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Conductance oscillation in surface junctions of Weyl semimetals
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Fermi arc surface states, the manifestation of the bulk-edge correspondence in Weyl semimetals, have attracted
much research interest. In contrast to the conventional Fermi loop, the disconnected Fermi arcs provide an exotic
two-dimensional (2D) system for exploration of novel physical effects on the surface of Weyl semimetals. Here,
we propose that visible conductance oscillation can be achieved in planar junctions fabricated on the surface
of a Weyl semimetal with a pair of Fermi arcs. It is shown that Fabry-Pérot-type interference inside the 2D
junction can generate conductance oscillation with its visibility strongly relying on the shape of the Fermi arcs
and their orientation relative to the strip electrodes, the latter clearly revealing the anisotropy of the Fermi arcs.
Moreover, we show that the visibility of the oscillating pattern can be significantly enhanced by a magnetic
field perpendicular to the surface taking advantage of the bulk-surface connected Weyl orbits. Our work offers
an effective way to identify Fermi arc surface states through transport measurement and predicts the surface of
Weyl semimetals as a novel platform for the implementation of 2D conductance oscillations.

DOI: 10.1103/PhysRevB.104.205412

I. INTRODUCTION

The Weyl fermion is a massless fermionic particle with
definite chirality named after Hermann Weyl [1], and was
proposed originally as a candidate for fundamental parti-
cles. Though it plays an important role in quantum theory
and the standard model, the verification of Weyl fermions
in high-energy physics remains elusive [2–4]. Recently, the
Weyl fermion has been observed unexpectedly in an alterna-
tive form as quasiparticle excitations in a class of condensed
matter materials called Weyl semimetals (WSMs) [5], thereby
inspiring research activities on Weyl physics and opening a
new avenue for exploration of relativistic Weyl fermions in
solid-state physics [6–21]. In contrast to its high-energy coun-
terpart, the exotic properties of Weyl fermions in solid-state
physics are usually manifested as anomalous transport and
optical phenomena [22–36].

One unique feature of the WSMs is the existence of Fermi
arc (FA) surface states at its boundaries [5], without any high-
energy counterpart. According to the no-go theorem [37,38],
the Weyl points in a WSM must appear in pairs with oppo-
site chirality [39], with FA spanning between each pair in
the surface Brillouin zone [5]. Such disconnected FAs are
the fingerprint of WSMs [9–21], which play a key role in
the identification of WSMs in experiments [10–20]. Most
experiments on Weyl semimetals focus on the angle-resolved
photoemission spectroscopy, in which the existence of FAs
has been confirmed. There are also theoretical studies of the
FA and its transport properties [40–44], like quasiparticle
interference (QPI) [45,46]. Recent progress has also shown
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that the configurations of the FAs are sensitive to the details
of the sample boundary [47–49], thus opening the possi-
bility for engineering FAs and exploring their novel effects
and potential applications through surface device fabrication
and transport measurements. In contrast to the photoemission
spectroscopy experiments, the surface transport measurement
has the advantage of extracting useful information of the spa-
tial distribution of the surface states [50–52].

In this work, we propose that novel 2D conductance os-
cillation stemming from Fabry-Pérot-type interference can be
realized in the planar normal metal-FA-normal metal (NFAN)
junctions on the surface of the WSM. The junctions consist
of two strips of normal metal electrodes mediated by a pair of
FA surface states in between as shown in Figs. 1(a) and 1(b).
Our main findings in this work are that (i) shorter and less
curved FAs can lead to more visible conductance oscillation
stemming from a weaker dephasing effect between different
transverse channels, (ii) the oscillation pattern of the con-
ductance strongly relies on the relative orientation between
the FAs and the strip electrodes denoted by the azimuthal
angle θ in Fig. 1(b), and (iii) the visibility of the conductance
oscillation can be significantly enhanced by a magnetic field
perpendicular to the planar junctions due to the existence of
the magnetic Weyl orbit. Our work shows that FA surface
states offer a novel platform to observe 2D conductance os-
cillation in addition to the existing systems such as graphene
[53–58] and the inverted InAs/GaSb double quantum well
[59]. The orientation dependence and the field modulation
of the conductance provide a unique signature of the FAs,
which can be used for identifying WSMs through a transport
approach.

The rest of this paper is organized as follows: In Sec. II,
we present effective models for a time-reversal (T ) symmetric
WSM and its FA surface states. We then show that a general

2469-9950/2021/104(20)/205412(11) 205412-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1956-2519
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.205412&domain=pdf&date_stamp=2021-11-08
https://doi.org/10.1103/PhysRevB.104.205412


CHEN, CHEN, ZHENG, CHEN, AND XING PHYSICAL REVIEW B 104, 205412 (2021)

FIG. 1. (a) Schematic illustration of the planar normal metal
(N)-FA-normal metal (N) on the top surface of a WSM slab and
scattering of particles at the interface. The trajectories of electrons
(solid circles) are sketched as solid lines, where the colors of them
denote that they belong to different kz regions. (b) Two regions I and
II for left incident electrons are defined by the transverse momentum
kz. (c) The corresponding band structures for a fixed kz of the two
regions. The red lines denote the FA top surface states and black
arrows indicate the moving directions.

oriented FA can be described by applying a rotation transfor-
mation of the effective Hamiltonian. Based on the effective
models and using the Green’s function approach, we show
analytically the existence of oscillations in the conductance
spectra of a NFAN junctions on the WSM surface in Sec. III
and support the analytical results with numerical simulations
on the lattice model. In Sec. IV, we show the dependence of
such oscillation on the relative orientation of the FAs to the
normal metals with numerical means. In Sec. V, we show that
the oscillation can be enhanced by applying a magnetic field
perpendicular to the WSM surface. Finally, we give a brief
summary in Sec. VI.

II. T -SYMMETRIC WEYL SEMIMETAL AND FA
SURFACE STATES

We adopt the following effective two-band k · p model,
which describes a T -symmetric Weyl semimetal with four
Weyl points [51,52]:

H0
W (k) = M1

(
k2

1 − k2
x

)
σx + vykyσy + M2

(
k2

0 − k2
y − k2

z

)
σz,

(1)

where vy is the velocity in the ŷ direction, M1,2 and k0,1

are model parameters, and σx,y,z are the Pauli matrices in
the pseudospin space. The valence and conduction bands
cross linearly at four Weyl points kW = (±k1, 0,±k0). The
low-energy Hamiltonian near the Weyl points are hW (k) =
±2M1k1kxσx + vykyσy ± 2M2k0kzσz. We are interested in the
topologically protected FA surface states on the open surface

in the ŷ direction. They are confined by |kz| < k0 and can be
described by

H0
Arc(kx ) = M1

(
k2

x − k2
1

)
, (2)

with two straight FAs defined by kx = ±k1. Generically, FAs
in real materials are curved, so we introduce a dispersion term
ε(kz ) = d (k2

z − k2
0 ) to capture that feature; the total Hamilto-

nian of the surface states is

HArc(k) = H0
Arc(kx ) + ε(kz ), (3)

with the in-plane wave vector k = (kx, kz ).
One important feature of the FAs is strong anisotropy. In

the planar junctions, the relative orientation between the FAs
and the normal of the strip electrodes denoted by the angle
θ [Fig. 1(b)] strongly affects the physical results. In the long
wavelength limit, we can apply a rotational transformation to
the effective Hamiltonian Eq. (1) of WSM to describe such an
effect while fixing the direction of the electrodes at the same
time. A rotation about the ŷ axis by an angle θ is described by

HW (k, θ ) = H0
W (U −1

y k) (4)

with the rotation operator

Uy(θ ) =
⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠. (5)

The locations of Weyl points determined by
HW (k, θ ) = 0 are transferred to Uy(θ )kW = ±(k1 cos θ +
k0 sin θ, 0,−k1 sin θ + k0 cos θ ) and the FAs terminated at
these points rotate accordingly [cf. Fig. 1(b)]. In the next
section, we show the conductance oscillation in the planar
junctions with the dispersion (3), and in Sec. IV we show the
dependence of such oscillation on the orientation of the FAs
based on the discrete version of Hamiltonian (4).

III. CONDUCTANCE OSCILLATION IN NFAN JUNCTIONS

The WSM surface with FA states is a novel 2D system,
which differs from other systems with closed Fermi loops. The
disconnected nature of FA may lead to the absence of back-
scattering channels in surface transport [52]. In particular,
consider the NFAN junctions as shown in Fig. 1(a) with the
FA having an azimuthal angle θ relative to the normal metal
electrodes [Fig. 1(b)]. In region I of the surface Brillouin zone,
there exists two counter-propagating channels at the Fermi
surface [Fig. 1(c)], thus enabling back-scattering. In contrast,
in region II, there exists a single chiral channel [Fig. 1(d)], and
back-scattering is prohibited. Interestingly, the ratio between
regions I and II depends solely on the relative orientation θ .
We show first the existence of conductance oscillation with
θ = 0 in this section, and investigate its θ dependence in the
next section.

A. Analytical calculation

We investigate the ballistic transport in the NFAN junctions
using the Green’s function method. We consider the case
θ = 0 first, where all conducting channels are of type I in the
surface Brillouin zone (cf. Fig. 1). The surface Hamiltonian is
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captured by HArc(k) in Eq. (3). The tunneling Hamiltonian

HT =
∑

p,α=1,2

Tαd†
p,αψ (xα ) + H.c. (6)

is adopted to describe the coupling between the FA surface
states and the normal electrodes where Tα is the tunneling
strength between the surface states and the α electrode [cf.
Fig. 1(a)], dp,α is the Fermi operator in the α terminal with
momentum p, and ψ (xα ) is the field operator of the surface
states at each terminal located at xα . Here we adopt a constant
tunneling strength for simplicity to catch the main physics.
A momentum-dependent tunneling can only lead to certain
quantitative correction to the conductance spectra without
changing the configuration of the oscillation pattern.

For the planar junctions with good quality of the strip
electrodes, the transverse momentum kz is approximately
conserved during scattering. The differential conductance
(without spin degeneracy) per unit length of the strip elec-
trodes is the summation over transmissions in all kz channels
as

σ (ε) = e2

h

∫ k0

−k0

T̃ (ε, kz )dkz, (7)

with ε being the electron energy. The range of integration is
limited by the spreading of FAs in the kz direction. The kz-
dependent transmission function T̃ (ε, kz ) can be calculated by
the nonequilibrium Green’s function method through [60]

T̃ (ε, kz ) = Tr[�1GR�2GA], (8)

where �1,2 are linewidth functions of the leads and GR,A are
the full retarded and advanced Green’s functions, respectively.
For a given energy ε and transverse momentum kz, there
are two counterpropagating channels with momenta ±k0

x and

k0
x (ε, kz ) =

√
k2

1 + ε−d (k2
z −k2

0 )
M1

. The bare Green’s functions can
be obtained as

gR
ε (x′, x) = [

gA
ε,kz

(x, x′)
]∗ = gR

ε,kz
(x, x′)

= −π iρS (ε, kz )eik0(x′−x), (9)

with ρS = 1
4πM1k0

x
. The full Green’s function and the linewidth

function can be calculated in the standard way by taking into
account the tunneling term HT , which gives

GR
ε (x2, x1) = gR

ε (x2, x1)

(1 + R1)(1 + R2) − R1R2 fε(x2, x1)
,

�α (x, x′, ε) = 2πρα (ε)|Tα|2δ(x − xα )δ(x′ − xα ). (10)

where fε(x2, x1) = e2ik0(x2−x1 ), Rα (ε) = π2ρS (ε)ρα (ε)|Tα|2,
and ρα is the density of states of the leads. We have assumed
that Tα and ρα are kz independent such that �α has no kz

dependence. We have also neglected the kz dependence of ρS

that does not qualitatively change the result. The transmission
coefficient in Eq. (8) reduces to

T̃ (ε, kz ) = 4R1R2

|(1 + R1)(1 + R2) − R1R2 fε(x2, x1)|2 . (11)

The Fabry-Pérot-type interference is indicated by the coher-
ence factor fε(x2, x1) in the transmission function, which
induces the oscillation of T̃ with varying ε. It also exhibits a

kz dependence, meaning that different transverse channels can
have a relative phase shift; see Fig. 2. From the expression
of the conductance (7), one can infer that a strong dephasing
between the kz channels will suppress the overall oscillation of
the conductance by phase averaging. This is the main reason
why the Fabry-Pérot oscillation of the conductance in a 2D
metal is hard to implement [59]. In contrast to a closed Fermi
surface, the terminated FAs can effectively reduce the dephas-
ing effect, so that the FA surface states provide a promising
2D platform to implement conductance oscillation. From the
physical picture above, we can infer that FAs with smaller
curvature and shorter length result in more visible oscillation,
which is verified in Fig. 2.

B. Numerical simulation

Next, we perform numerical simulation of the conductance
oscillation on the lattice model. Assuming that the size of
both strip electrodes in the ẑ direction is much larger than the
Fermi wavelength and their boundaries are smooth enough,
then the transverse momentum kz is approximately conserved
during scattering and can be regarded as a parameter. In this
way, the numerical calculation is reduced to a set of 2D slices
labeled by kz. For |kz| < k0, a pair of edge states emerge under
the open boundary condition [Fig. 1(c)]. By the substitutions
ki=x,y,z → 1

a sin kia and k2
i → 2

a2 (1 − cos kia) while keeping
kz as a parameter, we obtain the lattice version of the Hamil-
tonian (1) as

HW (kz ) =
∑

i

c†
i Hiici +

∑
i

(c†
i Hi,i+ax ci+ax + H.c.)

+
∑

i

(c†
i Hi,i+ay ci+ay + H.c.), (12)

where ci = (ci,↑, ci,↓) is the Fermi operator on site i = (ix, iy)
with two pseudospin components, ax = (a, 0) and ay = (0, a)
are the unit vectors along the x̂ and ŷ directions, respectively,
with a being the lattice constant. Hii and Hi,i+ax (ay ) are 2 × 2
block matrices and take the explicit forms as

Hii = M1

(
k2

1 − 2

a2

)
σx + M2

(
k2

0 − 4

a2
+ 2

a2
cos kza

)
σz,

Hi,i+ax = M1

a2
σx, Hi,i+ay = vyi

2a
σy + M2

a2
σz. (13)

The configuration of FAs on the top surface can be revealed
by the spectra function A(ε) = − 1

π
ImgR

W (ε) in the top layer at
ε = 0, with gR

W (ε, kx, kz ) being the retarded Green’s function
calculated by the lattice model of the Weyl semimetal under
open boundary condition in the ŷ direction; see Fig. 3(a).
To simulate the FAs in real materials [49,61–63], we have
introduced an on-site potential V on the top layer of the WSM
lattice to introduce surface dispersion that yields curved FAs
[51,52].

The strip electrodes can be described by an effective
Hamiltonian HN (k) = (Ck2 − μN )σ0, with C being the pa-
rameter related to the effective mass, μN being the chemical
potential, and σ0 being the identity matrix. The lattice model
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FIG. 2. Conductance oscillations for different FAs given by Eq. (3). Top rows illustrate the FAs with different curvature and length, where
the relevant parameters are (a) k0 = 0.6 nm−1, d = 1.5 eV nm2; (b) k0 = 0.6 nm−1, d = 0.3 eV nm2; and (c) k0 = 0.4 nm−1, d = 1.5 eV nm2.
[(d)–(f)] Middle rows illustrate the corresponding analytical results of the transmission coefficient T̃ (θ = 0) as a function of ε and kz. [(g)–(i)]
Bottom rows exhibit the corresponding conductance σ after integrates over kz. The other parameters are set as a = 1 nm, R1 = R2 = 1,
M1 = 1.25 eV nm2, and k1 = 1.2 nm−1.

for the electrodes can be obtained in a similar way as

HN (kz ) =
∑

j

d†
j λ jd j − C

a2

∑
j

(d†
j d j+ax + d†

j d j+ay + H.c.),

(14)

where d j = (d j,↑, d j,↓) is the Fermi operator, and λ j =
2C(3 − cos kza)/a2 − μN .

The whole system for a given kz is described by HW (kz )
and HN (kz ) and the coupling between them which is captured
by the tunneling between the outmost lattice layers with a
strength tN . The thicknesses of the WSM and the electrodes
in the ŷ direction are 100 and 40 nm, respectively. The width
of the hopping area in the x̂ direction is W = 30 nm, and
the separation between two electrodes is L = 180 nm [cf.
Fig. 1(a)]. Two on-site potentials U1 and U2 are introduced
at the boundary of the N electrodes to simulate the interface

barrier or the momentum mismatch in the heterostructure.
Both the WSM and electrodes connect to the leads extended
to infinity in the ±x̂ directions. The transmission T (kz, ε)
between two electrodes is calculated using the KWANT pro-
gram [64]. The overall conductance by summing up all the
transverse channels can be obtained as

σ (ε) = e2

h

∫ k0

−k0

T (kz, ε)dkz. (15)

In the case of θ = 0, the FAs with different curvature and
length are shown in Figs. 3(a)–3(c). The corresponding results
of the transmission probability T (kz, ε) and the differential
conductance σ (ε) are plotted in Figs. 3(d)–3(f) and Figs. 3(g)–
3(i), respectively. One can see from Fig. 3 that less curved
and shorter FAs result in more visible conductance oscillation,
in which the dephasing effect between transverse channels
becomes weaker as revealed by the length and curvature of
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FIG. 3. FAs and conductance oscillations for different WSM given by Eq. (13), with V being the on-site potential on the surface layer.
Top rows illustrate the FA spectra with different curvature and length, where the relevant parameters are (a) k0 = 0.6 nm−1, V = 1.0 eV;
(b) k0 = 0.6 nm−1, V = 0.2 eV; and (c) k0 = 0.4 nm−1, V = 1.0 eV. [(d)–(f)] Middle rows illustrate the corresponding numerical results of
the transmission coefficient T as a function of ε and kz. [(g)–(i)] Bottom rows exhibit the corresponding conductance σ after integrates
over kz. The other parameters are a = 1 nm, U1 = U2 = 1.0 eV, M1 = M2 = 1.25 eV nm2, vy = 0.66 eV nm, k1 = 1.2 nm−1, C = 0.5 eV nm2,
μN = 1.0 eV, and tN = 0.5 eV nm2.

the bright stripes in the transmission pattern in Figs. 3(d)–3(f).
These results are in coincidence with the analytical calcula-
tions in Fig. 2. Although the shape of the FAs is difficult
to change for specific samples, the above results provide a
guidance for choosing proper materials of the WSM to realize
the proposed phenomenon.

Since disorder and impurity are usually present in real sys-
tems, next we investigate the effect of disorder on the conduc-
tance oscillations. We add an uncorrelated Gaussian disorder
potential in the region of the WSM. The transmission pattern
and the resultant conductance are shown in Fig. 4. One can see
that the periodicity of the conductance oscillation maintains
up to the disorder strength of 0.1 eV. As it increases further,
i.e., 0.2 eV, the conductance spectrum becomes irregular.

In the above calculations, for simplicity, we set the chemi-
cal potential to zero in the WSM to have a vanishing density
of the bulk states. To simulate a finite density of states in

real materials, we set the Fermi surface of the WSM to be
at 0.2 eV. The transmission pattern and the resultant con-
ductance in this case are shown in Figs. 5(a) and 5(b). One
can see that the conductance spectrum still exhibits a distinct
oscillation [Figs. 5(b)]. To explicitly show the contribution
of the bulk states, we plot the band structures and the cor-
responding spatial current distributions in Figs. 5(c)–5(h) for
various kz slices and a finite Fermi energy. One can see that
the electrons reaching the right electrode mostly flow along
the surface [Figs. 5(f) and 5(g)]. For a finite Fermi energy,
the main effect due to the bulk states is certain leakage of
the injected electrons into the bulk [Figs. 5(h)]. However, the
dissipated electrons are hardly regained by the other surface
electrode thus having negligible contribution to the surface
transport [Fig. 5(h)]. As a result, the surface states dominate
the local density of surface states so as to dominate the surface
transport as well.
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FIG. 4. Conductance oscillations in disordered WSMs. Top rows illustrate the transmission coefficient T as a function of ε and kz, where
the disorder strengths are (a) 0, (b) 0.1, and (c) 0.2 eV. Bottom rows exhibit the corresponding conductance σ after integrates over kz. Other
parameters are the same as those in Fig. 3(g).

IV. ORIENTATION DEPENDENT CONDUCTANCE
SPECTRA

In the above section, we have seen that the shape of the
FAs strongly affect the oscillation pattern of the conductance.
In addition, FAs can also have diverse orientations relative to
the normal of the strip electrodes with θ �= 0. Experimentally,
this can be achieved by fabricating the strip electrodes along
intended directions and theoretically, this can be described by
the effective model HW (k, θ ) in Eq. (4) with a finite rotation
while keeping the normal of the electrodes fixed to the x̂
direction.

The numerical calculation is performed on the discretized
version of Hamiltonian HW (k, θ ) in the same way as that in
the previous section. Again, the momentum kz is taken as a
parameter. In Figs. 6(a)–6(c), we plot the FAs with different
azimuthal angles θ . One can see that the rotation of the ef-
fective Hamiltonian causes corresponding rotated FAs. The
transmission probabilities T (kz, ε) as a function of energy ε

and kz are shown in Figs. 6(d)–6(f). One can see that there in
general exist two distinct regions in the transmission pattern
as shown in Fig. 6(e) except for two limiting cases, θ = 0 in
Fig. 6(d) and θ � tan−1(k0/k1) 6(f). Specifically, the regions
with stripe structures and nearly uniform strength correspond
to regions I and II in Fig. 1(b), respectively. In region I,
backscattering channels are available which induces interfer-
ence and oscillation of the transmission, while in region II,
the transport channels are chiral with a high transmission
without oscillation. The amounts of kz channels in region I
and II vary with θ , which is clearly revealed in the conduc-
tance spectra in Figs. 6(g)–6(i). As θ increases from zero, the
oscillation of conductance becomes less visible, because the
ratio between the numbers of kz channels in regions I and II

becomes smaller. When θ exceeds the threshold tan−1(k0/k1)
[Fig. 6(c)], all electrons reside in region II and the con-
ductance exhibits a plateau structure without any oscillation
as shown in Fig. 6(i). Such a transition from oscillation to
plateau structure in the conductance spectra provides a clear
manifestation of the highly anisotropic nature of the FAs,
and therefore can serve as its unique signal. Although we
elucidate such an effect based on a specific model in Eq. (4),
the underlying physics should generally hold for other WSMs
with more complicated FA configurations. The shape of FAs
and the relative amount of kz channels lying in regions I and
II are of most importance for the main results.

V. MAGNETIC FIELD EFFECT

In this section, we show that the visibility of the conduc-
tance oscillation can be well improved by a magnetic field in
the ŷ direction. We focus on the case θ = 0 and the results
are shown in Fig. 7. The Landau gauge A = (0, 0,−Bx) is
adopted such that the Peierls substitution k → −i∇ − eA/h̄
(with e > 0) retains the kz conservation. For a small mag-
netic field which satisfies B � h̄k0,1/(ea), it only introduces
a smooth modification of the mass term in Eq. (1). Such
a pseudo-spin-dependent potential contributes an additional
phase factor in the transmission function T (kz, ε, B), which
causes a shift of the pattern in the kz direction, as can be seen
in Figs. 7(d)–7(f). A constant gauge term δA can always be
added to the vector potential as A′ = (0, 0,−Bx + δA), which
is equivalent to an overall shift of kz. The physical results of
the conductance spectra should not rely on such freedom of
gauge choice by noting that the Hamiltonian is a periodic
function of kz, so that an overall shift of kz by δA has no
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FIG. 5. (a) The transmission coefficient T as a function of ε and kz when the Fermi surface of the WSM is set to 0.2 eV. (b) The corre-
sponding differential conductance after summing over the transverse channels kz. The band structures of the kz channels with (c) kz = 0 nm−1,
(d) kz = 0.3 nm−1, and (e) kz = 0.6 nm−1. The spatial current distributions (f) J1, (g) J2, and (h) J3 for various kz slice and a finite Fermi energy
0.1 eV marked in panel (a). The other parameters are the same as those in Fig. 3(g).

effect after integration. The magnetic field effect can also
be well understood by the semiclassical picture of Lorentz
force. The Lorentz force drives electrons sliding along the FAs
[Fig. 7(a)], which corresponds to the curved trajectory in real
space [Fig. 7(b)].

Remarkably, because that FAs are terminated at the Weyl
points, some of the electrons nearby can transfer into the
chiral Landau bands of the bulk states and dissipate due to the
surface-bulk connection at the Weyl points [65], as illustrated
by the dashed green circles in Fig. 7(a). As a result, these elec-
trons cannot reach the right electrode and do not contribute
to the conductance. Therefore, the magnetic field effectively
reduces the number of kz channels and thus the dephasing

effect, which is reflected in Figs. 7(d)–7(f) that the interfer-
ence patterns get narrower in the kz direction as B increases.
Accordingly, one can see in Figs. 7(g)–7(i) that as B increases,
the magnitude of the conductance reduces due to the loss of
surface electrons. However, the oscillation of the conductance
becomes more visible stemming from weaker dephasing. To
visualize the transport in the NFAN junctions, we plot the
current distributions for a given kz and ε marked in Fig. 7(e) as
shown in Fig. 8. One can see a clear connection between the
bulk and the surface states in Fig. 8(a), which is the real-space
manifestation of the Weyl orbit. Due to the magnetic field,
these electrons cannot return back to the electrodes, so that
the conductance is reduced. Meanwhile, the electrons away
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FIG. 6. Conductance oscillations in WSM with FAs of different orientations. [(a)–(c)] Upper panel: FA spectra for different azimuthal
angles θ . [(d)–(f)] Middle panel: Corresponding transmission probability as a function of ε and kz. [(g)–(i)] Lower panel: Corresponding
differential conductance after summing over all the transverse channels kz. The other parameters are the same as those in Fig. 3(g).

from the Weyl point can still flow along the top surface and
reach the electrode on the right side [cf. Fig. 8(b)].

To quantify the visibility of conductance oscillation, we
introduce the resolution defined as follows,

R =
8∑
i

σ max
i − σ min

i

σ max
i + σ min

i

, (16)

where σ max
i and σ min

i are the neighboring maximum and min-
imum values of the conductance. We choose the most visible
eight oscillating periods to calculate the resolution and plot
R as a function of B in Fig. 7(c). We see that the resolution
increases significantly with increasing magnetic field, indicat-
ing that the observation of 2D Fabry-Pérot interference can be
facilitated by applying a magnetic field, in stark contrast to
other 2D electronic systems [53–59]. Such a novel effect can
also be used as a direct evidence of FAs.

We remark that there exists a critical magnetic field Bc =
h̄Kz/(eL) in the calculation, above which all the incident elec-
trons in the FA surface states will transfer into the bulk and
no surface transport occurs. Here, Kz is the span of the FA in

the kz direction [Fig. 7(a)] and L is the distance between the
two electrodes [Fig. 1(a)]. For parameters Kz = 1.2 nm−1 and
L = 180 nm adopted in Fig. 7, we have Bc 	 4.4 Tesla.

VI. DISCUSSION AND SUMMARY

We would like to discuss the experimental realization of
our proposal. The surface NFAN junctions can be achieved by
state-of-the-art fabrication techniques [66–68]. In the calcula-
tions, we have assumed the specular reflection at the contacts.
In general, the diffusive boundary condition will introduce the
coupling between different transverse kz slices, which leads
to the dephasing effect. Therefore, high-quality contacts are
required for the observation of the conductance oscillation.
Good contacts with smooth boundaries can be implemented
by state-of-the-art fabrication techniques [66], like electron-
beam lithography [69,70]. For example, the length of the
electrodes along the smooth boundary can reach 4 μm [66],
whereas the Fermi wavelength of the WSM in our system is
2π
k1

= 5.24 nm. The size of the electrodes along the bound-
ary is much larger than the Fermi wavelength and if their
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FIG. 7. Conductance oscillations in a WSM under a magnetic field perpendicular to the surface. (a) FA spectrum for azimuthal angle
θ = 0, and electrons slide along the FA driven by the Lorentz force. (b) Trajectories of electrons in real space corresponding to the left panel.
(c) Resolution of the conductance as a function of the magnetic field, where BC is the saturated magnetic field. The transmission probability as
a function of ε and kz with (d) B = 0, (e) B = 0.4BC , and (f) B = 0.8BC . [(g)–(i)] The corresponding conductance after summing over all the
transverse channels kz for different magnetic fields in the ŷ direction. The other parameters are the same for those in Fig. 3(g).

FIG. 8. The current distributions (a) J1 and (b) J2 for a given kz and ε marked in Fig. 7(e).
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boundaries are smooth enough, then the transverse momen-
tum kz is approximately conserved during scattering. The
WSM with a pair of FAs is a crucial building block in our pro-
posal, which has been reported in NbIrTe4 [49,61–63], WP2

[71], MoTe2 [72], and YbMnBi2 [73]. The main reason for
the choice of the current time-reversal (T )-symmetric model
is that it is the minimal model which contains a pair of FAs.
Here, the number of Fermi arcs is important, but not the time-
reversal symmetry. The main results still hold for other mate-
rials with more FAs as long as the two regions of transmission
can be well defined. During the calculation, for simplicity, we
set the chemical potential to zero in the WSM to have a van-
ishing density of the bulk states. In real materials with finite
density of states, our main conclusions remain unchanged as
long as the FAs and the bulk states are well separated in the
surface Brillouin zone. The presence of bulk states will only
cause certain leakage of surface electrons, but will not change
the present qualitative results, as discussed in Fig. 5.

To summarize, we have investigated the 2D conductance
oscillation in the planar NFAN junctions on the WSM surface,
which provides a unique transport signature of the FAs. It is

found that (i) shorter and less curved FAs can lead to more
visible conductance oscillation, and the conductance oscilla-
tions are robust to weak disorder and a slight shift of the Fermi
surface; (ii) a crossover from oscillation to plateau structure
of the conductance spectra can be implemented by changing
the orientation of the planar junctions; and (iii) the magnetic
field can significantly enhance the visibility of the oscillation
pattern which is unique for the FA surface states. Therefore,
our work offers an effective way to identify FA surface states
through transport measurement. It also introduces a new plat-
form to realize interesting 2D conductance oscillation induced
by Fabry-Pérot-type interference.
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