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Inter- and intraband Coulomb interactions between holes in silicon nanostructures
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We present a full derivation of the interaction Hamiltonian for holes in silicon within the six–band envelope-
function scheme, which appropriately describes the valence band close to the � point. The full structure of
the single-hole eigenstates is taken into account, including the Bloch part. The scattering processes caused
by the Coulomb interaction are shown to be both intraband and interband, the latter being mostly short-ranged.
In the asymptotic long-range limit, the effective potential tends to the screened Coulomb potential and becomes
purely intraband, as assumed in previous models. We apply our model to compute the excitation spectra of two
interacting holes in prototypical silicon quantum dots, taking into account different dielectric environments. It
is shown that, in the highly screened regime, short-range interactions (both intra- and interband) can be very
relevant, while they lose importance when there is no screening other than the one proper of the bulk silicon
crystal. In the latter case, we predict the formation of hole Wigner molecules.
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I. INTRODUCTION

For decades, silicon has played an essential role in tra-
ditional semiconductor-based information technology. More
recently, it has been recognized as an excellent host material
for new devices in quantum computation and spintronics. In
fact, Si crystals naturally consist of 95% nonmagnetic nuclei,
a percentage that can be further increased through isotopic
purification [1]. This makes Si a candidate for the realization
of quantum dot (QD) spin qubits, as the hyperfine interaction
between the spin qubit and the nuclear spins of the host ma-
terial typically represents the main source of decoherence and
spin relaxation in other (III–V) materials [2–4]. Furthermore,
holes in group-IV materials are affected by a large spin-orbit
coupling, which enables fast, all-electrical spin-qubit manip-
ulation, while at the same time the consequent susceptibility
to charge noise can be minimized by operating at sweet spots
determined by the geometry of the QD and the applied electric
gate potentials [5,6]. The ability to confine and control a single
or few charge carriers in Si QDs, a crucial requisite for imple-
menting quantum computation, was achieved experimentally
in the early 2010s [7–9]. The values of the decoherence times
achieved in Si QDs [10–12] now exceed by a few orders of
magnitude the demonstrated gating times [11,13,14].

Si-based microelectronics can benefit from advanced, well-
established industrial fabrication techniques [15,16]. This is
an exceedingly important asset for achieving scalability and
integration of Si qubits with control hardware. With respect
to this objective, the realization and characterization of spin
qubits in QDs embedded in commercially available CMOS
SOI platforms offer promising perspectives [17–24]. This
progress provides both a scientific and technological motiva-
tion for the theoretical study of Si QD qubits.

*andrea.secchi@nano.cnr.it

The standard approach to theoretically characterize few-
particle states in semiconductor nanostructures includes, as a
starting point, the derivation and diagonalization of the single-
particle Hamiltonian, obtained within the envelope-function
approach, pioneered by Lüttinger and Kohn [25]. Here, the
wave function is factorized into the product of a Bloch state
and of an envelope function, which displays a slow spatial
variation, in comparison with the lattice parameter. The enve-
lope function is the solution of an effective Schrödinger-like
equation, which is determined by the external fields (confine-
ment potentials and possibly a static magnetic field) and the
effective k · p Hamiltonian [26]. It is then possible to trace
out the rapidly varying Bloch states, which greatly reduces
the complexity of the problem. If M energy bands are relevant,
with M > 1, then the envelope functions are spinors with M
position-dependent components. In Si, both conduction and
valley bands require, in general, a spinorial formulation. A
number of crucial functionalities of spin qubits in Si depends
on single-particle states, and specifically on the mixing be-
tween the bands. For example, recent works on single-hole
spin qubits have thoroughly investigated the spectra and the
dependence of the Larmor and Rabi frequencies on the ori-
entation of the external magnetic field and the confinement
gates, within different multiband approaches [27,28].

The presence of two or more interacting particles re-
sults in a rich physics and offers further opportunities for
qubit encoding, manipulation, and readout. In these situa-
tions, the role of the Coulomb interaction is generally crucial.
However, this is often included in theoretical models via a
small number of parameters (direct and exchange interac-
tions), which only account for intraband scattering processes
[29–32]. More comprehensive calculations are based on
exact-diagonalization or configuration-interaction (CI) proce-
dures. These require, as input, the one-body and two-body
matrix elements of the fully interacting Hamiltonian between
Slater determinants built from a set of single-particle states. In
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the case of QD systems, the latter are generally written as the
products of envelope functions and Bloch states, as mentioned
above. The first main objective of this paper is to derive the
full interaction Hamiltonian (i.e., the two-body matrix ele-
ments of the Coulomb interaction) for Si nanostructures, such
as QDs, populated by holes lying in the valence band close
to the � point. Our point is that many interband scattering
processes due to the Coulomb interaction exist in Si, and we
provide explicit expressions and numerical values that allow
us to fully include them in CI calculations.

CI calculations for the case of interacting electrons in
Si QDs have been presented in several works [33–36]. In
Refs. [33,34], an accurate model is considered, related to a
two-electron Si double QD, which accounts for two of the six
conduction-band valleys, and the intervalley Coulomb interac-
tion is claimed to be negligible. Even if these considerations
hold for a system in a certain configuration, they cannot
be generalized to arbitrary QDs or particle numbers, as the
effect of different Coulomb terms depends crucially on the
degree of localization of the two-particle states. In the case
of holes, we find that interband terms are short ranged (SR)
and are therefore expected not to have a significant impact on
states where particles are, on average, well separated in space
(as in the lowest-energy states in double QDs). In contrast,
multiple occupation of a single dot implies a much smaller
interparticle distance, such that SR effects can be relevant
[35,36]. Moreover, the spatial localization of the holes can be
reduced—and, correspondingly, the impact of SR interactions
can be increased—by the presence of a dielectric environ-
ment (provided, e.g., by close metallic leads) that screens
the long-range (LR) Coulomb repulsion in the dot. In such
cases, the interband Coulomb interaction might become one
of the channels inducing band mixing, which must be taken
into account very carefully in the simulation of crucial qubit
operation, such as the exchange-based quantum gates or the
read out based on the Pauli blockade.

Here we focus on hole states, which are described by
four bands (light holes and heavy holes), plus two additional
(split-off) bands, which might be close enough in energy to
be relevant, e.g., in the presence of strain. We show that
Coulomb scattering induces a great variety of transitions be-
tween such bands. The situation is qualitatively different from
that encountered in electronic Si QDs, where the degenerate
conduction valleys are centered on different k points. As an
additional motivation, we mention that analogous SR features
of the Coulomb interaction have been shown to be relevant
in the case of carbon-nanotube QDs. Systematic theories
[37–39], experiments [40], and CI calculations [41] have con-
firmed that the often neglected intervalley Coulomb scattering
processes (which are inherently SR) affect the two-electron
wave functions and open additional energy gaps that cannot
be explained with the intravalley Coulomb interaction only.
Therefore, it is worth investigating whether similar SR pro-
cesses are relevant in hole-based Si QDs. The second main
objective of this paper is to answer this question through
CI calculations of the excitation spectra of two holes con-
fined in Si QDs, taking into account all interaction processes.
We provide a systematic study of two-hole spectra in three
exemplary anisotropic Si QDs as a function of a variable
bulk dielectric constant, which mimics a variable dielectric

environment. We show that, for low screening, the computed
two-hole spectra exhibit signatures of Wigner crystallization.
On the other hand, when the screening of LR interactions is
high, SR interactions become more relevant, and we quantify
their impact on the two-hole spectra.

This paper is organized as follows. In Sec. II, we introduce
the single-hole eigenstates with the Bloch states correspond-
ing to the � point. In Sec. III, we introduce the many-hole
Hamiltonian and the effective band-dependent potentials. In
Sec. IV, we discuss the approximations which are necessary
for the derivation of the SR and LR effective interactions.
These are obtained in Secs. V and VI, respectively, and col-
lected in Sec. VII. In Sec. VIII, we rework the formulas for the
effective interactions in a way suitable for their implementa-
tion in CI codes. Finally, in Sec. IX we show and discuss the
results of CI calculations of the two-hole spectra. Additional
technical details related to the derivations are collected in
Appendices A–H.

II. SINGLE-HOLE STATES AT THE � POINT

Each unit cell in Si contains two atoms, whose positions
are specified by the vectors

τ0 = (0, 0, 0), τ1 = a

4
(1, 1, 1), (1)

where a = 0.5431 nm [15] is the cubic cell edge. The lattice
translation vectors are given by

R ≡ R(n) ≡ a

2
(n2 + n3, n1 + n3, n1 + n2) (2)

for every triple of integers n = (n1, n2, n3). A generic atomic
position vector can then be written as R j ≡ R + τ j , with
j ∈ {0, 1}.

We write the relevant Bloch states at the � point in tight-
binding form as [26,42]

|ε+
α,σ 〉 ≡ 1√

Nc

∑
R

∑
j

(−1) j

√
2

|pα, R j〉 ⊗ |σ 〉. (3)

Here, Nc is the number of unit cells, R runs over their posi-
tions, 〈r|pα, R j〉 ≡ φpα

(r − R j ) is an atomic orbital centered
at the position R j with the symmetry of a pα orbital (α =
x, y, z), and |σ 〉 is a single-particle spinor (σ = ±1). Within
the shell picture, the states used in the description of the va-
lence band at the � point are the 3pα atomic orbitals. However,
it is more convenient to adopt the Hartree-Fock orbitals [43],
as they allow for a better description of the chemical bonds of
single-particle orbitals in a mean-field approach.

In the presence of spin-orbit coupling, it is convenient to
switch to the (J, M ) representation, where J and M are the
quantum numbers associated with the square modulus and
the z component of a particle’s total angular momentum, re-
spectively. In particular, we include a J = 3/2 quartet, with
M ∈ {3/2, 1/2,−1/2,−3/2}, and a J = 1/2 doublet, with
M ∈ {1/2,−1/2}. This is accomplished via the transforma-
tion

|ε+
J,M〉 =

∑
α,σ

SB,α,σ |ε+
α,σ 〉, (4)
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where B ≡ (J, M ) and SB,α,σ is the matrix of the Clebsch-
Gordan coefficients [26] (see Appendix A for more details).

In the presence of a confinement potential that varies
smoothly on the length scale of the lattice parameter, a single-
hole eigenstate (labeled by an index ν) can be written, in the
envelope-function scheme, as

|ν〉 = 1√
N
∑

B

∑
R

∑
j

∑
α,σ

(−1) jSB,α,σ |�ν,B,α,R j 〉⊗|σ 〉, (5)

where

|�ν,B,α,R j 〉 =
∫

dr ψν,B(r) φpα
(r − R j )|r〉. (6)

ψν,B(r) is an envelope function and the normalization constant
is N = VQD/Vat, where Vat is the volume occupied by a single
atom in the Si crystal and VQD is a normalization volume for
the envelope functions, defined by∑

B

∫
drψ∗

ν ′,B(r) ψν,B(r) = δν,ν ′ VQD. (7)

For a part of the following derivations, it will be useful
to switch from the Cartesian to the spherical basis φm, where
m ∈ {+1, 0,−1} is the eigenvalue of 
̂z (with l = 1):

φ±1(r) = 1√
2

[φpx (r) ± i φpy (r)], φ0(r) = φpz (r). (8)

III. MANY-BODY HAMILTONIAN

In the following, we denote with {a} any set of four ordered
quantities, explicitly labeled as a1, a2, a3, a4. For example,
{ν} ≡ (ν1, ν2, ν3, ν4) and {B} ≡ (B1, B2, B3, B4). In its diag-
onal form, the single-hole Hamiltonian reads

ĤSH =
∑

ν

Eν ĉ†
ν ĉν, (9)

where ν labels the single-hole eigenstates. The interaction
Hamiltonian has the general form

ĤINT = 1

2

∑
{ν}

V{ν}ĉ†
ν1

ĉ†
ν2

ĉν3 ĉν4 , (10)

with

V{ν} =
∑
σ,σ ′

∫
dr
∫

dr′〈ν1|r, σ 〉 〈ν2|r′, σ ′〉

× V (r − r′)〈r′, σ ′|ν3〉 〈r, σ |ν4〉. (11)

Here, V (r − r′) is the screened Coulomb potential between
two point charges; although we will keep our derivation gen-
eral with respect to the choice of the interaction potential, in
Appendix B we discuss the details of the Vinsome-Richardson
expression [44,45], which is suitable for Si. At the vertices
of the two-particle interaction processes (positions r and r′),
the spin components σ and σ ′ are conserved. However, at
each vertex the interaction can induce transitions between
different bands, i.e., different values of B. To see this, we
rewrite Eq. (11) using the explicit forms of the single-hole

eigenstates given in Eq. (5):

V{ν} =
∑
{B}

∫
dr
∫

dr′ψ∗
ν1,B1

(r) ψ∗
ν2,B2

(r′)

× W{B}(r − r′) ψν3,B3 (r′) ψν4,B4 (r). (12)

Here, we have introduced the effective band-dependent inter-
action potential,

W{B}(r − r′) ≡ V (r − r′)
1

N 2

∑
{R}

∑
{ j}

(−1) j1+ j2+ j3+ j4

×
∑
{m}

F m1,m4
B1,B4

F m2,m3
B2,B3

× φ∗
m1

(
r − R1, j1

)
φ∗

m2

(
r′ − R2, j2

)
× φm3

(
r′ − R3, j3

)
φm4

(
r − R4, j4

)
. (13)

The matrix F m,m′
B,B′ is given explicitly in Appendix A, together

with the details of the transformation. Since F m,m′
B,B′ 
= 0 for

B 
= B′, interband scattering processes are possible.
In its current form, Eq. (13) is of no practical use, as

it involves an excessively demanding quadruple summation
over all the Na = 2Nc atoms in the crystal (N4

a terms), not to
mention the summations over the other indices. The aim of
this paper is to transform this expression into one that can be
more easily implemented and used in practical calculations.

IV. APPROXIMATIONS ON THE EFFECTIVE
INTERACTION POTENTIAL

We now resume the derivation of the multiband interaction
potential, and proceed with the manipulation of Eq. (13).

A. Two-center integral approximation

The main difficulty associated with the calculation of the
Coulomb interaction potential arises from the presence of
orbitals centered at four different atomic sites. As a result, the
Coulomb matrix elements [Eq. (12)] are given by four-center
integrals. A widely used approximation [38,39] consists of
keeping only the one- and two-center integrals, where

R1, j1 = R4, j4 and R2, j2 = R3, j3 , (14)

and discarding the three- and four-center ones. The rationale
for this approximation is that the orbitals decay exponentially
with the distance from their center; therefore, the leading
terms in Eq. (13) are expected to be those where the two
orbitals involving the same hole coordinate are centered on
the same site. We shall also adopt this approximation, which
can be justified a posteriori by the fact that the asymptotic
limit of the interaction potential coincides with the screened
Coulomb potential (Sec. VII). A possible route to go beyond
this approximation is sketched in Appendix C, but remains
essentially beyond the scope of the present paper.

B. Slow spatial dependence of the envelope functions

We now consider the full matrix element of the hole-hole
interaction [Eq. (12)]. After applying the two-center integral
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approximation, this reads as

V{ν} ≈
∑
{B}

∑
{m}

F m1, m4
B1, B4

F m2, m3
B2, B3

× 1

N 2

∑
R j ,R′

j′

∫
dr
∫

dr′ψ∗
ν1,B1

(r) ψ∗
ν2,B2

(r′)

× ψν3,B3 (r′) ψν4,B4 (r)V (r − r′) φ∗
m1

(r − R j )

× φ∗
m2

(r′ − R′
j′ ) φm3 (r′ − R′

j′ ) φm4 (r − R j ). (15)

We then exploit the slow variation of the envelope func-
tions on the length scale of the lattice parameter, combined
with the strong localization of the atomic orbitals. If the enve-
lope function is practically constant over the volume occupied
by an atom, one has that

ψν,B(r)φm(r − R j ) � ψν,B(R j )φm(r − R j ). (16)

Under this approximation, the four envelope functions drop
out of the integrals over r and r′, and thus

V{ν} ≈ 1

N 2

∑
R j ,R′

j′

∑
{B}

ψ∗
ν1,B1

(R j ) ψ∗
ν2,B2

(
R′

j′
)

× ψν3,B3 (R′
j′ ) ψν4,B4 (R j )W{B}(R j, R′

j′ ), (17)

where

W{B}(R j, R′
j′ ) ≡

∑
{m}

F m1, m4
B1, B4

F m2, m3
B2, B3

×
∫

dr1

∫
dr2 φ∗

m1
(r1) φ∗

m2
(r2)

× V (r1 − r2 + R j − R′
j′ )

× φm3 (r2) φm4 (r1). (18)

Although the integrals extend over the whole space, the
domain over which the integrand is nonzero is a small
neighborhood of the origin (r1 = r2 = 0) because of the lo-
calization of the atomic orbitals. Therefore, in the relevant
domain, |r1 − r2| is of the order of the linear size of the unit
cell, and one can distinguish two regimes:

(1) The SR regime, where R j = R′
j′ .

(2) The LR regime, where R j 
= R′
j′ , and one can assume

that |R j − R′
j′ |  |r1 − r2|.

These two regimes are treated in Secs. V and VI,
respectively.

V. SHORT-RANGE EFFECTIVE INTERACTION

In the SR case, the expression of the effective interaction
[Eq. (18), with R j = R′

j′ ] becomes

W SR
{B} ≡

∑
{m}

F m1, m4
B1, B4

F m2, m3
B2, B3

U{m}, (19)

where

U{m} ≡
∫

dr1

∫
dr2 φ∗

m1
(r1) φ∗

m2
(r2)V (r1 − r2)

× φm3 (r2) φm4 (r1). (20)

Hereafter, we compute the Hubbard parameters U{m} in the
approximation

V (r1 − r2) � VC(r1 − r2), (21)

where VC is the unscreened Coulomb potential. This is jus-
tified by the fact that the integrand vanishes when |r1 − r2|
is large with respect to the size of the orbitals, while the
screening is negligible in the opposite limit, which gives the
major contribution to the integral.

We note that there are 81 Hubbard parameters U{m}. How-
ever, most of them are identically zero, and the remaining
ones are related by several symmetry relations, which greatly
reduce the number of independent quantities to be evaluated.

A. Evaluation of the Hubbard parameters

The first step in the calculation of the Hubbard parameters
is to write the orbitals in spherical coordinates,

φm(ri ) = R3,1(ri)Y1,m(θi, ϕi ), i ∈ {1, 2}, (22)

where Rn,l and Yl,m are the radial orbital function and the
spherical harmonic, respectively, taken for n = 3 and l = 1,
which is the case of interest.

Next, we expand the unscreened Coulomb potential [see
Eq. (21) and the related discussion] in the series of Legendre
polynomials P
(cos ω) ≡ P
,0(cos ω). In Gaussian units,

VC(|r1 − r2|) = e2

|r1 − r2| = e2
+∞∑

=0

r

<

r
+1
>

P
(cos ω), (23)

where r< = min(r1, r2), r> = max(r1, r2), and ω is the angle
between r1 and r2. The angle ω can be written as a function
of θ1, θ2, ϕ1, and ϕ2, using the spherical harmonic addition
theorem [46]. This allows us to perform the integrals over the
solid angles in Eq. (20) and to obtain, after some algebra,

U{m} = δm1,m4δm2,m3

×
[

F0 + (−1)|m1|+|m2|(2 − |m1|)(2 − |m2|)
25

F2

]
+ δm1+m2,m3+m4

(
1 − δm1,m4

)(
1 − δm2,m3

)
× 3

√
(|m1| + |m4|)(|m2| + |m3|)

25
F2, (24)

where

F0 = e2
∫ ∞

0
dr1r2

1

∫ ∞

0
dr2r2

2
1

r>

R2
3,1(r1)R2

3,1(r2),

F2 = e2
∫ ∞

0
dr1r2

1

∫ ∞

0
dr2r2

2
r2
<

r3
>

R2
3,1(r1)R2

3,1(r2) (25)

are Slater-Condon parameters [47,48], depending on the ra-
dial wave function associated with the φm orbitals. The full
derivation leading from Eq. (20) to Eq. (24) is presented in
Appendix D.

One can show that, out of the 81 Hubbard parameters
corresponding to the different values of (m1, m2, m3, m4), only
the following 19 are different from zero:

U0,0,0,0 = F0 + 4
25 F2,

U±1,±1,±1,±1 = U±1,∓1,∓1,±1 = F0 + 1
25 F2,
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TABLE I. Interband Hubbard parameters U inter
{B} , in the cases

where there is no transfer of J at both interaction vertices (J1 − J4 =
J2 − J3 = 0), valid for any s = ±1 and t = ±1.

2{J} 2M1 2M2 2M3 2M4 U inter
{B}

(3, 3, 3, 3) 3s t 3s t 2F �
2

t 3s t 3s 2F �
2

3s −3s −st st t2F �
2

st −st −3s 3s t2F �
2

U±1,0,0,±1 = U0,±1,±1,0 = F0 − 2
25 F2,

U±1,∓1,±1,∓1 = 6
25 F2,

U0,0,±1,∓1 = U±1,∓1,0,0 = U±1,0,±1,0 = U0,±1,0,±1

= 3
25 F2. (26)

The problem is now reduced to the determination of
the Slater-Condon parameters F0 ≡ F0(3p, 3p) and F2 ≡
F2(3p, 3p). These quantities depend on the radial orbital wave
functions [see Eqs. (25)], which are sensitive to the electronic
configuration. The quantities F0 and F2 can be computed
analytically, e.g., using Hartree-Fock radial wave functions
[43,49]. The calculation presented in Ref. [43] yields

F0 = 8.99037 eV, F2 = 4.53941 eV. (27)

B. Short-range potential in terms of the Hubbard parameters

Hereafter, we proceed to perform the sums appearing in
Eq. (19), using Eqs. (26), and state the results. The full deriva-
tion is presented in Appendix E.

The terms that contribute to the SR interaction potentials
can be divided into three classes:

W SR
{B} = W SR, intra

{B} + W SR, part
{B} + W SR, inter

{B} . (28)

The first class is formed by 36 fully intraband terms, charac-
terized by B1 = B4 and B2 = B3:

W SR, intra
{B} = δB1,B4δB2,B3U

intra
B1,B2

, (29)

where

U intra
B1,B2

= F0 + δJ1,
3
2
δJ2,

3
2
(−1)|M1|−|M2|F �

2 , (30)

where F �
2 ≡ F2/25. The second class is formed by 32 partially

intraband terms, characterized by B1 = B4 and B2 
= B3, or
B2 = B3 and B1 
= B4:

W SR, part
{B} = δB1,B4U

part
B1;B2,B3

+ δB2,B3U
part
B2;B1,B4

, (31)

where

U part
B1;B2,B3

= δJ1,
3
2
(1 − δJ2,J3 )δM2,M3δ|M2|, 1

2

× (−1)|M1|+ 1
2

√
2F �

2 . (32)

The third class includes 120 fully interband terms, character-
ized by B1 
= B4 and B2 
= B3:

W SR, inter
{B} = U (1), inter

{B} + U (2), inter
B1,B4;B2,B3

+ U (2), inter
B2,B3;B1,B4

, (33)

TABLE II. Interband Hubbard parameters U inter
{B} , in the cases

where there is transfer of J at only one of the two interaction vertices
(|J1 − J4| = 1 and J2 = J3, or J1 = J4 and |J2 − J3| = 1), valid for
any s = ±1.

2{J} 2M1 2M2 2M3 2M4 U inter
{B}

(3, 3, 3, 1) 3s −s 3s −s 2
√

2F �
2

3s −3s s −s −2
√

2F �
2

s s 3s −s −s
√

6F �
2

−s 3s s s s
√

6F �
2

3s −3s −s s −√
2F �

2

3s s 3s s −√
2F �

2

(3, 3, 1, 3) 3s −3s s −s −2
√

2F �
2

s −3s s −3s 2
√

2F �
2

3s −s s s s
√

6F �
2

s s −s 3s −s
√

6F �
2

3s −3s −s s −√
2F �

2

s 3s s 3s −√
2F �

2

(3, 1, 3, 3) 3s −s 3s −s 2
√

2F �
2

s −s 3s −3s −2
√

2F �
2

3s −s s s −s
√

6F �
2

s s −s 3s s
√

6F �
2

3s s 3s s −√
2F �

2

−s s 3s −3s −√
2F �

2

(1, 3, 3, 3) s −3s s −3s 2
√

2F �
2

s −s 3s −3s −2
√

2F �
2

s s 3s −s s
√

6F �
2

−s 3s s s −s
√

6F �
2

s 3s s 3s −√
2F �

2

−s s 3s −3s −√
2F �

2

where

U (1), inter
{B} ≡ δM1,M4δ|M1|, 1

2
δM2,M3δ|M2|, 1

2

× (1 − δJ1,J4

)(
1 − δJ2,J3

)
2F �

2 (34)

and

U (2), inter
B1,B4;B2,B3

≡
[
YJ1 δJ4,

3
2
δM1,− 1

2
δM4,− 3

2
+ δJ1,

3
2

YJ4 δM1,
3
2
δM4,

1
2

+ (J1 − J4)δM1,
1
2
δM4,− 1

2

]
×
[
δJ2,

3
2

YJ3 δM2,− 3
2
δM3,− 1

2
+ YJ2 δJ3,

3
2
δM2,

1
2
δM3,

3
2

+ (J3 − J2)δM2,− 1
2
δM3,

1
2

]
3F �

2

+
(

XJ1 δJ4,
3
2
δM1,

1
2
δM4,− 3

2
− δJ1,

3
2

XJ4 δM1,
3
2
δM4,− 1

2

)
×
(
δJ2,

3
2

XJ3 δM2,− 3
2
δM3,

1
2
− XJ2 δJ3,

3
2
δM2,− 1

2
δM3,

3
2

)
× 6F �

2 . (35)

Equations (34) and (35) give all the nonvanishing interband
parameters entering Eq. (33). These are listed in Tables I–III,
and classified according to the values of {J}.
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TABLE III. Interband Hubbard parameters U inter
{B} , in the cases

where there is transfer of J at both interaction vertices (|J1 − J4| =
|J2 − J3| = 1), valid for any s = ±1 and t = ±1.

2{J} 2M1 2M2 2M3 2M4 U inter
{B}

(3, 3, 1, 1) 3s −3s s −s −4F �
2

s −s s −s −3F �
2

−s 3s s s −s
√

3F �
2

3s −s s s −s
√

3F �
2

3s −3s −s s F �
2

s t t s 2F �
2

(3, 1, 3, 1) 3s −s 3s −s 4F �
2

s −s s −s 3F �
2

s s 3s −s s
√

3F �
2

3s −s s s s
√

3F �
2

3s s 3s s F �
2

s t t s 2F �
2

(1, 3, 1, 3) −s 3s −s 3s 4F �
2

s −s s −s 3F �
2

−s 3s s s s
√

3F �
2

s s −s 3s s
√

3F �
2

s 3s s 3s F �
2

s t t s 2F �
2

(1, 1, 3, 3) −s s −3s 3s −4F �
2

s −s s −s −3F �
2

s s 3s −s −s
√

3F �
2

s s −s 3s −s
√

3F �
2

s −s −3s 3s F �
2

s t t s 2F �
2

VI. LONG-RANGE EFFECTIVE INTERACTION

We now consider the effective interaction [Eq. (18)] in the
LR regime, where R j 
= R′

j′ and |R j − R′
j′ |  |r1 − r2|. In

this case, the expansion of the interaction potential in Taylor
series gives

V (r1 − r2 + R j − R′
j′ )

≈ V (R j − R′
j′ ) +

∑
α

(α1 − α2)∂αV (R j − R′
j′ )

+ 1

2

∑
α,β

(α1 − α2)(β1 − β2)∂2
α,βV (R j − R′

j′ ), (36)

where α, β ∈ {x, y, z}, and ∂αV (R) ≡ ∂V (R)
∂Rα

. When the expan-
sion Eq. (36) is substituted into Eq. (18), three terms are
obtained, for R j 
= R′

j′ :

W LR
{B} (R j, R′

j′ ) ≈
2∑

n=0

W LR,(n)
{B} (R j, R′

j′ ). (37)

In the remainder of this section, we use the shorthand R ≡
R j − R′

j′ ≡ R(Cx,Cy,Cz ), where R = |R|, and C2
x + C2

y +
C2

z = 1.

A. Long-range potential, zeroth order

The zeroth-order term from Eq. (37) is

W LR,(0)
{B} (R) =

∑
{m}

F m1, m4
B1, B4

F m2, m3
B2, B3

∫
dr φ∗

m1
(r) φm4 (r)

×
∫

dr′ φ∗
m2

(r′) φm3 (r′)V (R)

= V (R)δB1,B4δB2,B3 , (38)

where we have used the orthogonality of the orbitals,∫
dr φ∗

m(r) φm′ (r) = δm,m′ , (39)

as well as the trace property of the matrix F [see Eq. (A12) in
Appendix A]. We note that this term of the LR interaction is
fully intraband.

B. Long-range potential, first order

The first-order term from Eq. (37) is

W LR,(1)
{B} (R) =

∑
α

∂αV (R)
∑
{m}

F m1, m4
B1, B4

F m2, m3
B2, B3

×
∫

dr1

∫
dr2 φ∗

m1
(r1) φ∗

m2
(r2)

× (α1 − α2)φm3 (r2) φm4 (r1)

=
∑

α

∂αV (R)
∑
m,m′

∫
dr φ∗

m(r) α φm′ (r)

× (δB2,B3 F m, m′
B1, B4

− δB1,B4 F m, m′
B2, B3

)
, (40)

where we have used Eq. (39). The integrals appearing in
Eq. (40) vanish,∫

dr φ∗
m(r) α φm′ (r) = 0, ∀α ∈ {x, y, z}, (41)

therefore

W LR,(1)
{B} (R) = 0. (42)

Equation (41) can be proved by observing that a product
φ∗

pα′ (r) α φpα′′ (r) is always odd in one or three Cartesian coor-
dinates, therefore

∫
dr φ∗

pα′ (r) α φpα′′ (r) = 0. Then, since the
orbitals φm(r) appearing in Eq. (41) are linear combinations
of the orbitals φpα

(r) [see Eqs. (8)], the quantity on the left-
hand side of Eq. (41) can be written as a linear combination
of integrals of the form

∫
dr φ∗

pα′ (r) α φpα′′ (r), therefore it
vanishes.

C. Long-range potential, second order

The second-order term from Eq. (37) is

W LR,(2)
{B} (R)

= 1

2

∑
α,β

∂2
α,βV (R)

∑
{m}

F m1, m4
B1, B4

F m2, m3
B2, B3

×
∫

dr1

∫
dr2 φ∗

m1
(r1) φ∗

m2
(r2) (α1 − α2)

× (β1 − β2)φm3 (r2) φm4 (r1)
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TABLE IV. Characteristic functions for the second-order correc-
tions to the long-range intraband scattering processes.

2(J, |M|) 2(J ′, |M ′|) �I
B,B′ �II

B,B′

(3, 3) (3, 3) 2 −1
(3, 3) (3, 1) 5/3 0
(3, 3) (1, 1) 11/6 −1/2

(3, 1) (3, 3) 5/3 0
(3, 1) (3, 1) 4/3 1
(3, 1) (1, 1) 3/2 1/2

(1, 1) (3, 3) 11/6 −1/2
(1, 1) (3, 1) 3/2 1/2
(1, 1) (1, 1) 5/3 0

= 1

2

∑
α,β

∂2
α,βV (R)

∑
m,m′

∫
dr φ∗

m(r) αβ φm′ (r)

× (δB2,B3 F m,m′
B1,B4

+ δB1,B4 F m,m′
B2,B3

)
, (43)

where we have used Eqs. (39)–(41). The expressions of the
αβ integrals, ∫

dr φ∗
m(r) αβ φm′ (r), (44)

for αβ ∈ {x2, y2, z2, xy, yz, zx}, are provided in Appendix F.
As becomes apparent after switching to spherical coordinates,
they are all proportional to the following quantity:〈

r2
3,1

〉 ≡ ∫ ∞

0
drr4|R3,1(r)|2. (45)

To compute Eq. (45), one needs to specify the radial wave
function R3,1(r). Two alternative possibilities are considered
in Appendix G: one is based on hydrogenlike orbitals with a
screened nuclear charge Z� and the other one on the Hartree-
Fock orbitals that were used in Ref. [43] to obtain the values
of F0 and F2 given in Eqs. (27). In the first case, we first
determine Z� that fits Eqs. (27), and use the resulting hydro-
genlike orbital to compute Eq. (45). The two numerical results
for 〈r2

3,1〉 are very close, differing by less than 6% despite the
difference in the functional forms of the radial wave functions;
their average value is 〈r2

3,1〉 ≈ 0.0245 nm2.
After inserting the expressions of the αβ integrals into

Eq. (43) and performing some algebraic manipulation, one
gets

W LR,(2)
{B} (R) ≡ V (R)

[
δB1,B4δB2,B3�

(2)
B1,B2

(R)

+ δB1,B4�
(2)
B2,B3

(R) + δB2,B3�
(2)
B1,B4

(R)
]
, (46)

where

�
(2)
B,B′ (R) ≡

〈
r2

3,1

〉
5V (R)

(
�I

B,B′∇2 + �II
B,B′ ∂

2
z,z

)
V (R), (47)

�
(2)
B,B′ (R) =

〈
r2

3,1

〉
5V (R)

{
ϒB,B′

(
∇2

3
− ∂2

z,z

)
+ �+

B,B′
1

2
(∂x − i∂y)2

+ �−
B,B′

1

2
(∂x + i∂y)2 + �+

B,B′ ∂z(∂x − i∂y)

+ �−
B,B′ ∂z(∂x + i∂y)

}
V (R). (48)

TABLE V. Characteristic functions for the long-range partially
intraband scattering processes, displayed for the values of B and B′

such that at least one among the five functions does not vanish.

2(J, M ) 2(J ′, M ′) ϒB,B′ �+
B,B′ �−

B,B′ �+
B,B′ �−

B,B′

(3, 3) (3, 1) 0 0 0 −
√

1
3 0

(3, 3) (3, −1) 0 −
√

1
3 0 0 0

(3, 3) (1, 1) 0 0 0
√

1
6 0

(3, 3) (1, −1) 0 −
√

2
3 0 0 0

(3, 1) (3, 3) 0 0 0 0 −
√

1
3

(3, 1) (3, −3) 0
√

1
3 0 0 0

(3, 1) (1, 1)
√

1
2 0 0 0 0

(3, 1) (1, −1) 0 0 0
√

1
2 0

(3, −1) (3, 3) 0 0 −
√

1
3 0 0

(3, −1) (3, −3) 0 0 0 −
√

1
3 0

(3, −1) (1, 1) 0 0 0 0 −
√

1
2

(3, −1) (1, −1)
√

1
2 0 0 0 0

(3, −3) (3, 1) 0 0
√

1
3 0 0

(3, −3) (3, −1) 0 0 0 0 −
√

1
3

(3, −3) (1, 1) 0 0
√

2
3 0 0

(3, −3) (1, −1) 0 0 0 0
√

1
6

(1, 1) (3, 3) 0 0 0 0
√

1
6

(1, 1) (3, 1)
√

1
2 0 0 0 0

(1, 1) (3, −1) 0 0 0 −
√

1
2 0

(1, 1) (3, −3) 0
√

2
3 0 0 0

(1, −1) (3, 3) 0 0 −
√

2
3 0 0

(1, −1) (3, 1) 0 0 0 0
√

1
2

(1, −1) (3, −1)
√

1
2 0 0 0 0

(1, −1) (3, −3) 0 0 0
√

1
6 0

The functions �I
B,B′ , �II

B,B′ , ϒB,B′ , �±
B,B′ , and �±

B,B′ provide
selection rules and weights for the various processes. Specif-
ically, the functions �I

B,B′ and �II
B,B′ [Table IV] enter the

definition of �
(2)
B,B′ (R) and are therefore related to intraband

scattering processes. The functions ϒB,B′ , �±
B,B′ and �±

B,B′

(Table V), instead, enter the definition of �
(2)
B,B′ (R) and are

therefore related to partially intraband scattering processes.
For a screened interaction potential of the form V (r) =

VC(r)/ε(r), one has

∂2
α,βV (R) = V (R)[L−2(R)CαCβ − δα,βM−2(R)], (49)

where the quantities L−2(R) and M−2(R) both have the di-
mensions of an inverse length squared, and are given by

L−2(R) ≡ 3

R2
+ 3ε′(R)

Rε(R)
+ 2

[
ε′(R)

ε(R)

]2

− ε′′(R)

ε(R)
(50)
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and

M−2(R) ≡ 1

R2
+ ε′(R)

Rε(R)
. (51)

In Appendix B, we show the form taken by Eqs. (50) and
(51) in the case of the Vinsome-Richardson potential, already
mentioned in Sec. III. We finally obtain the explicit formulas

�
(2)
B,B′ (R) ≡

〈
r2

3,1

〉
5

{
[L−2(R) − 3M−2(R)]�I

B,B′

+ [L−2(R)C2
z − M−2(R)

]
�II

B,B′
}
, (52)

�
(2)
B,B′ (R) =

〈
r2

3,1

〉
5

L−2(R)

[(
1

3
− C2

z

)
ϒB,B′

+ 1

2
(Cx − iCy)2�+

B,B′ + 1

2
(Cx + iCy)2�−

B,B′

+ Cz(Cx − iCy)�+
B,B′ + Cz(Cx + iCy)�−

B,B′

]
.

(53)

VII. TOTAL INTERACTION POTENTIALS

We now summarize our findings and show the total expres-
sions for the band-dependent interaction potentials, classified
on the basis of the (non-) conservation of the band indices at
the interaction vertices.

The fully intraband potential has both SR and LR compo-
nents,

WB,B′,B′,B(R j, R′
j′ )

≈ δR j ,R′
j′
U intra

B,B′ + (1 − δR j ,R′
j′
)V (R j − R′

j′ )

× [1 + �
(2)
B,B′ (R j − R′

j′ )
]
. (54)

The parameters U intra
B,B′ , defining 36 SR intraband processes in

Eq. (54), are given in Eq. (30). The function �
(2)
B,B′ (R j − R′

j′ )
is given by Eq. (52).

The partially intraband potential also exhibits both SR and
LR components,

WB,B′,B′′,B(R j, R′
j′ ) = WB′,B,B,B′′ (R j, R′

j′ )

≈ δR j ,R′
j′
U part

B;B′,B′′+(1−δR j ,R′
j′
)V (R j−R′

j′ )

× �
(2)
B′,B′′ (R j − R′

j′ ). (55)

The parameters U part
B;B′,B′′ , determining the 32 partially intra-

band processes in Eq. (55), are given in Eq. (32). The function
�

(2)
B,B′ (R j − R′

j′ ) is given by Eq. (53).
The interband potential is completely SR, and is given by

Eq. (33), which we rewrite here for completeness (R j = R′
j′ ),

W inter
{B} = U (1), inter

{B} + U (2), inter
B1,B4;B2,B3

+ U (2), inter
B2,B3;B1,B4

. (56)

The 120 non-vanishing parameters U inter
{B} satisfy the condi-

tions B1 
= B4 and B2 
= B3, and they are synthetically listed
in the formulas Eqs. (34) and (35).

From Eqs. (50) and (51) we notice that, for R → ∞,

L−2(R) ≈ 3

R2
, M−2(R) ≈ 1

R2
, (57)

since the dielectric function asymptotically approaches the
constant value ε0 ≡ limR→∞ ε(R). It follows that the interac-
tion potential becomes asymptotically intraband and equal to
the screened Coulomb potential,

lim
R→∞

W{B}(R) ≈ δB1,B4δB2,B3V (R), (58)

as the second-order corrections decay quicker with the dis-
tance R, namely, as ≈ V (R)/R2.

VIII. THE CONTINUUM LIMIT

A. Method

We now restore the continuum representation for the en-
velope functions and the interaction potentials by taking the
continuum limit of Eq. (17), which can be rewritten exactly as

V{ν} =
∑
{B}

∫
dr
VQD

∫
dr′

VQD
ψ∗

ν1,B1
(r) ψ∗

ν2,B2
(r′) ψν3,B3 (r′)

× ψν4,B4 (r)W̃{B}(r, r′), (59)

having introduced the effective potential

W̃{B}(r, r′) ≡ 1

ρ2

∑
R j ,R′

j′

δ(r − R j ) δ(r′ − R′
j′ )W{B}(R j, R′

j′ )

(60)

and the nuclear density ρ ≡ 1/Vat.
We now notice that, according to our findings summarized

in Sec. VII, the total interaction potential W can be partitioned
as

W{B}(R j, R′
j′ ) ≡ δR j ,R′

j′
W SR

{B}

+ (1 − δR j ,R′
j′
)W LR

{B} (R j − R′
j′ ). (61)

Combining Eq. (61) with Eq. (60), one obtains

W̃{B}(r, r′) = W SR
{B} δ(r − r′)

1

ρ2

∑
R j

δ(r − R j )

+ W LR
{B} (r − r′)

1

ρ2

∑
R j

δ(r − R j )

×
∑

R′
j′ 
=0

δ(r − r′ − R′
j′ ). (62)

To perform the summations over the atomic coordinates,
we replace the δ functions by smooth functions g, satisfying
the condition ∫

dr g(r − R j ) = 1. (63)

This replacement is valid because of the slow variation of
the envelope functions with respect to the scale of the lattice
parameter [38]. The definition of the functions g is subjected
to a certain degree of arbitrariness; a rigorous way to introduce
them is the following.

We define a set of cubes CR j , centered on R j and of edge λ,
such that every atom R j is the only occupier of cube CR j . The
cubes either are disjointed or they share sets of points having
zero volume, and their union does not necessarily cover the
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whole space. They are merely introduced as a way to spread
the weight of a δ function over a domain of finite size. In fact,
the function g(r − R j ) is then required to have the properties∫

CR j

dr g(r − R j ) = 1, g(r − R j ) = 0 if r /∈ CR j . (64)

Any function satisfying these constraints represents a suitable
definition of g. We show a concrete solution in Appendix H.

The g functions are then used to evaluate the following
sums, relevant for Eq. (62):

F (r) =
∑
R j

g(r − R j ), G(r) =
∑
R j 
=0

g(r − R j ). (65)

They are related by

G(r) = F (r) − g(r) (66)

and it holds that

G(r) ≡
{

0 if r ∈ C0
F (r) if r /∈ C0.

(67)

In addition, we notice that the average value of F (r) over the
crystal volume V is

1

V

∫
dr F (r) = Na

V = ρ, (68)

independently of the size of the cube λ3.
Although the replacement of the δ with the g functions

yields computable quantities, computationally demanding
summations over all the lattice positions are still required.
To make the problem tractable, we replace the true Si lattice
with an equally spaced grid, having the same density. This
is expected to have no significant consequences on the eval-
uation of V{ν} in the continuum limit due to the slow spatial
dependence of the envelope functions. The grid is defined by
the vectors Rn = λ(nx, ny, nz ), where λ is chosen such that
the volume λ3 of the cube CRn is the same as half the volume
of the unit cell of the Si lattice, i.e., λ = a/2 and ρ = 1/λ3.
In this situation, the cubes introduced above cover the whole
space, and each of them shares a face with a neighbor. Let us
now focus on the cube centered in R0 = 0, and on its nearest,
next-nearest, and next-next-nearest neighbors. The union of
these 27 cubes forms a larger cube, which we denote as R,
with an edge equal to 3λ.

In the continuum limit, the function F (r) is replaced with
its average value ρ in all the grid cells not belonging to R.
There, we leave F (r) = g(r) and G(r) = 0 in the cube at
the origin and we modify the values of F (r) in the other 26
singled-out cubes in such a way that it evolves continuously
to the average value ρ [see Eq. (68)] at the borders of R, while
keeping the correct integral properties of the δ functions. After
the replacement,

F (r) → F̃ (r) if r ∈ R \ C0, (69)

we proceed to determine F̃ (r). As in the case of the determi-
nation of g, there is a degree of arbitrariness in the definition
of F̃ (r); an explicit solution is shown in Appendix H.

Going back to Eq. (62) and using the smooth functions and
the related concepts introduced in the previous section, one

FIG. 1. Short-range contribution to the intraband potential
W̃B,B′,B′,B(r), along the direction r = (0, 0, z). The energy splitting
of the potentials corresponding to different values of B = (J, M ) and
B′ = (J ′, M ′) is apparent close to r = 0. The three distinct values at
r = 0 are F0 and F0 ± F ∗

2 , according to Eq. (30).

has that ∑
R j

δ(r − R j ) ≡ F (r) ≈ ρ,

δ(r − r′) ≈ g(r − r′),∑
R′

j′ 
=0

δ(r − r′ − R′
j′ ) ≡ G(r − r′). (70)

Therefore, W̃{B}(r, r′) → W̃{B}(r − r′) depends only on the dif-
ference of the hole coordinates, and

W̃{B}(r) ≡ W SR
{B} gd (r) + W LR

{B} (r) Gd (r), (71)

where we have introduced the dimensionless functions
gd (r) ≡ g(r)/ρ and Gd (r) ≡ G(r)/ρ, whose explicit expres-
sions are given in Appendix H.

B. The band-dependent potentials

We now discuss and plot the various types of band-
dependent potentials in the continuum limit, starting from the
results collected in Sec. VII. All the plots presented here are
done using the values of F0 and F2 given in Eq. (27).

The fully intraband potentials read as

W̃B,B′,B′,B(r) = gd (r)U intra
B,B′ + Gd (r)V (r)

[
1 + �

(2)
B,B′ (r)

]
(72)

and are plotted in Figs. 1 (SR) and 2 (LR). It can be seen that
the difference between distinct SR intraband potentials is most
pronounced close to r = 0. In the LR regime, the potentials
are weakly dependent on the values of B and B′, due to the
second-order LR corrections, displayed separately in Fig. 3.
The splitting occurs on a short-distance scale (≈0.5 nm for
the chosen direction) due to the quick decay of �

(2)
B,B′ . All the
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FIG. 2. Long-range contribution to the intraband potential
W̃B,B′,B′,B(r), along the direction r = (0, 0, z). The differences in the
curves are due to the different values taken by �

(2)
B,B′ for different

values of B and B′. Compare with Fig. 3.

LR intraband potentials converge to the screened Coulomb
potential (right-hand side of Fig. 2).

The partially intraband potentials read as

W̃B,B′,B′′,B(r) = W̃B′,B,B,B′′ (r)

= gd (r)U part
B;B′,B′′ + Gd (r)V (r) �

(2)
B′,B′′ (r). (73)

FIG. 3. Long-range second-order correction to the full intraband
potential W̃B,B′,B′,B(r) in Eq. (72) along the direction r = (0, 0, z),
labeled by the band indexes B = (J, M ) and B′ = (J ′, M ′).

FIG. 4. Short-range contribution to the partially intraband poten-
tial W̃B,B′,B′′,B(r) in Eq. (73) along the direction r = (z, 0, z), labeled
by the band indexes B = (J, M ) and B′ = (J ′, M ′).

Their SR and LR parts are plotted in Figs. 4 and 5, respec-
tively. It can be seen that the r → 0 limit of the partially
intraband potentials is two orders of magnitude larger than
the highest energy associated with the LR (second-order) cor-
rections. Combined with the analogous observations on the
fully intraband potentials and the small spatial extent where
the second-order corrections are observable, this leads to the
conclusion that the LR second-order corrections are likely
negligible for most practical purposes.

FIG. 5. Long-range contribution to the partially intraband po-
tential W̃B,B′,B′′,B(r) in Eq. (73) along the direction r = (z, 0, z) for
several selected transitions with J ′ = 3/2.

205409-10



INTER- AND INTRABAND COULOMB INTERACTIONS … PHYSICAL REVIEW B 104, 205409 (2021)

FIG. 6. Eight selected interband potentials, plotted along the di-
rection r = (0, 0, z), corresponding to the positive values of U inter

{B} .

The interband potentials read as

W̃ inter
{B} (r) = gd (r)U inter

{B} , (74)

and they are completely SR. In Fig. 6, we plot eight such
potentials along the z direction, corresponding to the 8 distinct
positive values of the parameters U inter

{B} (see Tables I–III).
We emphasize that the relevance of interband and partially

intraband potentials needs to be assessed according to their
effect on the envelope functions. Indeed, despite their smaller
energy scale with respect to fully intraband processes, in-
terband transitions represent new channels for band mixing,
whose effect might possibly be comparable to that of the
magnetic field and spin-orbit coupling in strongly confined
systems, such as QDs. In the context of Si-based quantum
computing, where small amounts of band mixing can sig-
nificantly affect the qubit functionalities, these contributions
should also be included.

IX. NUMERICAL RESULTS

To illustrate the impact of interactions in Si QDs and quan-
tify the role of SR interactions, we now present the results
of CI calculations of the two-hole energy eigenvalues for
three prototypical (harmonic) confinements. For a spatially
slowly-varying confinement potential V (r), the single-hole
Hamiltonian is written according to the Lüttinger-Kohn k · p
formula [25,26,50],

HLK = Hk·p + diag[VQD(r)], (75)

where Hk·p is the six-band k · p kinetic-energy operator and

VQD(r) = 1
2 (κxx2 + κyy2 + κzz

2) (76)

is a 3D harmonic potential, which models an anisotropic
single QD confinement. Rather than to the spring constants
κα , with α ∈ {x, y, z}, in the following we refer to the charac-
teristic confinement lengths 
α = √

h̄γ1/(m0ωα ), where γ1 =

4.285 is the first Lüttinger parameter for Si, m0 is the bare
electron mass, and ωα = √

καγ1/m0.
We consider three QDs (QD1, QD2, and QD3), specified

by the following confinement lengths � = (
x, 
y, 
z ):

QD1: �1 = (20, 2, 2) nm,

QD2: �2 = (10, 4, 2) nm,

QD3: �3 = (4, 4, 4) nm. (77)

The characteristic energy scale associated with a harmonic
confinement is the effective frequency ω∗

α = √
κα/m∗, where

m∗ is the effective mass of the confined particles. In a multi-
band system, the definition of the effective mass is not trivial;
we consider here m∗ = (γ1 + 5

2γ2)m0, which is the isotropic
part of the effective mass tensor for the light/heavy-hole
subsystem [26]. The energy quanta h̄ω∗

α corresponding to the
considered values of 
α are


α = 2 nm ⇒ h̄ω∗
α = 89.337 meV,


α = 4 nm ⇒ h̄ω∗
α = 22.334 meV,


α = 10 nm ⇒ h̄ω∗
α = 3.573 meV,


α = 20 nm ⇒ h̄ω∗
α = 0.893 meV. (78)

For each of the cases listed in Eqs. (77), we study the impact
of interactions (both SR and LR) on the two-hole eigenvalues.
The latter are obtained from the exact numerical diagonaliza-
tion of the two-hole Hamiltonian, according to the general
procedure that we have presented in Ref. [50] for the study
of double QDs. In that case, however, interband Coulomb
interactions could be neglected because the two holes tend to
localize in different dots, so their distance is always very large
with respect to the typical range of interband interactions,
which are all SR. Since here we consider single QDs with
different confinement strengths, we include all the interaction
processes derived above.

As can be expected, LR and SR Coulomb interactions are
in competition and their interplay is affected by the strength
of the confinement potential. Two qualitative pictures can be
considered as a reference: (1) when the confinement is rela-
tively weak, the LR Coulomb repulsion causes the particles to
localize far away from each other, forming a Wigner molecule
(WM): in these situations the SR interactions are completely
negligible; and (2) when the confinement is relatively strong,
the two holes are constrained to be close to each other near
the center of the QD, despite the Coulomb repulsion: in these
situations, SR interactions can play a role, which we quantify
in the following.

Although the interaction potential derived by Vinsome and
Richardson is appropriate for isolated bulk Si, we remark that,
in a real device, the Si QD is embedded in a dielectric environ-
ment which can screen the LR repulsion between holes. The
precise form of the dielectric function is then device specific.
For the sake of generality, we here use the following form of
the dielectric function:

ε(r) =
{

(ε0 − 1) r
r0

+ 1 for r � r0

ε0 for r > r0,
(79)

which is very similar to the Vinsome-Richardson formula
when the parameter r0 = 0.3 nm, and it allows us to perform a
systematic study of the dependence of the eigenvalues on the
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FIG. 7. Two-hole excitation energies for QD1 [see Eqs. (77)] as
functions of 1/ε0. The ground state is a singlet; among the curves
labeled with letters in the plot, (a) and (c) are triplets, while (b), (d),
and (e) are singlets.

screening. In particular, we study the evolution of the two-hole
eigenvalues as a function of the parameter 1/ε0 ranging from 0
(which suppresses the LR interaction) to 0.0855, correspond-
ing to the inverse dielectric constant of isolated bulk Si. Since
the screening induced by the dielectric environment always
increases the LR screening, 1/ε0 can never be higher than
0.0855 in a pure Si QD, and the range [0, 0.0855] covers all
possible cases.

In general, interactions reduce the two-hole excitation en-
ergies with respect to the noninteracting regime. The physical
interpretation of the excitations changes from the progressive
occupation of single-particle excited states (in the noninteract-
ing case) to the vibrations of the charges around their classical
equilibrium positions (in the WM case). The transition is a
continuous one, since the system has a finite size.

A. Quantum dot 1

QD1 is a quasi-1D system, because the confinement is
much stronger in the (y, z) plane than in the x direction. The
smallest energy scale associated with confinement is h̄ω∗

x =
0.893 meV. The two-hole excitation energies are displayed in
Fig. 7. Tracking the evolution of the eigenvalues as functions
of 1/ε0, we see that:

(1) At 1/ε0 = 0, the excitation energies �Ex, for the exci-
tations x ∈ {a, b, c, d, e}, can be approximately grouped into
a quartet [made of triplet (a) and singlet (b)] and a quintet
[made of triplet (c) and singlets (d) and (e)]. The internal
splittings within the quartet and the quintet are due to the
SR interactions (both intra- and interband), which are not
suppressed by setting 1/ε0 = 0. In the noninteracting system,
the internal splittings within the quartet and the quintet vanish
(compare the first two columns of Table VI). This shows that,
in a regime of high screening, SR interactions can be relevant;
e.g., �Eb − �Ea = 0.157 meV at 1/ε0 = 0.

(2) Neglecting the splitting due to SR interactions (see
the second column of Table VI), the energy separations be-
tween consecutive low-energy multiplets in the noninteracting
regime are �Ea = 0.900 meV and �Ec − �Eb = 0.894 meV,
which are compatible with h̄ω∗

x .

TABLE VI. Selected two-hole excitation energies (in meV)
of QD1 [compare with Fig. 7], computed using the Vinsome-
Richardson formula for the dielectric function. Here, �Ex = Ex −
E0, where x ∈ {a, b, c, d, e} and E0 is the ground energy.

Only SR Noninteracting Fully interacting

�Ea 0.750 0.900 0.051
�Eb 0.907 0.900 0.123
�Ec 1.645 1.794 0.082
�Ed 1.741 1.794 0.959
�Ee 1.824 1.799 1.126

(3) As the LR interaction is switched on (1/ε0 increases),
the singlet, the quartet, and three among the quintet states
converge toward a common energy (apart from residual ex-
change interactions), while two of the quintet states join other,
higher-energy states to form excited interacting multiplets.
This reorganization of the spectrum when the interaction is
fully switched on, and, in particular, the formation of highly
degenerate manifolds, is a typical signature of the formation
of a quasi-1D WM [51–53]. The gap between the two lowest
manifolds in the fully interacting regime (1/ε0 = 0.0855) is
given by �Ed − �Ea+�Eb+�Ec

4 = 0.895 meV (see the third
column of Table VI), which is compatible with h̄ω∗

x , pointing
to a center-of-mass excitation of the quasi-1D WM.

(4) At 1/ε0 = 0.0855, intraband interactions are negligible,
i.e., the modification of the energy gaps in the third column of
Table VI when the intraband terms are set to zero is <1 μeV.
This is consistent with the WM picture, because the intraband
interactions are all SR and, therefore, are not expected to
contribute significantly when the holes are localized far apart.

We notice that the evidence for WM formation in two-
electron QDs in Si heterostructures has been reported in recent
experimental and theoretical works [51,52].

B. Quantum dot 2

We now consider the two-hole spectrum of QD2. In this
case, the confinement is still stronger in the (y, z) plane than in
the x direction, but the symmetry has been lowered (
y 
= 
z)
and 
x has been decreased with respect to QD1. The excitation
energies are shown in Fig. 8. As in the case of QD1, we
notice a characteristic reorganization of the spectrum as the
LR interactions are turned on, which points to the formation
of a WM. The degeneracies of the WM manifolds are smaller
than in the case of QD1 because of the lower symmetry of
the confinement potential. The excitation energy of the fifth
eigenstate, �Eb, evolves from 3.144 meV (at 1/ε0 = 0) to
3.041 meV (at 1/ε0 = 0.0855), always remaining close to (but
significantly smaller than) h̄ω∗

x = 3.573 meV [see Eqs. (78)].
In the fully interacting regime, this is reminiscent of a single
center-of-mass excitation of a WM (inspection of the eigen-
state confirms that it evolves from essentially a single Slater
determinant of single-hole states at 1/ε0 = 0, to a strongly
correlated state at 1/ε0 = 0.0855). However, the dependence
of �Eb on 1/ε0, which would not occur in a one-band har-
monic dot, signals a significant interplay between different
vibrational modes induced by the nontriviality of the six-band
kinetic-energy operator. The excitation energies �Ea and �Ec
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FIG. 8. Two-hole excitation energies for QD2 [see Eqs. (77)], as
functions of 1/ε0. The ground state is a singlet; among the curves
labeled with letters in the plot, (a) and (c) are triplets, while (b) is a
singlet.

of the two triplets singled out in Fig. 8 drop from 2.931 meV
to 0.066 meV, and from 5.729 meV to 3.091 meV ≈ h̄ω∗

x ,
respectively, when moving from the fully screened to the fully
interacting regime (see Table VII).

Analogously to the case of QD1, also in QD2 we ob-
serve that SR interactions are significant in the regime of
high screening (e.g., �Eb − �Ea = 0.213 meV at 1/ε0 = 0),
while they are negligible at 1/ε0 = 0.0855, consistently with
the interpretation of the unscreened spectrum in terms of the
formation of a WM.

C. Quantum dot 3

Finally, the two-hole spectrum of QD3 does not show
any sign of the formation of a WM. In fact, in this case,
confinement is very strong along all directions, overcoming
the localizing effect of the Coulomb repulsion. The two-hole
excitation energies of QD3 are shown in Fig. 9. The sixfold
quasidegeneracy of the ground-state manifold, independent
of the strength of the LR interaction, is due to the high
symmetry of the confinement potential. The SR interactions
lift this degeneracy, which would be exact in the completely
noninteracting regime. In the fully screened regime, 1/ε0 = 0,
the degeneracy is lifted by the SR interactions on the scale of
≈101 μeV (see first column of Table VIII). In this case, the
LR interactions are responsible for a larger lifting, as shown
in the second column of Table VIII for the fully interacting
case. In this regime, the impact of interband interactions is on

TABLE VII. Selected two-hole excitation energies (in meV)
of QD2 (compare with Fig. 8), computed using the Vinsome-
Richardson formula for the dielectric function. Here, �Ex = Ex −
E0, where x ∈ {a, b, c} and E0 is the ground energy.

Only SR Noninteracting Fully interacting

�Ea 2.931 3.139 0.066
�Eb 3.144 3.139 3.041
�Ec 5.729 5.841 3.091

FIG. 9. Two-hole excitation energies for QD3 [see Eqs. (77)], as
functions of 1/ε0. The ground manifold is made of six states, split by
interactions on the scale of 10−1 meV in the fully interacting regime
(see Table VIII).

the scale of a few μeV up to ≈15 μeV for the fifth excited
state, as can be seen from the comparison between the second
and third columns of Table VIII; the third column shows the
excitation energies obtained when only the intraband interac-
tions (both LR and SR) are included in the calculations.

X. CONCLUSIONS

In conclusion, we have thoroughly investigated the band-
scattering processes induced by the Coulomb interaction in a
system of holes at the � point in Si, and derived the relevant
potentials. In particular, a set of many previously overlooked
interband and partially intraband processes has been derived,
most of which are relevant at short length scales. Corrections
to the LR effective interaction, which is usually assumed to be
a simple Coulomb intraband potential, have also been derived.
Such corrections decay to zero quickly with the interhole
distance.

We have performed CI calculations of the two-hole spectra
in three exemplary QDs, including all interaction terms, to
study the impact of LR and SR interactions. These calcula-
tions show that two holes embedded in realistic QDs in Si tend
to form WMs, whose signature can be seen in the values and
degeneracies of the excitation energies. A similar result had
been reported for electrons in Si [51,52] but, to the best of our

TABLE VIII. Excitation energies (in meV) of the first five two-
hole excited states above the ground state in QD3 (compare with
Fig. 9), computed using the Vinsome-Richardson formula for the
dielectric function. When all interactions are neglected, all these gaps
�Ex = 0.

Only SR Fully interacting Only intraband

�E1 0.014 0.167 0.165
�E2 0.014 0.167 0.165
�E3 0.014 0.189 0.189
�E4 0.040 0.299 0.298
�E5 0.042 0.319 0.304
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knowledge, not yet for holes. In our numerical calculations,
the LR interaction is gradually switched on by changing the
value of the bulk dielectric function from the fully screened
regime (1/ε0 = 0) to the fully interacting regime (1/ε0 =
0.0855, the value for isolated bulk Si). Therefore, these calcu-
lations should qualitatively reproduce the spectra which can
be obtained in the presence of a variable dielectric environ-
ment surrounding the Si QDs (e.g., that provided by close
metallic gates). The impact of SR interactions on two-hole
spectra is found to be relevant mostly in the regime of high
screening due to the dielectric environment, while it becomes
essentially negligible in an isolated Si QD.
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APPENDIX A: TRANSFORMATIONS INVOLVING THE
CLEBSCH-GORDAN COEFFICIENTS

The Clebsch-Gordan coefficients appearing in Eq. (4) are

SB,α,σ = δJ, 3
2

[
δM,σ 3

2

1√
2

(δα,x + iσδα,y) − δM,σ 1
2

√
2

3
δα,z

− δM,−σ 1
2

σ√
6

(δα,x − iσδα,y)

]

+ δJ, 1
2

1√
3

[
δM,σ 1

2
δα,z − σδM,−σ 1

2
(δα,x − iσδα,y)

]
.

(A1)

In the derivation of the effective band-dependent inter-
action potential, after substituting the expressions of the
single-hole eigenstates |ν〉 [Eq. (5)] into Eq. (11), we obtain
Eq. (12), with

W{B}(r − r′) ≡ V (r − r′)
1

N 2

∑
{R}

∑
{ j}

(−1) j1+ j2+ j3+ j4

×
∑
{α}

∑
σ,σ ′

(
S∗

B1,α1,σ
SB4,α4,σ

)(
S∗

B2,α2,σ ′SB3,α3,σ ′
)

× φ∗
pα1

(
r − R1, j1

)
φ∗

pα2

(
r′ − R2, j2

)
× φpα3

(
r′ − R3, j3

)
φpα4

(
r − R4, j4

)
. (A2)

Equation (A2) includes summations having the general form

∑
σ

(∑
α′

φ∗
pα′ (x

′)S∗
B′,(α′,σ )

)(∑
α

SB,(α,σ )φpα
(x)

)
, (A3)

where x and x′ denote, in general, two different positions.
We perform the summation in Eq. (A3), using Eq. (A1), and
expressing the result in terms of the orbitals given in Eqs. (8).
We obtain that the term involving the sum over α in Eq. (A3)

is ∑
α

SB,(α,σ )φpα
(r) = δJ, 3

2
δM, 3σ

2
φσ (r) + YJ δM, σ

2
φ0(r)

− σXJ δM,− σ
2
φ−σ (r), (A4)

where σ ∈ {+1,−1}, and

XJ ≡ 1√
3

(√
2δJ, 1

2
+ δJ, 3

2

)
,

YJ ≡ 1√
3

(
δJ, 1

2
− δJ, 3

2

√
2
)
. (A5)

The term involving the sum over α′ from Eq. (A3) is obtained
by taking the complex conjugate of Eq. (A4) and changing the
indices. We finally write∑

α′,α,σ

φ∗
pα′ (x

′)S∗
B′,(α′,σ )SB,(α,σ )φpα

(x)

≡
∑
m′,m

φ∗
m′ (x′) F m′,m

B′,B φm(x), (A6)

where we have introduced the matrix F m′,m
B′,B , with elements

F±1,±1
B′,B = (δJ ′, 3

2
δJ, 3

2
δM,± 3

2
+ XJ ′ XJ δM,± 1

2

)
δM ′,M , (A7)

F±1,0
B′,B = δJ ′, 3

2
δM ′,± 3

2
YJ δM,± 1

2
± XJ ′ δM ′,± 1

2
YJ δM,∓ 1

2
, (A8)

F 0,±1
B′,B = YJ ′ δM ′,± 1

2
δJ, 3

2
δM,± 3

2
± YJ ′ δM ′,∓ 1

2
XJ δM,± 1

2
, (A9)

F±1,∓1
B′,B = ∓ δJ ′, 3

2
δM ′,± 3

2
XJ δM,∓ 1

2

± XJ ′ δM ′,± 1
2
δJ, 3

2
δM,∓ 3

2
, (A10)

F 0,0
B′,B = YJ ′ YJ δM ′,M δ|M ′ |, 1

2
. (A11)

The matrix F has the following trace property:∑
m

F m,m
B′,B = δB′,B, (A12)

as can be easily derived after noticing that

XJ ′ XJ + YJ ′ YJ = δJ ′,J . (A13)

By applying Eq. (A6) to Eq. (A2), we obtain Eq. (13).

APPENDIX B: SCREENED POTENTIAL

We here discuss the explicit expression of the screened
Coulomb potential V (r − r′) in Si, which enters Eq. (13). The
screened Coulomb interaction potential between two holes at
distance r reads

V (r) = e2

ε(r) r
≡ VC(r)

ε(r)
, (B1)

where ε(r) is a static, isotropic [54] but nonhomogeneous di-
electric function for Si, and VC(r) = e2/r is the bare Coulomb
potential.

The modeling of ε(r) has a long history [55], from
the semiclassical Thomas-Fermi theory [56–58] to quantum-
mechanical models with simplifying assumptions on the band
structure [59,60] to more refined numerical calculations based
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on empirical pseudopotential methods [44,45,61,62]. The nu-
merical approaches account for material-specific details, such
as the crystal band structure and the correct electronic disper-
sion, thus allowing for a description of the optical properties
of materials which is more precise than that provided by
analytical models. Moreover, they predict the bulk value
ε0 ≡ ε(r → ∞) of the dielectric function.

Numerical calculations are usually supplemented by in-
terpolation functions, and thus lead to analytical expressions
for ε(r). We take as a reference the works of Vinsome and
Richardson [44,45] on a comprehensive set of zincblende
semiconductors. They perform large-scale random-phase-
approximation calculations (in reciprocal space), and they
interpolate their numerical results with the following formula,
valid in direct space:

ε(r) =
(

1

ε0
+ λ1e−2πα1r/a + λ2e−2πα2r/a

)−1

, (B2)

where a is the cubic cell edge and the fitting parameters for Si
are written as [45]

1

ε0
≡ B

D
, α1,2 ≡

(
C ∓ √

C2 − 4D

2

)1/2

,

λ1,2 ≡ 1

2

(
1 − 1

ε0

)
± A − C

2

(
1 + 1

ε0

)
√

C2 − 4D
, (B3)

in terms of the quantities

A = 0.34, B = 0.016, C = 2.6, D = 0.17. (B4)

The bulk limit for the dielectric function according to Eq. (B4)
is ε0 = 10.625. By modifying the value of B to 0.01453, one
obtains ε0 = 11.7, consistently with experimental data [63].
The potential V (r) is plotted in Fig. 10.

The explicit expressions for the quantities L−2(r) and
M−2(r), contributing to the second-order correction to the LR
effective potentials [see Eqs. (50) and (51)], are

M−2(r) = 1

r2
+ ε(r)

r

2π

a

2∑
n=1

λnαne−2παnr/a (B5)

and

L−2(r) ≡ 3M−2(r) + ε(r)
4π2

a2

2∑
n=1

λnα
2
ne−2παnr/a. (B6)

APPENDIX C: RÜDENBERG APPROACH FOR
MULTICENTER INTEGRALS

A possible way to go beyond the two-center integral ap-
proximation can be outlined as follows. Following Rüdenberg
[64], we introduce a complete set of orthonormal orbitals
centered at each atomic site R j :

{|χ, R j〉, χ = 1s, . . . 3p1, 3p0, 3p−1, . . .}. (C1)

We define the overlap between orbitals centered at different
atomic sites:

Oχ, χ ′ (R j, R′
j′ ) ≡ 〈χ, R j |χ ′, R′

j′ 〉. (C2)

Due to the completeness of the set centered at any arbitrary
site, we can expand the orbital centered at one site in terms of
the orbitals centered at another site. According to Rüdenberg,

FIG. 10. Left vertical axis: Screened potential V (r) with ε(r)
given by Eq. (B2) (solid black curve) and Coulomb potential
screened at all r by the bulk dielectric constant ε0 (dashed blue
curve), plotted for comparison. Right vertical axis: Dielectric func-
tion ε(r), according to Eq. (B2).

at least if R and R′ are very close, it can be assumed that
the only relevant contribution in the expansion of an orbital
φm(r − R′

j′ ) is the one from φm(r − R j ).
A possible way to refine this approximation is to consider

instead the full set of 3p orbitals (i.e., we allow χ to be equal
not just to m′, but to any of the basis orbitals). Extending this
to arbitrary atomic positions, one obtains for the interaction
potential [Eq. (13)] the following expression:

W{M}(r − r′) ≈ V (r − r′)
1

N 2

∑
R,R′

∑
j, j′

∑
{m}

�
m1,m4
M1,M4

(R j )

× �
m2,m3
M2,M3

(R′
j′ ) φ∗

m1
(r − R j ) φ∗

m2
(r′ − R′

j′ )

× φm3 (r′ − R′
j′ ) φm4 (r − R j ). (C3)

where we have introduced the overlap form factor:

�
m1,m4
M1,M4

(R j )

≡ 1

2

∑
R′′, j′′

(−1) j+ j′′
∑
m5

[
F m5,m4

M1,M4
Om5,m1 (R′′

j′′ , R j )

+ F m1,m5
M1,M4

Om4,m5 (R j, R′′
j′′ )
]
. (C4)

The Rüdenberg approximation is recovered by assuming

Om4,m5 (R j, R′′
j′′ ) ≈ δm4,m5 Om4,m4 (R j, R′′

j′′ ), (C5)

which yields

�
m1,m4
M1,M4

(R j ) ≈ F m1,m4
M1,M4

1

2

∑
R′′, j′′

(−1) j+ j′′

× [Om1,m1 (R′′
j′′ , R j ) + Om4,m4 (R j, R′′

j′′ )
]
. (C6)
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The two-center integral approximation is formally recovered
by replacing

Om,m(R j, R′
j′ ) → δR,R′δ j, j′ , (C7)

which yields

�
m1,m4
M1,M4

(R j ) → F m1,m4
M1,M4

. (C8)

Thus, we have seen that a possible strategy for improving
over the two-center approximation requires the calculation of
the quantity Eq. (C4). We notice that, in a lattice,

Oχ,m′ (R j, R′
j′ ) = Oχ,m′ (R − R′; j − j′), (C9)

therefore, �
m1,m4
M1,M4

(R j ) is actually independent of R j :

�
m1,m4
M1,M4

≡ 1

2

∑
j′′

(−1) j+ j′′
∑
m5

{
F m5,m4

M1,M4

∑
R′′

Om5,m1 (R′′; j′′ − j)

+ F m1,m5
M1,M4

∑
R′′

Om4,m5 (R′′; j − j′′)
}
. (C10)

APPENDIX D: DERIVATION OF THE HUBBARD
PARAMETERS

1. General remarks

We rewrite Eq. (20) here in a more general way as

Ui, j,k,l =
∫

dr1

∫
dr2 φ∗

i (r1)φ∗
j (r2)VC(|r1 − r2|)

× φk (r2)φl (r1), (D1)

where the atomic orbital φi is separable into the product of a
radial part and a spherical harmonic,

φi(r) = Rni,li (r) �li,mi (θ ) �mi (ϕ), (D2)

where [47]

�m(ϕ) = 1√
2π

eimϕ, (D3)

�l,m(θ ) =
√

(2l + 1)

2

(l − |m|)!
(l + |m|)!Pl,|m|(cos θ ), (D4)

Pl,|m|(cos θ ) = 1

2l l!
sin|m| θ

d |m|+l (− sin2 θ )l

d (cos θ )|m|+l
. (D5)

In the definition of the spherical harmonics, we have followed
the convention adopted in Ref. [26], i.e., the Condon-Shortley
phase (−1)m for m � 0 is not included.

We then use the expansion of the Coulomb potential in
series of Legendre polynomials, Eq. (23). After substituting
it into Eq. (D1), and performing some standard manipulations
that involve the spherical harmonic addition theorem [46], we
obtain

Ui, j,k,l = δmi+mj ,mk+ml

∞∑

=0

R
(ni, li; n j, l j ; nk, lk; nl , ll )

× c
(li, mi; ll , ml ) c
(lk, mk ; l j, mj ), (D6)

where

R
(ni, li; n j, l j ; nk, lk; nl , ll )

= e2
∫ ∞

0
dr1r2

1

∫ ∞

0
dr2r2

2 Rni,li (r1)Rnj ,l j (r2)
r

<

r
+1
>

× Rnk ,lk (r2)Rnl ,ll (r1) (D7)

and

c
(l, m; l ′, m′) =
√

2

2
 + 1

∫ π

0
dθ sin(θ ) �l,m(θ )

× �
,m−m′ (θ ) �l ′,m′ (θ ). (D8)

This quantity vanishes unless


 + l + l ′ is even ∧ |l − l ′| � 
 � l + l ′. (D9)

2. Valence orbitals in silicon

In this paper, we need only consider the case of

ni = n j = nk = nl = 3, li = l j = lk = ll = 1, (D10)

since we are only concerned with 3p atomic orbitals. From
the condition Eq. (D9), we then see that the only nonvanishing
terms in Eq. (D6) are those with 
 ∈ {0, 2}.

Since n and l are fixed, we restore the notation of Eq. (20),
where only the m numbers are specified explicitly. Analo-
gously, we put c
(1, m; 1, m′) ≡ c
(m, m′). We also introduce
the Slater-Condon parameters

F0(3p, 3p) ≡ F0 ≡ R0(3, 1; 3, 1; 3, 1; 3, 1)

= e2
∫ ∞

0
dr1r2

1

∫ ∞

0
dr2r2

2
1

r>

R2
3,1(r1)R2

3,1(r2),

F2(3p, 3p) ≡ F2 ≡ R2(3, 1; 3, 1; 3, 1; 3, 1)

= e2
∫ ∞

0
dr1r2

1

∫ ∞

0
dr2r2

2
r2
<

r3
>

R2
3,1(r1)R2

3,1(r2),

(D11)

where r< = min(r1, r2) and r> = max(r1, r2). The quantities
Eq. (D11) coincide with those introduced in Eqs. (25). The
Hubbard parameters in Eq. (20) are then reduced to

U{m} = δm1+m2,m3+m4 [F0 c0(m1, m4) c0(m3, m2)

+ F2 c2(m1, m4) c2(m3, m2)]. (D12)

We evaluate c0(m, m′) and c2(m, m′) analytically, using
Eqs. (D4) and (D5). We obtain

c0(m, m′) = δm,m′ (D13)
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and

c2(m, m′) = δm,m′
(−1)|m|(2 − |m|)

5

+ (1 − δm,m′ )

√
3(|m| + |m′|)

5
. (D14)

After substituting Eq. (D14) into Eq. (D12), we obtain
Eq. (24).

APPENDIX E: DERIVATION OF THE SHORT-RANGE
POTENTIALS

Using Eqs. (26), we rewrite Eq. (19) as

W SR
{B} (R j, R′

j′ )

= δR j ,R′
j′

{
F 0,0

B1,B4
F 0,0

B2,B3
U0,0,0,0

+
(

F 1,1
B1,B4

+ F−1,−1
B1,B4

)(
F 1,1

B2,B3
+ F−1,−1

B2,B3

)
U1,1,1,1

+
[(

F 1,1
B1,B4

+ F−1,−1
B1,B4

)
F 0,0

B2,B3

+ F 0,0
B1,B4

(
F 1,1

B2,B3
+ F−1,−1

B2,B3

)]
U1,0,0,1

+
(

F 1,−1
B1,B4

F−1,1
B2,B3

+ F−1,1
B1,B4

F 1,−1
B2,B3

)
U1,−1,1,−1

+
[(

F 0,−1
B1,B4

+ F 1,0
B1,B4

)(
F 0,1

B2,B3
+ F−1,0

B2,B3

)
+
(

F 0,1
B1,B4

+ F−1,0
B1,B4

)(
F 0,−1

B2,B3
+ F 1,0

B2,B3

)]
U0,0,1,−1

}
. (E1)

We use Eqs. (26), we rearrange some terms, and use
Eq. (A12), and we obtain

W SR
{B} (R j, R j )

= F 0,0
B1,B4

F 0,0
B2,B3

9F �
2 + δB1,B4δB2,B3 (F0 + F �

2 )

− δB1,B4 F 0,0
B2,B3

3F �
2 − F 0,0

B1,B4
δB2,B3 3F �

2

+
(

F 1,−1
B1, B4

F −1,1
B2, B3

+ F −1,1
B1, B4

F 1,−1
B2, B3

)
6F �

2

+
[(

F 0,−1
B1,B4

+ F 1,0
B1,B4

)(
F 0,1

B2,B3
+ F−1,0

B2,B3

)
+
(

F 0,1
B1,B4

+ F−1,0
B1,B4

)(
F 0,−1

B2,B3
+ F 1,0

B2,B3

)]
3F �

2 . (E2)

Let us examine the various scattering processes implied by
Eq. (E2). The first two lines involve the matrix element F 0,0

B′,B,
which we can rewrite from Eq. (A11) as

F 0,0
B′,B = 1

3

[
δJ ′,J
(
J ′ + 1

2

)−
√

2(1 − δJ ′,J )
]
δM ′,M δ|M ′|, 1

2
. (E3)

It can be seen that F 0,0
B′,B provides a term which conserves

the band (∝ δJ ′,JδM ′,M) and a term which induces a transition
between bands [∝ (1 − δJ ′,J )δM ′,M] at one of the interaction
vertices. The various combinations appearing in the first two
lines of the right-hand side of Eq. (E2), therefore, include
intraband, partially intraband, and interband processes. On
the other hand, the last three lines correspond to interband
scattering processes. The latter involve combinations of the

form

F 0,−1
B′,B + F 1,0

B′,B = F−1,0
B,B′ + F 0,1

B,B′

= YJ ′ δJ, 3
2
δM ′,− 1

2
δM,− 3

2
+ δJ ′, 3

2
YJ δM ′, 3

2
δM, 1

2

+ (J ′ − J )δM ′, 1
2
δM,− 1

2
, (E4)

where we have used the relation

XJ ′ YJ − YJ ′ XJ = J ′ − J, (E5)

valid for J, J ′ ∈ {3/2, 1/2}.
Making all terms explicit, we separate Eq. (E2) as in

Eq. (28), with the three individual terms given by Eqs. (29),
(31), and (33).

The fully intraband potential is given by

U intra
B1,B2

= F0 + F �
2

[
1−(J1+ 1

2

)
δ|M1|, 1

2
− (J2+ 1

2

)
δ|M2|, 1

2

+ (J1 + 1
2

)
δ|M1|, 1

2

(
J2 + 1

2

)
δ|M2|, 1

2

]
. (E6)

After a few algebraic manipulations and making use of the fact
that J = 1/2 ⇒ |M| = 1/2, this expression can be shown to
be equivalent to Eq. (30) of the main text.

The partially intraband potential is given by

U part
B1;B2,B3

= [1 − (J1 + 1
2

)
δ|M1|, 1

2

]√
2(1 − δJ2,J3 )

× δM2,M3δ|M2|, 1
2
F �

2 . (E7)

In a similar way to the previous case, this expression can be
shown to be equivalent to Eq. (32) of the main text.

The completely interband potential is separated into
two parts: the first one originates as a part of the term
F 0,0

B1,B4
F 0,0

B2,B3
9F �

2 of Eq. (E2), and is directly given by Eq. (34)
of the main text. The second one originates from the last three
lines of Eq. (E2) and is given by

U (2), inter
B1,B4;B2,B3

≡
(

F 0,−1
B1,B4

+ F 1,0
B1,B4

)(
F 0,1

B2,B3
+ F−1,0

B2,B3

)
3F �

2

+ F 1,−1
B1,B4

F−1,1
B2,B3

6F �
2 , (E8)

which is turned into Eq. (35) after some algebraic passages.
Note that a term U (2), inter

B2,B3;B1,B4
is also included in Eq. (33).

APPENDIX F: αβ INTEGRALS

We here provide the expressions for the αβ integrals, intro-
duced in Eq. (44), as functions of the quantity Eq. (45). Using
the spherical harmonics introduced in Appendix D, from a
straightforward integration over the polar angles we obtain∫

dr φ∗
m(r) x2 φm(r) = 2|m| 1

5

〈
r2

3,1

〉
, (F1)∫

dr φ∗
±1(r) x2 φ∓1(r) = 1

5

〈
r2

3,1

〉
, (F2)∫

dr φ∗
m(r) y2 φm(r) = 2|m| 1

5

〈
r2

3,1

〉
, (F3)∫

dr φ∗
±1(r) y2 φ∓1(r) = −1

5

〈
r2

3,1

〉
, (F4)∫

dr φ∗
m(r) z2 φm′ (r) = δm,m′

31−|m|

5

〈
r2

3,1

〉
, (F5)
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TABLE IX. Parameters of the HF radial wave functions [43].

i Ai Zi C3p
i

1 0 10.8139 −0.01181046
2 0 6.8493 −0.03787150
3 0 4.2336 −0.17923597
4 1 3.3949 0.02649990
5 1 1.7195 0.34702725
6 1 1.1824 0.63306352
7 1 0.5932 0.08747425

∫
dr φ∗

±1(r) xy φ∓1(r) = ∓ i

5

〈
r2

3,1

〉
, (F6)∫

dr φ∗
0 (r) yz φ±1(r) = ± i

5
√

2

〈
r2

3,1

〉
, (F7)∫

dr φ∗
0 (r) zx φ±1(r) = 1

5
√

2

〈
r2

3,1

〉
. (F8)

APPENDIX G: EVALUATION OF 〈r2
3,1〉

To compute W LR,(2)
{B} (R), we need to evaluate the integral

in Eq. (45) analytically and numerically. This task requires
the choice of a specific form for the radial wave functions
associated with the tight-binding orbitals. We present and
compare two different approaches.

1. Hartree-Fock atomic orbitals

We first compute 〈r2
3,1〉 using the Hartree-Fock (HF) ra-

dial orbitals as provided by Watson and Freeman [43].
They compute the atomic orbitals for neutral silicon
(1s22s22p63s23p2, 3P) by applying the variational principle
to the total energy of the system, where the many-electron
Hamiltonian for Si atom contains the kinetic energy, nu-
clear potential energy, and interelectronic electrostatic energy.
Within their method, they assume that there is only one radial
wave function per shell, which is the average of those corre-
sponding to the different occupied orbitals of that shell.

In particular, the radial wave function for the 3p shell is
written as a linear combination of Slater-type radial orbitals
Ri(ρ), with ρ = r/aB:

U3p(ρ) =
∑

i

C3p
i Ri(ρ), (G1)

where

Ri(ρ) =
√

(2Zi )5+2Ai

(4 + 2Ai )!
ρ2+Ai e−Ziρ ; (G2)

the normalization is∫ ∞

0
|U3p(ρ)|2dρ = 1. (G3)

According to Ref. [43], seven basis function are needed in
Eq. (G1). For the sake of completeness, in Table IX we report
the values of the coefficients Ai, Zi, and C3p

i , taken from
Ref. [43].

The evaluation of the parameters F0 and F2 using these HF
radial functions yields the numerical values given in Eq. (27).
Using the same radial functions, we evaluate〈

r2
3,1

〉(HF) =
∫ ∞

0
|U3p(ρ)|2ρ2dρ = 0.0252 nm2. (G4)

2. Hydrogen-ion atomic orbitals

We now derive 〈r2
3,1〉, as well as F0 and F2, using hydrogen-

ion (HI) atomic orbitals, whose radial wave function is

Rn,l (r) =
√(

2Z�

naB

)3 (n − l − 1)!

2n(n + l )!
exp

(
− Z�r

naB

)

×
(

2Z�r

naB

)l

L2l+1
n−l−1

(
2Z�r

naB

)
, (G5)

where L2l+1
n−l−1(x) is a generalized Laguerre polynomial, Z� is

an effective screened nuclear charge, and aB = 0.05291 nm.
For n = 3 and l = 1 the radial orbital reads as

R3,1(r) = 1

9
√

6

(
Z�

aB

)3/2

e−x/2x(4 − x)

∣∣∣∣
x=2Z�r/(3aB )

. (G6)

The attractive feature of Eq. (G6) is that it depends on a
single parameter Z�. We can then evaluate Eq. (45), as well as
the Slater-Condon parameters F0 and F2 defined in Eqs. (25),
and the three resulting formulas will depend only on Z�. We
obtain 〈

r2
3,1

〉(HI) = 180
(aB

Z�

)2
= 0.5039 nm2

(Z�)2 , (G7)

F (HI)
0 = 0.07186

Z�e2

aB
= 1.9557 eV × Z�, (G8)

and

F (HI)
2 = 0.03598

Z�e2

aB
= 0.9792 eV × Z�, (G9)

where we have used e2 = 1.4399764 eV × nm.
The values of F0 and F2 given in Ref. [43], that we reported

in Eq. (27), are reproduced by our Eqs. (G8) and (G9) for
Z� = 4.597 and Z� = 4.636, respectively. Hence, the picture
in terms of HI orbitals is compatible with the results of Ref.
[43], provided that we assume an effective nuclear charge
of Z� ≈ 4.6. This seems to be consistent with the intuitive
picture that little less than 10 core electrons (n = 1, n = 2)
in a Si atom screen the nucleus charge seen by the electrons in
the 3p orbitals with respect to the bare nucleus charge Z = 14.
Using Z� = 4.6, we obtain from Eq. (G7) the estimate〈

r2
3,1

〉(HI) = 0.0238 nm2, (G10)

which is remarkably close to the value obtained using the HF
radial orbitals, Eq. (G4).

APPENDIX H: SMOOTH FUNCTIONS FOR THE
CONTINUUM LIMIT OF THE EFFECTIVE POTENTIALS

1. An exact solution for the g function

Consider the surface S0(L) of the cube centered on the ori-
gin and with edge L > 0. Analogously, SR j (L) is the surface
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of edge L centered on the atomic position R j . We look for a
function g(r) such that

g(r) ≡
{
η0(L) if r ∈ S0(L), 0 < L � λ

0 if r ∈ S0(L), L > λ.
(H1)

The condition r ∈ S0(L) can be translated into

L ≡ Lr ≡ 2 max(|x|, |y|, |z|), where r ≡ (x, y, z). (H2)

The cubic surfaces S0(L) are thus isosurfaces of g(r), which
vanishes outside the cube C0, whose surface is S0(λ). The
requirement of continuity of g(r) at the surface of C0 and
Eq. (63) impose the following conditions on η0(L):

η0(λ) = 0,

∫ λ

0
dL L2 η0(L) = 1/3. (H3)

The latter condition has been derived from dV (L) ≡ V (L +
dL) − V (L) ≈ 3L2dL, where V (L) is the volume of a cube of
edge L, and dL is its infinitesimal increment. In addition to
these mandatory requirements, we are free to impose condi-
tions of smoothness, such as

∂Lη0(L)
∣∣
L=0 = 0, ∂2

L,Lη0(L)
∣∣
L=0 = 0,

∂Lη0(L)
∣∣
L=λ

= 0, ∂2
L,Lη0(L)

∣∣
L=λ

= 0. (H4)

The lowest-order polynomial function satisfying both
Eqs. (H3) and (H4) is

η0(L) = 1

λ3

[
28

5
− 56

(L

λ

)3

+ 84
(L

λ

)4

− 168

5

(L

λ

)5]
.

(H5)

2. A computationally feasible solution

We assume that

F̃ (r) = η(L) if r ∈ S0(L), λ < L < 3λ, (H6)

i.e., that the cubic surfaces S0(L) are isosurfaces of F̃ (r)
outside the cube C0 (where we do not modify F ). The function
η(L) must satisfy the following constraints due to continuity:

η(λ) = 0, η(3λ) = ρ, (H7)

and the integral constraint:∫
R\C0

dr F̃ (r) = 3
∫ 3λ

λ

dL L2 η(L) = 26. (H8)

We also impose the optional smoothness conditions

∂L η(L)|L=λ = 0, ∂L η(L)|L=3λ = 0,

∂2
L,L η(L)|L=λ = 0, ∂2

L,L η(L)|L=3λ = 0. (H9)

The lowest-order polynomial that satisfies all conditions
(both mandatory and optional) has the form

η(L) ≡ 1

λ3

6∑
n=0

bn

(L

λ

)n

, (H10)

with

b0 = −25087

1184
, b1 = 49545

592
, b2 = −154395

1184
,

b3 = 30085

296
, b4 = −49245

1184
, b5 = 5061

592
,

b6 = − 825

1184
. (H11)

The effect of using F̃ (r) is that the density of atoms is not
equally distributed anymore in the 27 cubes forming R. For
the nearest, next-nearest, and next-next-nearest neighbors, we,
respectively, find∫

C(1,0,0)

drF̃ (r) = 212

259
≈ 0.8185,∫

C(1,0,1)

drF̃ (r) = 535

518
≈ 1.0328,∫

C(1,1,1)

drF̃ (r) = 563

518
≈ 1.0869. (H12)

3. Results for the smoothing functions

To summarize, a solution for the functions gd and Gd

appearing in Eq. (71) is given by

gd (r) ≡ �2Lr�a

[
28

5
− 56

(
2Lr

a

)3

+ 84

(
2Lr

a

)4

− 168

5

(
2Lr

a

)5]
(H13)

and

Gd (r) =
⎧⎨⎩

0, 0 � 2Lr < a∑6
n=0 bn

( 2Lr
a

)n
, a � 2Lr � 3a

1, 2Lr > 3a,

(H14)

where the coefficients bn are given by Eq. (H11).
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