 in Table I and �SO = 420 meV.

For spheroidal NCs with the infinite boxlike potential at the
surface and shape described by x2/b2 + y2/b2 + z2/c2 = 1,
the small shape anisotropy parameter μ is introduced by μ =
c/b − 1 with c ≈ a(1 − 2μ/3), b ≈ a(1 + μ/3). The zero-
order approximation corresponds to a sphere of the radius a.
The first-order perturbation is obtained after the coordinate
change to x → xa/b, y → ya/b, z → za/c [72]. Similarly,
this method can be applied to treat the anisotropy of NCs of
square cuboid shape with the infinite boxlike potential and
dimensions 2b and 2c, and zero-order approximation being
the cube with the edge L = 2a.

In Fig. 5 the heavy- and light-hole g factors gh,3/2 and
gh,1/2 as functions of μ are shown. Calculations were made for
the zb-CdSe parameters set 1 (Table I) and �SO = 420 meV,
for spheroidal/cuboid NCs with the diameter/edge 200 nm,
where the admixture of �7 holes is negligible so that the same
result can be obtained within the four-band model, and 4 nm
(the admixture is important). For both sizes curves look very
similar, although the values of the g factors are quite different.

From Fig. 5(a) one can see that in spheroidal NCs the light-
and heavy-hole g factors are different. This demonstrates that,
while the shape anisotropy results in the splitting of the states
with |M| = 3

2 and 1
2 similar to the effect of the crystal field

in wurtzite NCs, one can not treat magnetic field and shape
anisotropy perturbations separately. As our analysis showed,
the corrections to the heavy- and light-hole g factors com-
ing from the NC shape anisotropy can be calculated by the
perturbation theory as the first-order corrections coming from
the ĤB, using wave functions, already taking into account the
shape anisotropy in zero magnetic field. As a consequence,
like in cube NCs, in “quasispherical” wurtzite NCs where the
light- and heavy-hole splitting caused by the shape anisop-
tropy compensates the crystal field splitting [18] and the hole
state is fourfold degenerate in zero magnetic field, the case
gh,3/2 �= gh,1/2 is realized.

IV. HOLE g FACTOR IN 2D NANOCRYSTALS

A. Quantum well of infinite lateral size

In quantum-well-like NCs, i.e., nanoplatelets (NPLs),
where the thickness L is much smaller than the in-plane
dimensions, the heavy- and light-hole states are strongly
split in zero magnetic field. In quantum-well-like NCs, i.e.,
nanoplatelets (NPLs), where the thickness L is much smaller
than the in-plane dimensions, the heavy- and light-hole states
are strongly split in zero magnetic field. For example, the
reported values for such splitting in 4 monolayers (ML) CdSe
NPL are about 180 mev [84] and about 150 meV [85]. In
the in-plane isotropic NPL, the hole ground state is character-
ized by the total angular momentum projection M = ± 3

2 on
the symmetry axis directed perpendicular to the NPL plane
(z axis) is composed only of the heavy-hole valence band
states with J = 3

2 and Jhz = ± 3
2 with a vanishing admixture

of light and spin-split holes. Therefore, in the limit of a
two-dimensional (2D) structure with the vanishing width to
in-plane size ratio there is no renormalization of the spin
Zeeman effect. However, as it is was shown in Ref. [86],
the orbital contributions to the heavy-hole g factor gh,3/2 ≡
g2D

h,3/2 coming from the ĤB in the first-order perturbation the-
ory for a magnetic field directed along the symmetry axis
are present due to the quantization of kz and the magnetic
field-induced heavy- and light-hole mixing. We modified the
expression from Ref. [86] to take into account the admixture
of holes from the �7 valence subband. In NPLs, as in all other
quantum-well-like structures, light holes are mixed effectively
with spin-split holes if �SO is comparable or smaller than the
heavy-hole size quantization energy Eh = h̄2π2/2mhhL2 for
the boxlike potential and Eh = h̄2/2mhhL2

h for the parabolic
potential. So, to use the perturbation theory one has to con-
struct a proper zeroth-order approximation function and the
proper perturbation Hamiltonian (see Appendix B). After do-
ing so, we arrive to the expression

g2D
h,3/2 = 2κ − 4

h̄2

m0

∞∑
n=1

|〈 ˜lh2n|γ k̂z|hh1〉|2
Ẽlh2n − Ehh1

A1

(
�SO

Ehh1
, β

)2

− 2
h̄2

m0

∞∑
n=1

|〈S̃O2n|γ k̂z|hh1〉|2
ẼSO2n − Ehh1

A2

(
�SO

Ehh1
, β

)2

. (14)

Here |hh1〉 is the envelope wave function of the heavy-hole
ground state of the quantization along the z axis, ˜|lh2n〉 and
S̃O2n are new wave functions of even excited states of the
light hole and spin-split hole Ehh1 ≡ Eh, Ẽlh2n and ẼSO2n are
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FIG. 6. Function G(β ) calculated for the parabolic and boxlike
infinite potentials in two limiting cases: �SO much larger (solid
curves) and much smaller (dotted curves) than the heavy-hole quan-
tization energy Eh defined in the text.

the corresponding energies. Coefficients A1( �SO
Ehh1

) and A2( �SO
Ehh1

)
describe the magnetic-field-induced perturbation to the heavy
hole in new basis. In general case energies Ẽlh2n and ẼSO2n ,
wave functions ˜lh2n and S̃O2n, and coefficients A1( �SO

Ehh1
) and

A2( �SO
Ehh1

) can not be calculated analytically. The expressions
for structures with the boxlike potential are presented in Ap-
pendix B. In the limit �SO → ∞ we have A1( �SO

Ehh1
, β ) → −1,

A2( �SO
Ehh1

, β ) → −1/
√

2, ẼSO2n → ∞ and Eq. (14) tends to a
well-known formula [86]

g2D
h,3/2 = 2κ − 4

h̄2

m0

∞∑
n=1

|〈lh2n|γ k̂z|hh1〉|2
Elh2n − Ehh1

. (15)

Here |hh1〉 is the envelope wave function of the heavy-hole
ground state of the quantization along the z axis, |lh2n〉 are
wave functions of even excited states of the light hole, and
Elh2n are the corresponding energies.

After summation Eq. (14) can be written as

g2D
h,3/2 = 2κ − γ1

3
G(β ), (16)

where G(β ), with fixed �SO depends only on β and the type
of the localization potential along the z direction.

The dependencies of G(β ) on β for the parabolic and
boxlike infinite potentials are shown in Fig. 6 for large
(solid curves) and small (dotted curves) �SO. The dependence
for parabolic potential is stronger due to smaller distances
between hole energy levels as compared with the boxlike
potential. Note that unlike spherical and cube NCs, for NPLs
the dependence of G(β ) and, consequently, hole g factor on
the ratio �SO/Eh is much weaker. In most cases one can
use results obtained within the four-band model in the limit
�SO → ∞ for estimation of the heavy-hole g factor, espe-
cially for the boxlike potential. Note that despite the relatively
weak dependence of the hole g factor on the NPL thickness
for NPLs with infinite lateral size, especially for the boxlike
potential, the mixing of the light holes and spin-split-off holes
in thin NPLs is strong [87,88].

B. Nanoplatelet with a finite in-plane size

Realistic colloidal NPLs have finite thickness and finite
in-plane size [85,89,90]. This makes the situation different
from the one in epitaxial thin quantum well. The finiteness
of the ratio of the NPL thickness to the in-plane size results
in nonzero light- and heavy-hole mixing even in zero mag-
netic field. This leads to a nonzero first-order perturbation
renormalization of the spin Zeeman term, as well as to orbital
correction to the hole effective g factor. As a consequence, the
hole ground-state g factor is somewhere in-between the 2D,
g2D

h,3/2, and spherical, gsph
h , limits. In Fig. 7 we show the depen-

dencies of the hole ground-state g factor on the NC width L
for different in-plane cross sections Lx × Ly for the [Figs. 7(a)
and 7(c)] parabolic and [Figs 7(b) and 7(d)] boxlike infinite
potentials. For NCs with the parabolic potential, we define the
Lα along each direction α = x, y, z as Lα = 4Lh,α , where Lh,α

is the oscillator length along respective direction calculated
with the heavy-hole effective mass. The calculations are done
for the zb-CdSe parameters given in Table I, parametrization
1, using the six-band Hamiltonian (4) for holes.

One can see from Fig. 7 that in the limit L = Lz → 0 for
both potentials asymptotic values for each in-plane size are
different due to size dependence of the hole g factor coming
from the six-band Hamiltonian (mixing light and spin-split
holes). Dashed lines in both panels correspond to the value
of the heavy-hole g factors in cube (spherical) NC of zb-
CdSe with in-plane size 8 × 8 nm2: gsph

h ≈ −0.81 and gcube
h,3/2 ≈

−0.92.
In Fig. 7 we also show the dependence of the heavy-hole

g factor in NPL with infinite in-plane size (2D limit). For
the limiting curves one can see a weaker size dependence,
especially for NPLs with the boxlike infinite potential. For
conventional quantum wells one can safely neglect the admix-
ture of �7 holes for both types of localizing potential, and for
NPLs with smaller width for the boxlike potential.

Dependence of the gh,3/2 on the NPL in-plane size comes
from the Zeeman contribution as well as from orbital due to
mixing of heavy holes with light and �7 holes by the NPL
potential. Overall, the smaller the in-plane cross section is,
Lx × Ly, the stronger is the g-factor dependence. For cross
section 8 × 8 nm2 at Lz = 8 nm the case of spherical (cube)
NCs is realized, and at Lz > 8 nm the case of prolate NC
with the ground state being the light hole is realized. It leads
to the discontinuity of the ground-state g factor in boxlike
NCs and to the knee in the g-factor dependence for parabolic
NCs. Note that for realistic CdSe NPLs thickness of 1.1 nm
(3 ML)–2.3 nm (7 ML), the variation of the hole g factor
is mostly driven by NPL lateral size [see Figs. 7(a) and
7(b)]. It opens the possibility of adjusting the hole g factor
between sphere/cube and 2D limit by varying the NPL lateral
dimensions. Note that the eight-band model, which accounts
for the admixture of states from conduction band, may lead
to additional height dependence of the heavy-hole g factor,
especially for narrow-band-gap semiconductors such as InAs
[48].

V. DISCUSSION

In this section, we compare our results with published the-
oretical and experimental data. Above we have demonstrated
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FIG. 7. The dependence of the heavy-hole g factor on NPL width Lz for structures with the (a), (c) parabolic and (b), (d) boxlike infinite
potential, calculated for zb-CdSe, parametrization (1) from Table I. The curves of different colors correspond to different NPL in-plane sizes
shown as Lx × Ly in nm2. The dashed horizontal lines correspond to the g-factor value in (a), (c) spherical and (b), (d) cube CdSe NCs with
diameter (size) 8 nm: gsph

h ≈ −0.94 and gcube
h,3/2 ≈ −0.92.

that the admixture of the �7 valence subband results in size
dependence of the hole g factor in NCs of different shape. The
admixture effect becomes crucial in small NCs, where the hole
quantization energy is comparable with the spin-orbit spitting
of the valence band. Interestingly, the heavy-hole g factor in
thin NPLs with large lateral size (analog of a quantum well) is
relatively weak. The largest contribution to the hole g-factor
size dependence in NPLs comes from the variation of the
lateral size.

In our model, we have neglected the additional renormal-
ization of the valence band Luttinger parameters γ1, γ , and
κ caused by the quantum confinement of holes, which is
similar the to effect of the nonparabolic energy dispersion for
electrons [91]. This effect can be taken into account within the
eight-band Kane model [45,48,92] and results in additional
size dependence of the hole g factor [25,38,45,48]. This effect
might be important for extremely small NCs and thin NPLs
as well as in narrow-band semiconductors if the hole size
quantization energy Eh is comparable with Eg, although it
is expected to be smaller than the effect of the admixture
of �7 holes as usually Eg � �SO. In Ref. [30] the results
of tight-binding calculation of the hole g factors in CdSe
NCs are presented, demonstrating a strong variation of hole
g factor with NC size for a given NC shape, although a direct
comparison with our results is difficult.

In the analysis presented above, the quadratics on the
magnetic field terms were neglected. Their account results
in the magnetic field dependence of the hole g factor in the
strong-field regime due to additional hole states mixing if
the Zeeman splitting becomes comparable with the hole size
quantization energy [46,64,93]. Experimentally, the described
effect was observed in quantum wells (e.g., [46,94,95]). In our
work we considered the spin-orbit interaction in the valence
band independent of the hole wave vector k. There are also
linear on k contributions in wurtzite semiconductors [96] or
in structures with the inversion asymmetry. These terms lead
to an additional spin-orbital contribution to the hole g factor
as it was demonstrated in Ref. [97] for bulk wurtzite semi-
conductors. An account of such spin-orbit coupling effects
neglected in our calculations would somewhat modify our
results, probably improving the agreement between the theory
and experiment.

Analyzing experimental data, one has to pay attention to
how the hole g factor is defined [we use definitions (7) and (9)]
and how it is measured in a particular experiment. One can
directly measure the electron g factor in NCs using the spin-
flip Raman scattering [98] or pump-probe Faraday rotation
technique [18,99–101]. The comparison of the experimental
results and theoretical calculations is discussed in Appendix
A. Unfortunately, no direct experimental access to the hole g
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factor in semiconductor NCs was reported up to now. How-
ever, one can use indirect methods to determine the hole g
factor from analysis of other measurable parameters.

For example, the hole g factor can be extracted from the
magnetic field dependence of the degree of circular polar-
ization (DCP) of the photoluminescence (PL) of negatively
charged excitons (negative trions). The PL polarization in-
duced by the external magnetic field is controlled by the
difference in populations of the hole Zeeman sublevels in the
trion initial state as electron spins are in the singlet state. As a
result, the equilibrium polarization is determined by the hole
g factor solely.

According to this method for spherical CdSe/CdS NCs
with zinc-blende core of 2.5 nm diameter and wurtzite shell of
the 10-nm thickness gh = −0.54 was determined [22], which
is smaller than the values calculated in the frameworks of
both the four- and six-band models. It probably points to the
leakage of the hole wave function into the CdS shell.

For CdSe/CdS NPLs with 1.2-nm-thick CdSe core and
8.4-nm-thick CdS shell and about 30-nm side lengths [102]
gh = −0.4 was reported (changing to gh = −0.7 in strong
magnetic field), which is close to those calculated by us for
the parabolic potential [see the curve for the 30 × 30 nm2

NPL in Figs. 7(a) and 7(c)], especially if one assumes larger
effective width of the NPL caused by the hole leakage to the
shell. For bare-core CdSe NPLs with 4- and 5-ML thickness
and in-plane sizes 5 × 24 and 8 × 16 nm2 value gh ≈ −0.1
(in the range of −0.03 and −0.2) was reported [55,56] which
is relatively close to calculated values in the boxlike potential
[see Figs. 7(b) and 7(d)]. In both cases we deal with trions
formed by heavy hole so that gh ≡ gh,3/2.

While the DCP of the negative trion emission is controlled
by the hole g factor, the energies of the respective optical
transitions are determined by Zeeman splittings of initial and
final states. In this case, both the hole and electron g factor
play a role. The equal energies Ehh

σ± and Elh
σ± of four transitions

allowed in σ+ and σ− polarization and involving the heavy
and light holes correspond to the interband transitions are
shown schematically in Fig. 1:

Ehh
σ± = ∓ 1

2 geμBB ∓ 3
2 gh,3/2μBB ≡ ± 1

2 ghh
1 μBB,

Elh
σ± = ± 1

2 geμBB ∓ 1
2 gh,1/2μBB ≡ ± 1

2 glh
1 μBB. (17)

Equation (17) remains valid in the presence of the uniaxial
splitting � � �SO of light and heavy holes and the external
magnetic field directed along the z direction. In Ref. [21],
the analysis of four transition peaks evolution with the mag-
netic field in the unpolarized PL spectra of singly charged
zb-CdSe/CdS/ZnS core/shell/shell NCs with 5.4-nm core
diameter allowed to estimate the electron and hole g factors.
For spherical NCs, |gh| ≈ 0.75 was determined.

For neutral excitons the analysis of magneto-optical data
is complicated by the exciton fine-energy structure in zero
magnetic field, which varies strongly with the shape and size
of NCs. The exchange interaction mixes the exciton states
formed with heavy and light holes into the states with the total
spin F = 1 and F = 2 split by �exch in the case of � = 0.
The joint action of the exchange interaction and anisotropic
splitting leads to the formation of five exciton states in zero
magnetic field labeled by the total spin projection F ≡ Fz on

the anisotropic axis as shown in Fig. 8 for the limits � �
�exch (a), � = 0 (b), and � � �exch (c) with the condition
�SO � �,�exch � 0 in all cases. The upper indices L and U
correspond to the lower and upper exciton states with the same
F as was first introduced in Ref. [44]. Values of � and �exch

scale differently with the radius in spherical NCs resulting in
the size dependence of exciton energy-level splitting [44].

The shape and size of NCs even more affect the exciton
fine-energy structure in the external magnetic field. Figure 8
shows schematically the Zeeman splitting of exciton levels in
a weak magnetic field μBB � �exc [μBB � � in Figs. 8(a)
and 8(c)] when the field-induced mixing of exciton states can
be neglected. If the field direction is tilted by the angle � with
respect to the anisotropy axis (if � �= 0), the Zeeman splitting
of exciton states with opposite sign of F �= 0 is ∝cos �.

It is convenient to define the effective g factor of the exciton
state with F �= 0 as

gex,|F | = E|F | − E−|F |
μBBz

. (18)

With such defined g factors, the exciton Zeeman splittings de-
picted in Fig. 8 can be written as �Eex,|F | = gex,|F |μBB cos �.
It is often the dark (optically spin-forbidden) exciton with
F = ±2 which is addressed by the magneto-optical experi-
ments such as the studies of the circularly polarized PL at
low temperature [23,55,103,104]. The heavy-hole g factor can
be obtained as gh,3/2 = (ge − gex,2)/3 (gh,3/2 ≡ gsph

h in spher-
ical NCs). The evaluation of the dark exciton g factor gex,2

from the magnetic field dependence of the DCP in ensemble
measurements and consequent estimation of the hole g factor
is complicated by the influence of additional factors related
to different mechanisms of the activation of the dark exciton
recombination and different mechanisms of the exciton ther-
malization [55,104].

These uncertainties are overcome in single NC studies,
which allow directly to observe the Zeeman splitting of the
dark exciton. In Ref. [20] for CdSe/ZnS NCs with 4-nm core
radius gex,2 = 2.7 was determined. Using the electron g factor
≈0.9, hole g factor gh = −0.6 can be estimated. Note that
both the electron and hole g factors in the core/shell structure
can be affected by the carried leakage into the shell.

The g factors of the bright excitons with F = ±1 depend
strongly on the ratio between � and �exch and thus on the
shape and size of NC. In thin NPLs, for example, made of zb-
CdSe, the case �SO � � � �exch is realized and the Zeeman
splittings of the bright excitons 1L and 1U in low magnetic
fields μBB � �exch [see Fig. 8(a)] are described by gL

ex,1 ≡
ghh

1 = −(ge + 3gh,3/2) and gL
ex,1 ≡ glh

1 = ge − gh,1/2 [compare
with Eq. (17)]. The bright heavy-hole exciton g factor in
ensembles of oriented CdSe NPLs was recently studied by
the circular dichroism in high magnetic field [105]. Using
reported ghh

1 values and the electron g-factor size dependence
[see Fig. 11(b)] for NPLs with large in-plane sizes we estimate
gh,3/2 = −(ge + ghh

1 )/3 in the range −0.8 ÷ −0.6 for 3-,4-,
and 5-ML-thick bare-core NPLs with the decrease of the
absolute values with NPL thickness increase. Such a tendency
is in agreement with our calculations for NPLs with parabolic
confining potential [curves for the 2D limit and 30 × 30 nm2

NPL in Figs. 7(a) and 7(c)], although the absolute values are
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FIG. 8. Scheme of the exciton energy levels in magnetic field μBB � �exch � �SO for (a) �exch � � � �SO; (b) � = 0; (c) μBB �
� � �exch. All resulting g factors are assumed to be positive, � is the angle between anisotropy axis and magnetic field. The order of energy
levels is sketched for ge = 1.7, gsph

h = −0.7, gh,3/2 = −0.1, gh,1/2 = 0.1.

larger and close to the values calculated with a relatively small
lateral area similar to NPLs used in experiment. The decrease
of ghh

1 (positive) values with the decrease of the lateral sizes
reported in [105] is related to the increase of the electron g
factor.

In the general case, the electron-hole exchange interaction
leads to the additional mixing of excitons formed with heavy,
light, and spin-orbit-split holes confined in spheroidal and
cuboidal NCs and the Zeeman splittings of the 1L and 1U

excitons are controlled by the g factors gL,U
ex,1 which are linear

combinations of ghh
1 and glh

1 . In spherical NCs, limiting cases
with � = 0, �exch � �SO (in zb-CdSe) or � � �exch �
�SO (in wz-CdSe) can be realized as shown in Figs. 8(a) and
8(b). In these cases the expressions for the exciton g factors
are simplified to [54]

gL
ex,1 = 1

4 ghh
1 + 3

4 glh
1 = 1

2

(
ge − 3gsph

h

) ≡ 1
2 gex,2,

gU
ex,1 = 3

4 ghh
1 + 1

4 glh
1 = − 1

2

(
ge + 5gsph

h

)
. (19)

The Zeeman splitting of the bright excitons in ensemble
of CdSe NCs was also addressed by studying the magnetic
circular dichroism [17]. The observed g factors were consid-
ered as the effective exciton g factor geff averaged between
lower and upper exciton g factors with the probabilities of
their optical excitation. Unfortunately, the size-independent
bulk value of the electron g factor ge = 0.68 was used in [17]
to obtain gh = −1.04 and gh = −0.76 from geff = 1.424 and
geff = 1.004 in bare core wz-CdSe NCs with radius 2.5 and
1.9 nm, respectively. In the limit � � �exch the 1L exciton is
almost dark and we obtain with Eq. (7) in [17] geff ≈ 2gU

ex,1/3.
With electron g-factor size dependence from Fig. 10 we re-
calculate gh ≈ −1.01 (−0.87) for 2.5 (1.9) NCs nm. These
values are close to those calculated. However, the opposite
size dependence of the resulting hole g factor demonstrates

that for the proper analysis of the hole g-factor size depen-
dence from the data measured on exciton one needs to take
into account both size dependence of the electron g factor and
of the zero-field exciton fine structure, which is beyond the
scope of this paper.

The Zeeman splitting of the bright exciton can be measured
under the selective excitation in the spin-flip Raman scattering
or fluorescence line narrowing (FLN) experiment. The Zee-
man splitting of the lowest bright exciton in CdSe NCs was
directly observed in the FLN in high magnetic field up to 60 T
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FIG. 9. Size dependencies of the electron energy Ee (solid lines,
left axis) and renormalization constant A(Ee) (dashed lines, right
axis) in zb-CdSe and InP nanocrystals. Open circles show the results
of the tight-binding calculations for zb-CdSe NPLs from [112].
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FIG. 10. Size dependencies of the electron g factor in different
semiconductors calculated within tight-binding approach [29] (sym-
bols) and using the eight-band k · p [Eq. (A5)] with the same sets of
parameters listed in Table II.

[106,107] and of the upper bright exciton in InP/ZnSe NCs
[108]. The analysis of the data at such high magnetic fields
requires accounting of the field-induced mixing of the lower
and upper excitons as it was done in [108] to obtain the hole
g factor gh = −1.9 for InP/ZnSe NCs with InP core diameter
3.2 nm. This value is quite close to the value calculated in this
work within the six-band model for small InP NCs with the
infinite boxlike potential [see Fig. 4(b)] while the four-band
model predicts much smaller absolute value of the hole g
factor.

VI. CONCLUSION

We show that in spherical and cube semiconductor NCs the
admixture of the spin-orbit split-off �7 valence subband state
results in the size-dependent hole g factor and its account is
important for the actual range of NC sizes. At the same time,
the heavy-hole g-factor dependence on the NPL thickness is
relatively weak for thin NPLs with large in-plane size. We
have found that the heavy-hole g-factor significantly depends
on the NPL lateral sizes for the realistic CdSe NPLs due to
the effective admixture of the light hole and spin-orbit spit-off
hole states by the confining potential.

Our calculations demonstrate that results of the g-factor
calculations obtained for zinc-blende semiconductors are ap-
plicable also for NCs made of semiconductors with the
wurtzite crystal structure if the crystal field-induced splitting
between light and heavy holes is much smaller than �SO

and the hole size quantization energy. At the same time, the
uniaxial shape anisotropy in spheroidal NCs not only splits
the heavy- and light-hole states, but results in the difference
of their g factors.

We have demonstrated that the orbital contribution to the
renormalization of the hole g factor in NCs as compared with
the bulk value plays an important role for all considered NC
shapes. Orbital contribution as a whole and the effect of the
�7 holes admixture in size dependence of the hole g factor

are more substantial in semiconductors with small β and a
large value of γ1 Luttinger parameter (smaller hole effec-
tive mass). We show that in cube NCs, the Zeeman splitting
of the fourfold-degenerate hole state with momentum 3

2 is
nonequidistant as a consequence of breaking the rotational
symmetry. This finding calls for further experimental studies.
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APPENDIX A: SIZE DEPENDENCE OF THE ELECTRON
ENERGY LEVEL AND EFFECTIVE g FACTOR IN THE

EIGHT-BAND KANE MODEL

The eight-band Kane or k · p model allows one to account
for the effect of the electron localization in low-dimensional
structures on the g-factor value [25,26,109]. It results in the
dependence of the electron g factor on the electron size quan-
tization energy Ee counted from the bottom of the conduction
band as

ge(Ee) = g0 +
∫

[g̃e(Ee) − g0]
∣∣�c

e (r)
∣∣2

d3r + gsur, (A1)

g̃e(Ee) ≈ g0 + grb − 2Ep

3

(
1

Ẽg
− 1

Ẽg + �SO

)
. (A2)

Here Ẽg = Eg + Ee, �c
e (r) describes the conduction band con-

tribution to the eight-band electron envelope function �e(r),
and gsur describes the surface/interface contribution propor-
tional to the squared value |�c

e |2sur taken at the surface of the
nanostructure or at the interface between two semiconductors
in the heterostructure [26].

The normalization condition for the total electron wave
function �e = �c

e + �v
e , where �v

e (r) describes the valence
band contribution, reads as

∫ |�e(r)|2d3r = ∫
(|�c

e (r)|2 +
|�v

e (r)|2)d3r = 1. Using the expression of �v
e (r) via �c

e (r)
[110,111] one can rewrite the normalization condition as∫

|�e(r)|2d3r =
∫ ∣∣�c

e (r)
∣∣2A−1(Ee)d3r = 1,

A(Ee) = [1 + αp(Ee)Eeme(E )/m0]−1. (A3)

Here me(Ee) is the electron effective mass at the energy Ee

and αp(Ee) = m0∂m−1
e (Ee)/∂Ee describes the nonparabolicity

effect:

me(Ee) = m0

[
γrb + Ep

3

(
2

Ẽg
+ 1

Ẽg + �SO

)]−1

,

αp(Ee) = Ep

3

(
2

Ẽ2
g

+ 1

(Ẽg + �SO)2

)
. (A4)

Here γrb takes into account the contribution of remote bands.
In semiconductor heterostructure, the electron effective mass
in (A3) as well as the electron effective g factor g̃e(Ee) in
(A1) can be different in different materials. In bare NCs,
A does not depend on the coordinate and can be directly
used as the renormalization constant for the conduction band
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TABLE II. Parameters for calculation of electron g factor: Eg is the energy gap, Ep is the Kane energy, �SO is the spin-orbit energy, ge and
me/m0 are bulk electron g factor and effective mass. For a comparison with tight-binding model calculation for wz-CdSe, CdTe, GaAs, InP we
use set of parameters from Ref. [29], except electron effective masses. The second set of parameters for wz-CdSe is taken from Refs. [35,66].
For zb-CdSe we use set of parameters from Ref. [34].

Semiconductor Eg (eV) Ep (eV) �SO (eV) ge ge (expt.) me/m0

wz-CdSe 1.8174 21.40 0.3871 0.633 0.68 [35] 0.13 [74]
wz-CdSe 1.84 17.5 0.42 0.68 [35] 0.11
zb-CdSe 1.764 18.3 0.47 0.42 0.42 [34] 0.13
CdTe 1.611 19.57 0.8221 −1.236 −1.66 [36] 0.09 [74]
GaAs 1.519 25.34 0.3399 −0.065 −0.44 [33] 0.067 [113]
InP 1.424 20.45 0.108 1.22 1.2 [36] 0.08 [113]

contribution. At small energies Ee � Eg, one can approximate
m−1

e (E ) ≈ m−1
e − m−1

0 αp|Ee=0Ee, where me ≡ me|Ee=0 is the
electron effective mass at the bottom of the conduction band,
and A(Ee) ≈ me/me(Ee) [111].

Combining together Eqs. (A1) and (A2) we arrive to

ge(Ee) = g0[1 − A(Ee)] + g̃e(Ee)A(Ee) + gsur (A5)

for the bare-core NCs. Equation (A5) allows one to calculate
the electron g factor in NCs knowing the bulk parameters
Ep, Eg,�SO, me, ge and the surface contribution gsur.

In Ref. [26] it was discussed that the surface contribu-
tion gsur to the electron g factor can be nonzero even for
the bare NC with the infinite potential barrier at the sur-
face. However, we consider below the case of the vanishing
electron conduction band wave-function component at the
surface �c

e (r)|r=s = 0 corresponding to gsur = 0. In this case,
Eq. (A5)gives the universal dependence of the electron g
factor on the electron energy Ee (not the optical transition
energy) within the eight-band k · p model valid for any NC
potential shape. The size dependence of the electron g factor
can be found by establishing the correspondence between the
electron quantization energy Ee and the size of the NC of a
particular shape.

For spherical NCs of the radius a, the equation for the
ground state 1Se, electron quantization energy under assump-
tion of zero boundary condition �c

e (a) = 0 reads as

Ee = h̄2π2

2me(Ee)a2
. (A6)

It can be solved numerically for Ee at the a given a to obtain
ge(Ee(a)). Alternatively, one can use the electron energy Ee

to obtain the parametrized dependence ge(a) [Eqs. (A5) and
(A6)]. Figure 9 shows the size dependencies of the electron
energy Ee (solid lines, left axis) and the renormalization con-
stant A(Ee) (dashed lines, right axis) in zb-CdSe and InP
nanocrystals. The electron energies calculated according to
Eq. (A6) are in a good agreement with the results of the
tight-binding calculations for zb-CdSe NPLs from [112]. One
can see that in small NCs the renormalization A(Ee) can
be as small as 0.5, resulting in additional corrections to the
electron g factor, up to 10% as compared with Eq. (A2). It is
also possible to calculate the electron g factor for the excited
nSe states in spherical NCs using Eq. (A5) and factor n2 in
Eq. (A6). The size dependencies of the electron energy level,
effective mass, and effective g factor in a QW or NPL with

infinite in-plane sizes and the thickness L can be obtained
after the replacement of nanocrystal radius a by the well width
L in Eq. (A6). The calculation of the electron g factor for
NPLs with a finite lateral cross section is beyond the scope of
this paper as the electron effective mass could be anisotropic,
complicating the analysis.

We show in Fig. 10 that the eight-band k · p calculations
of the electron g factor, according to Eq. (A5), provide a good
agreement with results of the tight-binding calculations [29]
for spherical NCs made from wz-CdSe, CdTe, GaAs, and InP.
We used in Fig. 10 the same set of bulk parameters for the
k · p calculations obtained by the tight-binding calculations in
[29] (see Table II).

In Fig. 11 the dependencies of the electron g factor on
the radius of wz-CdSe and zb-CdSe nanocrystals calculated
according to Eq. (A5) are shown by the green and violet
solid lines, respectively. Calculations are made with the set
of parameters from Refs. [35,66] and grb = 0.02 for wz-CdSe
and from Ref. [34] and grb = −0.125 for zb-CdSe, corre-
spondingly, and gsur = 0. Dashed lines show the calculations
according to Eq. (A2). One can see that the difference between
solid, ge(Ee), and dashed, g̃e(Ee), lines increases with decreas-
ing of NC size related to the A(Ee) effect while the difference
between g factors calculated for zb- and wz-CdSe decreases.

In Fig. 11 we show also the values of the g factors mea-
sured by the pump-probe Faraday rotation experiment in
Refs. [18,99] for wz-CdSe (g1 and g2 values) and in Ref. [114]
for zb-CdSe. The typical experimental error of the measur-
ing g factors is about ±0.01. Calculated ge(Ee) dependence
for wz-CdSe is in a good agreement with the experimental
g1 data shown by filled red and blue circles and attributed
to the ground-state electron g factor. A good agreement of
the calculated size dependence of the electron g factor with
experiment can be achieved with more than one set of k · p
model parameters. In Refs. [18,26] another set of parameters
was used together with the general boundary condition with a
nonvanishing electron wave function at NC surface resulting
in gsur �= 0.

It is noteworthy that the second set of experimental data for
wz-CdSe, g2 values given by open symbols in Fig. 11(a), can
not be described by the calculated dependence for electron
g factor at lowest quantum size level 1Se. In literature, there
were different assignments of these values to the exciton g fac-
tor [18,101], anisotropic g factor of electron [28], for wz-CdSe
and to the electron g factor for zb-CdSe [114]. Considering the
exciton hypothesis it is necessary to use the proper relation
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FIG. 11. Size dependence of electron g factor: (a) in spherical
wz- (green lines) and (purple) zb-CdSe NCs. Solid (dashed) lines
correspond to the infinite boxlike potential according to Eq. (A5)
[Eq. (A2)] with parameters from Refs. [35,66] and [34] for wz-CdSe
and zb-CdSe. Circles correspond to g factors observed via the pump-
probe Faraday rotation in wz-CdSe NCs (blue [18], red [99], cyan
[100], magenta [101]). Black triangles denote experimental data for
zb-CdSe NCs [114]; (b) in zb-CdSe NPLs with infinite lateral sizes
calculated for the infinite boxlike (dashed line) and parabolic (solid
line) potential. Black squares denote the resident electron g factors in
zb-CdSe NPLs measured via the SFRS [98].

between the exciton g factor and Larmor frequency which is
given for the particle with the total spin S by h̄� = gμBB/2S.
Using the definition (18) for the g factor of the bright exci-
ton with momentum projection |F = 1|, one obtains gL

1(� =
0) = 2g2 [or gU

1 (� = 0) = 2g2 with gL,U
1 (� = 0) given by

Eq. (19)] instead of gL
1(� = 0) = g2 suggested in [18]. In

this case, to describe the size dependence of g2 in Fig. 11(a)
as g2 = gL

1(� = 0)/2 one has to use gh ≈ −1.8 instead of
−0.73 obtained in [18]. The value gh ≈ −1.8 is too large as
compared with our theoretical estimations given in this paper
even with account of the admixture from the spin-orbit-split
valence band in small NCs making doubtful interpretation of
g2 as the g factor of |1L〉 exciton. Alternatively, the g2-related
precession could be ascribed to |1U 〉 exciton in quasispherical
NCs with � = 0. In this case, the size-dependent hole g factor
changing from −1.4 in 8-nm NCs to −1.7 in 3-nm NCs
allows to fit the g2 = gU

1 (� = 0)/2 dependence. Again, these
hole g-factor values are larger than our calculated results and
published experimental data. In two recent papers [99,100]
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FIG. 12. (a) The dependence of first two hole states energies E0

and E1 in cube nanocrystals on the effective mass ratio β in zero mag-
netic field. Energies are given in units Eh = 3h̄2π 2/2mhhL2, L being
nanocrystal size (cube width). (b) The heavy-hole contributions as
function of β for the hole states originating from the ground and first
excited states.

the interpretation of the g2 as the surface-localized electron
g factor was proposed. The calculations of such electrons g
factor are beyond the scope of this paper.

Recently, the g factor of the localized resident electron was
measured in zb-CdSe nanoplatelets with thickness of 3, 4 and
5 ML by the spin-flip Raman scattering (SFRS) [98]. The
attribution of the obtained g factors to the resident electron
is justified by the polarization selection rules [98,115]. In
Fig. 11(b) the measured g factors are given by black squares.
The solid and dashed lines are results of the calculations
according to Eq. (A5) for electrons in the NPLs with the
parabolic and boxlike confining potentials, respectively. We
remind, that, we define here the NPL width L of the nanocrys-
tals with parabolic potential as L = 4Le, where Le is the
oscillator length calculated with the electron effective mass at
the bottom of conduction band. One can see that the parabolic
potential better describes the experimental data while the mea-
sured g factors are about 10% larger than calculated for the
boxlike potential. However, the discrepancy can be related
to the effect of the g-factor anisotropy in the NPL neglected
in the presented calculations as well as to the effect of the
additional in-plane localization of the resident electron.

205423-14



INFLUENCE OF THE SPIN-ORBIT SPLIT-OFF VALENCE … PHYSICAL REVIEW B 104, 205423 (2021)

APPENDIX B: MAGNETIC FIELD PERTURBATION
TO THE HOLE HAMILTONIAN

The orbital Bloch functions of the top of valence band in
studied semiconductors are of p-like symmetry and are often
designated as X , Y , and Z , each having two possible spins, ↑
and ↓ [49,68]. Taking into account spin-orbit interaction leads
to the splitting of the valence band with the following set of
functions being the basis of the topmost �8 and spin-split �7

subbands [49,68]:

∣∣∣∣�8,+3

2

〉
= − ↑ X + iY√

2
,∣∣∣∣�8,+1

2

〉
=

√
2

3
↑ Z− ↓ X + iY√

6
,

∣∣∣∣�8,−1

2

〉
=

√
2

3
↓ Z+ ↑ X − iY√

6
,∣∣∣∣�8,−3

2

〉
= ↓ X − iY√

2
,∣∣∣∣�7,+1

2

〉
= 1√

3
↑ Z+ ↓ X + iY√

3
,∣∣∣∣�7,−1

2

〉
= − 1√

3
↓ Z+ ↑ X − iY√

3
. (B1)

Each of the �8 functions (B1) have momentum 3
2 and its

projection on the z axis ± 3
2 and ± 1

2 , �7 functions have full
momentum 1

2 and its projection on the z axis ± 1
2 .

The hole six-band Hamiltonian of Eq. (4) can be written in
a matrix form in the basis (B1) as follows [49,68]:

Ĥ = h̄2

2m0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P + Q −S R 0 − 1√
2
S

√
2R

−S∗ P − Q 0 R −√
2Q

√
3
2 S

R∗ 0 P − Q S
√

3
2 S∗ √

2Q

0 R∗ S∗ P + Q −√
2R∗ − 1√

2
S∗

− 1√
2
S∗ −√

2Q
√

3
2 S −√

2R P + � 0
√

2R∗
√

3
2 S∗ √

2Q − 1√
2
S 0 P + �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P = γ1(k2
x + k2

y + k2
z ), Q = γ (k2

x + k2
y − 2k2

z ),
R = −√

3γ (kx − iky)2, S = 2
√

3γ kz(kx − iky)
� = 2m0

h̄2 �SO.

,

(B2)

In the external magnetic field, the hole wave vector k has to be renormalized as k → k − eA
ch̄ , where A is the vector potential

of magnetic field. The case B ‖ z in the Landau gauge corresponds to A = (0, Bx, 0). The B-linear correction to the hole
Hamiltonian (4) is (in the units of μBB)

ĤB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PB + QB −SB RB 0 − 1√
2
SB

√
2RB

−(SB)† PB − QB 0 RB −√
2QB

√
3
2 SB

(RB)† 0 PB − QB SB

√
3
2 (SB)†

√
2QB

0 (RB)† (SB)† PB + QB −√
2(RB)† − 1√

2
(SB)†

− 1√
2
(SB)† −√

2QB

√
3
2 SB −√

2RB PB 0
√

2(RB)†
√

3
2 (SB)†

√
2QB − 1√

2
SB 0 PB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

PB = γ1(−2xky),
QB = γ (−2xky),

RB = −√
3γ (1 + 2ixkx + 2xky),

(RB)† = −√
3γ (−1 − 2ixkx + 2xky),

SB = 2
√

3iγ xkz,

(SB)† = −2
√

3iγ xkz.

(B3)

In the same units the Zeeman Hamiltonian (5) in the basis (B1) has the form

ĤZ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−3κ 0 0 0 0 0
0 −κ 0 0

√
2κ + √

2 0
0 0 κ 0 0

√
2κ + √

2
0 0 0 3κ 0 0
0

√
2κ + √

2 0 0 −2κ − 1 0
0 0

√
2κ + √

2 0 0 2κ + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B4)

which contains nondiagonal matrix elements.
Now we obtain Eq. (14) from the main text as a first

order on magnetic field correction to the hole Hamiltonian.
We consider a 2D structure with infinite in-plane size, so
that kx = ky ≡ 0 and kz �= 0. The zero-order hole Hamilto-
nian in zero magnetic field is obtained from Eq. (B2) with

setting kx = kx ≡ 0 and adding nanostructure potential V (z)
on diagonal. The off-diagonal matrix elements mix hole
states with J = 3

2 , Jhz = ± 1
2 (light holes) and J = 1

2 , Jhz =
± 1

2 (spin-split holes). Note that the Zeeman part ĤZ does not
contribute to the heavy-hole g-factor renormalization in such
structures.
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To use the perturbation theory, one has to diagonalize
Hamiltonian (B2) with kx = kx ≡ 0. In the general case this
has to be made numerically, while for the boxlike infinite
potential V (z) the calculation can be made analytically. In
the case of the boxlike potential matrix elements, Q = −2k2

z
mix only eigenstates of the light and �7 holes with the same
quantum number n. As a result, one can obtain the proper
zeroth-order basis and perturbation Hamiltonian for states
with a fixed n analytically and separately. Functions F1,4 =

|�8,±3/2〉 will remain unchanged while the other functions
are

F2,3 = C1|�8,±1/2〉 ∓ C2|�7,±1/2〉, (B5)

F5,6 = ±C2|�8,±1/2〉 + C2|�7,±1/2〉
with C2

1 + C2
2 = 1. For the boxlike infinite potential, coeffi-

cients C1 and C2 are

C1 =
β +

√
β2

(
4δ2

SO + 4δSO + 9
) − 2β(2δSO + 9) + 9 + 2βδSO − 1√

8(β − 1)2 + (
β +

√
β2

(
4δ2

SO + 4δSO + 9
) − 2β(2δSO + 9) + 9 + 2βδSO − 1

)2
, (B6)

C2 = 2
√

2(1 − β )√
8(β − 1)2 + (

β +
√

β2
(
4δ2

SO + 4δSO + 9
) − 2β(2δSO + 9) + 9 + 2βδSO − 1

)2
, (B7)

where δSO = �SO/Ehh1 , Ehh1 = h̄2(γ1 − 2γ )/2m0L2
z . In lim-

iting cases we have limδSO→∞ C1 = 1, limδSO→0 C1 = 1/
√

3,
limδSO→∞ C2 = 0, limδSO→0 C2 = √

2/3.

The new perturbation is ˆ̃HB = MĤBM−1,

M =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 C1 0 0 −C2 0
0 0 C1 0 0 C2

0 0 0 1 0 0
0 C2 0 0 C1 0
0 0 −C2 0 0 C1

⎞⎟⎟⎟⎟⎟⎠. (B8)

Its matrix elements contributing to g2D
h,3/2 in μB units are

( ˆ̃HB)12 = A1(δSO, β )SB, ( ˆ̃HB)15 = A2(δSO, β )SB,

( ˆ̃HB)43 = −A(δSO, β )S∗
B, ( ˆ̃HB)46 = B(δSO, β )S∗

B,

A1(δSO, β ) ≡ A2

(
�SO

Ehh1
, β

)
= C2√

2
− C1,

A2(δSO, β ) ≡ A2

(
�SO

Ehh1
, β

)
= − C1√

2
− C2

and the light-hole and �7 hole state energies now depending
both on β and δSO are given by

Ẽlh2n = 2h̄2π2n2γ1

m0L2
z

(
βδSO + 2βn2 + 6n2 −

√
β2δ2

SO + 36β2n4 − 72βn4 + 36n4 + 4β2δSOn2 − 4βδSOn2
)

4(β + 1)
,

ẼSO2n = 2h̄2π2n2γ1

m0L2
z

(
βδSO + 2βn2 + 6n2 +

√
β2δ2

SO + 36β2n4 − 72βn4 + 36n4 + 4β2δSOn2 − 4βδSOn2
)

4(β + 1)
. (B9)

Function G(β ) for the boxlike potential can be expressed in the first order on 1/δSO, δSO = �SO/Ehh1 as

G(β ) =
∞∑

n=1

192(β − 1)2n2

π2(β + 1)(4n2 − 1)2(n2 − β )
+ 1

δso

∞∑
n=1

192(β − 1)2n2[β(β + 1) + 2(β2 − 2β + 2)n4 − (3β + 1)n2]

π2β(β + 1)(1 − 4n2)2(n2 − β )2 . (B10)

For the parabolic potential one can express analytically G(β ) only in the limit δSO → ∞:

G(β ) = −
∞∑

n=1

24 4
√

β(
√

β − 1)2n(
√

β + 1)1−2n
�

(
n + 1

2

)
√

π (β + 1)(
√

β − 4n + 1)�(n)

with �(x) being the Euler gamma function.
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APPENDIX C: ELECTRON AND HOLE ENERGY LEVELS
IN THE NANOCRYSTALS WITH CUBIC SHAPE

We consider NCs with the cubic shape and edges directed
along the crystal axes. The potential of such NC is described
by a rectangular potential with infinite barrier:

V cube(x, y, z) =
{

0, |x|, |y|, |z| � L
2∞, |x|, |y|, |z| > L
2

(C1)

where x, y, z are electron or hole coordinates. The conduction
band electron energy levels can be found from (A6) with
a → L/

√
3. With this substitution, the size dependence of the

energy levels, effective mass, and effective g factors can be
seen in Figs. 9 and 11.

For holes the situation is more complicated as the hole
wave function is a six-component one. In order to calculate
hole states in cube nanocrystal we developed a numerical
method. The hole kinetic energy is described by the Hamil-
tonian (4) and the NC potential is taken from Eq. (C1). The
potential (C1) mixes hole states with different spin projec-
tions Jz and, unlike the spherically symmetric case, due to
lower symmetry the Schrödinger equation of the hole can not
be simplified (compare with Refs. [66,70]). We numerically
diagonalize the hole Hamiltonian matrix calculated on the
six-component basis of eigenfunctions of infinite rectangular

quantum well along coordinate axes:

�
nx,ny,nz

J,Jz
(x, y, z) = φnx (x)φny (y)φnz (z),

φnα (α) =
√

2

L
sin

[πnα

L

(
α + L

2

)]
, (C2)

where J = 3
2 , 1

2 , Jz = ± 3
2 ,± 1

2 , nx, ny, nz = 1, . . . , N , and
α = x, y, z. All matrix elements are calculated analytically
and basis size is N = 16, which is more than enough to obtain
convergence for several lowest hole states at any reasonable
value of β.

The dependencies of the energies of the two lowest hole
states on β in the limit �SO/Eh → ∞ are shown in Fig. 12(a).
We emphasize the crossing of the levels E0 and E1 leading to
level E1 being the ground state in some range of β. This leads
to the significant change of the hole ground-state structure in
the vicinity of the crossing point. In Fig. 12(b) we show the
heavy-hole (|Jz| = 3

2 ) contributions to hole wave function f|M|
as function of β for states, corresponding to energy levels E0

and E1. For rather large β and far from crossing the ground
state is the S-like state E0 and 3

2 hole states are mostly formed
from heavy holes and 1

2 states are mostly light holes. On the
opposite, for smaller β, in crossing range or near its levels E0

and E1 are close to each other and, consequently, are strongly
mixed. As a result, the contributions of heavy and light holes
to the ground-state sublevels are comparable, leading to the
specific features in dependencies of the hole g factors on β.
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