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Two particles on a chain with disordered interaction: Localization and dissociation
of bound states and mapping to chaotic billiards
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We consider two particles hopping on a chain with a contact interaction between them. At strong interaction,
there is a molecular bound state separated by a direct gap from a continuous band of atomic states. Introducing
weak disorder in the interaction, the molecular state becomes Anderson-localized. At stronger disorder, part of
the molecular band delocalizes and dissociates due to its hybridization to the atomic band. We characterize these
different regimes by computing the density of states, the inverse participation ratio, the level-spacing statistics,
and the survival probability of an initially localized state. The atomic band is best described as that of a rough
billiard for a single particle on a square lattice that shows signatures of quantum chaos. In addition to typical
“chaotic states,” we find states that are localized along only one direction. These “separatrix states” are more
localized than chaotic states, and similar in this respect to scarred states, but their existence is due to the separatrix
isoenergy line in the interaction-free dispersion relation, rather than to unstable periodic orbits.
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I. INTRODUCTION

The Hubbard model was first proposed in 1963, indepen-
dently by Gutzwiller [1], Kanamori [2], and Hubbard [3]. The
model was a way to understand the collective behavior of
interacting electrons in solids. In 1968, Lieb and Wu [4] found
an analytical solution for the one-dimensional (1D) case using
the Bethe ansatz. Despite its simple formulation, the Hub-
bard problem is mathematically hard to tackle. For a higher
dimensional case, physicists have been able to obtain only
approximate analytical or numerical results [mean-field the-
ory (MFT), dynamical MFT, etc.]. An exact solution remains
unknown. For more than 50 years, the model has attracted a
lot of attention.

Technical developments over the past decades made pos-
sible the experimental realizations of the Hubbard model.
The first setup was proposed by Greiner et al. [5] in 2002
using ultracold bosonic atoms trapped in optical lattices.
They observed the transition from a superfluid to a Mott
insulator. Many other variants of the Hubbard model have
been implemented, including a model for fermions [6] or a
density-dependent interaction parameter [7]. There are many
challenging problems to tackle for experimentalists who have
to control with precision different parameters: the tunneling,
the lattice geometry, or the potential shape. The uncertainty
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on these variables can give rise to undesired effects that can
affect the global quality of the results.

In this article, we propose a detailed analysis of the effect
of a disordered contact interaction for the simple two-body
Hubbard problem (of two distinguishable particles, with no
internal degree of freedom) in a 1D chain. Such a random U
Hubbard model has already been considered at finite density
(rather than for two particles) to study phase transitions in
two different contexts: (i) for the superconductor-insulator
transition in inhomogeneous materials using a 2D attractive
Hubbard model with a bimodal distribution of the interac-
tion [8–10], and (ii) for the many-body localization transition
with a 1D repulsive Bose-Hubbard model [11]. Those authors
focused their study on either the phase transition using ther-
modynamic quantities at equilibrium or the thermalization on
quantities such as entanglement entropy. Here, we analyze the
two-body random U Hubbard model (zero density), and we
concentrate on others quantities such as the different types of
states or the energy spectrum. Our problem turns out to have
connections to several fields—molecular physics, disordered
systems, surface physics, and quantum chaos—that we briefly
review.

(i) The contact interaction, whether attractive or repul-
sive, in the Hubbard model leads to two-body bound states
[12]. One-dimensional molecules corresponding to repulsive
bound-states have been observed with bosonic atoms in an
optical lattice experiment [13]. In this context, such molecules
are sometimes called doublons.

(ii) Arbitrarily weak disorder in the on-site potential in 1D
and 2D quantum systems can lead to exponential localization
of all energy eigenstates by the so-called Anderson localiza-
tion [14,15]. Although here the disorder is in the interaction
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(a) (b)

FIG. 1. (a) Two particles on a chain can be represented as one
particle on a square lattice. The on-site contact interaction becomes
a potential barrier on the diagonal of the square (red line). (b) Us-
ing periodic boundary conditions, opposite sides (green and orange
lines) of the square lattice are identified. The system is topologically
equivalent to a torus.

rather than in an on-site potential, the concept of Anderson
localization is still useful to interpret our results, as we will
see.

(iii) The tight-binding problem of two particles on a 1D
chain with contact interaction maps onto that of a single
particle on a 2D square lattice with a 1D potential barrier (or
impurity chain) along the diagonal (see the discussion below
and Fig. 1). Our model is therefore close to the problem of
a disordered surface (1D impurities) versus an ordered bulk
(2D). Using this analogy to surface physics, our results can
also be understood in light of Tamm surface states [16,17] and
Koster-Slater impurity states [18,19].

(iv) Another 2D analogy can be made with quantum bil-
liards. In classical billiards, one considers the dynamics of
a single classical particle inside a 2D region delimited by
a hard boundary. The dynamics is governed by the standard
Hamilton equations with parabolic kinetic energy. Depending
on the billiard’s shape, the system can be either (i) integrable
and trajectories labeled by constants the motion, or (ii) chaotic
(nonintegrable) and the trajectories are exponentially sensitive
to initial conditions [20]. To “quantize” the model means that
the particle is now described by a vector in Hilbert space and
its dynamics is given by the Schrödinger equation. Despite
the fact that it is problematic to talk about trajectories and
sensitivity to initial conditions for quantum systems, “quan-
tum chaos” has emerged as an active field of research, whose
aim is to find traces of classical chaos in the usual objects of
study in quantum mechanics, such as the energy levels and
their eigenfunctions [21]. In these models, the “disorder” lies
not in the potential but in the boundary’s shape. Investigations
of quantum chaos have been mostly done in the continuum
using a parabolic dispersion relation. In our case, the model
is of the tight-binding type on a square lattice, so that the
dispersion relation (kinetic energy) is E ∝ cos kx + cos ky in-
stead of E ∝ k2

x + k2
y . This would affect the dynamics of the

particles already at the classical level. A few papers have
already focused on this type of quantum billiards with lattices
[22–25]. Another specificity of our model is that there are no
boundaries, as the system is placed on a torus, but rather a
closed loop on the diagonal of the system that mimics a rough
boundary (see Fig. 1).

Two particles with a fixed interaction and in a disor-
dered medium were intensively studied during the mid-1990s.
This body of work was initiated by Shepelyansky [26], and
followed by more detailed analyses [27–31]. Although this
model has connections with superimposed band random ma-
trices, which also appear in the context of quantum chaos, it
remains quite different from ours due to the disorder in the
on-site potential. The main result found is that the interaction
is able to increase the localization length of some of the two-
particle states. In our model, in the absence of interactions,
there are no localized states and thus there is no delocalizing
effect of the interaction.

Two interacting particles with a contact interaction have
also been recently discussed, either in the context of a richer
one-dimensional two-band tight-binding model without disor-
der [32], or for disordered interacting quantum walks in [33],
but the disorder was introduced dynamically.

The paper is organized as follows: First, in Sec. II, we
review the main results of the standard two-body Hubbard
problem and then introduce the disordered interaction. Then,
in Sec. III, we focus on the analysis of the atomic band under
the effect of disorder. In Sec. IV, we study the effect of
disorder on the molecular band when it is clearly separated
from the atomic band (weak disorder regime). Next, Sec. V is
dedicated to the regime of overlap between the molecular and
atomic bands (strong disorder regime). Eventually, Sec. VI is
devoted to “separatrix states,” which, to the best of our knowl-
edge, were not discussed before in the literature. In the final
section (Sec. VII), we conclude, propose several experiments,
and give perspectives for future studies. Several Appendixes
provide details on various parts of the work.

II. THE RANDOM U HUBBARD MODEL

In this section, we define the model that we study in
the following sections. Consider two distinguishable particles
hopping on a chain of N sites, with a contact interaction
between them that depends on the position. We denote the
position of the first and second particle by integers x and y, re-
spectively, with 1 � x, y � N , and we use periodic boundary
conditions, identifying N with 0 (see Fig. 1). The Hamiltonian
reads

H = −
N−1∑

x,y=0

|x + 1, y〉 〈x, y| + |x, y + 1〉 〈x, y| + H.c.

+
N−1∑
x=0

Ux |x, x〉 〈x, x| = H0 + U, (1)

where H0 is the hopping Hamiltonian and U is the interaction
potential. Here and in the rest of the paper, we set h̄ = 1 and
measure energy in units of the hopping amplitude and length
in units of the lattice constant. The interaction energy Ux is
a position-dependent random variable, uniformly distributed
between Ū − W and Ū + W . The random U Hubbard model
is a modification of the Hubbard model (here restricted to
two particles in 1D) that depends on two parameters: the
average interaction Ū and the fluctuations (or disorder) in the
interaction W .
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We briefly review the trivial case without interaction, Ū =
W = 0. The Bloch theorem applies, and one has two par-
ticles with quasimomentum kx = 2π i/N and ky = 2π j/N ,
where i, j ∈ �−N/2, N/2 − 1�, and total energy E (kx, ky) =
−2(cos kx + cos ky) (the notation �., .� indicates that only
discrete values, in unit step, are taken in the interval). Eigen-
vectors of the system of two particles are plane waves
delocalized over the whole system. This is identical to a single
particle on a square lattice with periodic boundary conditions
(PBCs).

Before considering the effect of a disordered interaction,
we set a baseline by considering the translation-invariant in-
teracting case (W = 0 and Ū �= 0) in the following section.

A. Translation-invariant interaction: Bound and
scattering states

We start the analysis of the system with the case in
which there is no disorder, W = 0, and hence we have two
distinguishable particles with a contact interaction Ux = Ū ,
independent of x.

As we recall below, here the Hamiltonian can be solved
exactly, and its eigenstates are either bound states of the two
particles or scattering states.

To obtain explicit formulas for the bound and scattering
states, we change to the center-of-mass reference frame (see
Appendix A for details). The center of mass and relative
coordinates, x±, read

x+ = x + y

2
, x− = x − y, (2)

and the center-of-mass wave number, k+, is defined as

|k+〉 = 1√
N

∑
x+

eik+x+ |x+〉 with k+ = kx + ky = 2πK/N,

(3)

where K ∈ �−N/2, N/2 − 1�, so that −π � k+ < π . The
Hamiltonian now reads

H = −
∑

x+,x−∈L
|x+ + 1/2, x− + 1〉 〈x+, x−| + |x+ + 1/2, x− − 1〉 〈x+, x−| + H.c. + Ū

N−1∑
x+=0

|x+, 0〉 〈x+, 0| , (4)

where L is the original square lattice expressed in the
center-of-mass reference frame, i.e., x− ∈ �−N + 1, N − 1�
and x+ ∈ �|x−|/2, N − 1 − |x−|/2�, x+ taking integer values
when x− is even and half-integer values when x− is odd.
Because of translation invariance along x+, the center-of-mass
momentum k+ is conserved. The Hamiltonian, Eq. (4), written
in the k+ basis, separates into N decoupled chains indexed
by k+:

H =
∑
k+

|k+〉 〈k+| ⊗ h(k+), (5)

where the Hamiltonian h(k+) of a single chain reads

h(k+) = −2 cos
k+
2

∑
x−

|x− + 1〉 〈x−| + H.c.

+ Ū |0〉 〈0| . (6)

For each of the N different values of the center-of-
mass momenta k+, the Hamiltonian h(k+) describes a single
particle hopping on an effective chain of N sites with peri-
odic boundary conditions and with hopping amplitude teff =
−2 cos(k+/2) in the presence of an impurity of magnitude Ū
at the origin x− = 0. When Ū �= 0, its spectrum consists of
a single bound state and a band composed of N − 1 delocal-
ized scattering states (see Fig. 2). In contrast to Tamm states
[16,17], which appear for a sufficiently strong impurity at an
edge of an open chain, there is no threshold for a bound state
to exist for an impurity in a periodic chain. In terms of the
full Hamiltonian describing two particles, these correspond
to states where the two particles move together, as a bound
pair, and scattering states where they move almost indepen-
dently. The eigenproblem corresponding to Hamiltonian (6)

was solved by Koster and Slater [18,19]. It can also be ob-
tained by the Bethe ansatz [12]. Here, we summarize the main
results first for bound states and then for scattering states.

The bound states labeled by the quantum number −π �
k+ < π have energies and wave functions given by

Ebd(k+) = sgn(Ū )

√(
4 cos

k+
2

)2

+ Ū 2, (7)

ψbd(x+, x−) = eik+x+
√

N

√
tanh κ (−1)x−e−κ|x−|, (8)

when N 	 1/κ , so that finite-size effects can be neglected.
Here the inverse decay length κ > 0 is a function of k+ given
by the solution of

sinh κ = Ū

4| cos(k+/2)| . (9)

The inverse decay length κ defined above is also the pure
imaginary solution of the Bethe ansatz equation. From Eq. (8),
the bound states are plane waves along the x+ direction but
exponentially localized along the x− direction; see Fig. 3.
For simplicity and without loss of generality, we restrict to
Ū > 0, in which case they correspond to repulsively bound
states, which are only possible when the kinetic energy is
also bounded from above [12,13]. The minimal and maximal
bound-state energies are then Ū and

√
Ū 2 + 16. The number

of bound states is N compared to a total number of states N2.
If the interaction is weak, Ū < 4, the bound-state en-

ergy band and that of the scattering states overlap, while for
stronger interaction, Ū > 4, there is a gap equal to Ū − 4
between these bands. In the limit of very strong interaction,
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FIG. 2. Energy spectra of the standard two-particle Hubbard
model (translation-invariant interaction) as a function of the center-
of-mass quasimomentum k+. (a) For weak interaction, Ū = 2, the
band of bound two-particle states overlaps in energy with the band
of scattering states, where the two particles propagate almost in-
dependently. (b) For stronger interaction, Ū = 6, a gap Ū − 4 = 2
separates these bands.

the bound-state dispersion relation can be approximated as

Ebd(k+) 
 Ū + 4

Ū
+ 2

Ū
2 cos k+. (10)

This is the dispersion relation of a one-dimensional tight-
binding model with hopping amplitude 2/Ū and on-site
energy Ū + 4/Ū decoupled from the bulk of the energy spec-
trum.

The scattering states are modified plane waves labeled by
k+ and κ−. The wave functions are

ψsc(x+, x−) = Ceik+x+

[
sin(κ−x−)

− 4

Ū
cos

k+
2

sin κ− cos(κ−x−)

]
, (11)

where C is a normalization constant, and the “wave vectors”
κ− are the N − 1 real solutions of the Bethe ansatz equation
given in Appendix C along with calculation details. The num-
ber of such states is N (N − 1). The corresponding energies
are

Esc(k+, κ−) = −4 cos
k+
2

cos κ−, (12)

(a)

(b)

FIG. 3. Typical bound state for a translation-invariant interaction
Ū = 6 on a chain of N = 50 sites. (a) Position distribution of an
eigenmode in the coordinates x and y denoting the position of the
first and second particle, respectively. (b) Cross-sectional cut of the
position distribution, which reveals the exponential decay of the
wave function in the antidiagonal direction x− (note the vertical
logarithmic scale).

with −π � k+ < π and −π � κ− < π , and they are respon-
sible for the continuum of states between −4 and +4 shown
in Fig. 2.

In the following, we will use “bound states” and “scattering
states” to refer specifically to the situation in the absence of
disorder, W = 0.

B. Mapping to a rough quantum billiard

It is useful to draw an analogy between the motion of two
particles on the one-dimensional lattice (chain) and the mo-
tion of a single particle on a two-dimensional square lattice.
Indeed, the Hamiltonian (1) can be interpreted in this way,
with periodic boundary conditions along both x and y, and the
interaction term with Ux appearing as a potential barrier on the
diagonal. More precisely, because of the periodic boundary
conditions, the disorder potential is along a closed line that
wraps once around the two noncontractible loops on the torus;
see Fig. 1.

Seen as describing two-dimensional motion, our problem
is close to a quantum model of a rough billiard, such as
that studied in Ref. [23]. There, a single particle hopping on
a square lattice inside a square box was considered in the
presence of disorder on the boundaries in the form of random
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on-site potential, uniformly distributed between −W and W .
Our model differs from [23] in three major ways: we have (i)
periodic rather than open boundary conditions, (ii) disorder on
a diagonal line instead of the four edges of a square, and (iii)
the average defect potential Ū can be nonzero. Despite these
differences, we expect qualitatively the same kind of results
as both cases may be described as a 1D chain of impurities
(disorder) embedded into a clean 2D system.

Another type of rough boundary has been studied in [34].
The smooth circular shape of a continuous billiard is ran-
domly deformed on each point of the border. The authors
distinguish two regimes: (i) at large roughness or high en-
ergy, they observe ergodic dynamics with a GOE distribution
for the level-spacing statistics as expected for chaotic wave
function. (ii) At smaller roughness and low energy (but still
in the classical chaotic regime), an exponential localization
of the wave function is shown but in the angular momentum
space. In this situation, the level-spacing statistics is a Poisson
distribution with a Shnirelman peak at small spacing because
of quasidegenerate states due to time-reversal symmetry. This
exponential localization remains quite different from the An-
derson localization of the molecular states in real space that
we find and discuss in Sec. IV. In particular, this localization
occurs in action space and does not correspond to an expo-
nential localization along the boundary. In addition, in our
case the Anderson-localized states come from bound states
at vanishing disorder which are 1D localized, while such a
1D state does not exist in the integrable circular billiard: all
the states are 2D delocalized. Eventually, we do not observe
a Shnirelman peak at the origin of the Poisson distribution in
the level-spacing statistics.

C. Atomic and molecular states

The model of two particles on a chain interacting via a
disordered contact interaction is the main focus of the present
article. In the following sections, we discuss different regimes
depending on the parameters Ū and W .

In the presence of disorder W �= 0, k+ is no longer a con-
served quantity, and one cannot resolve the energy spectrum
as a function of k+. In this case, and because of the possibility
of overlapping bands, the distinction between scattering states
and bound states is no longer pertinent. Actually, the energy
spectrum separates in a bulk band with a large density of states
and energy E between −4 and +4, and an impurity band
with a low density of states and energy such that |E | > 4 (see
Fig. 4). We will refer to the eigenstates with energy |E | < 4
as “atomic states” and to those with |E | > 4 as “molecular
states.” The corresponding bands will be called atomic band
and molecular band. When the two bands are separated by a
gap, this distinction between atomic and molecular states co-
incides with that introduced when W = 0 between scattering
and bound states. However, when the two bands overlap [see
Fig. 2(a)], the distinction between atomic and molecular states
does not match that between scattering and bound states.
The reason is that the disorder couples the bound states that
overlap in energy with the scattering states. As a result, the
bound states dissociate and do not remain localized: in such
a case, we consider that the states in the overlapping region
also belong to the “atomic band.” In the rest of the article,

FIG. 4. Density of states of disordered interacting particles for a
chain of N = 50 sites, an average interaction Ū = 6, and 10 realiza-
tions over the disorder. The atomic band has a DOS close to that of
the square lattice, while the molecular band is similar to that of a 1D
Anderson model.

we discuss in turn atomic states (Sec. III), molecular states
(Sec. IV), the specific situation in which the two bands overlap
(Sec. V), and eventually separatrix states that exist near the
center of the atomic band (Sec. VI).

III. ATOMIC STATES

In this section, we analyze the “atomic states,” i.e., eigen-
states with energy between −4 and +4.

Because of the analogy to the two-dimensional quantum
billiard [23], we expect the spectrum to show features familiar
from quantum chaos theory.

A. Density of states and inverse participation ratio

The density of atomic states is similar to the density of
states (DOS) of a clean 2D square lattice, with a van Hove
singularity at the center of the band (E = 0) and a constant
density at the band edges (E = ±4), as shown in Fig. 4. Since,
in these eigenstates, the particles are mostly far away from
each other, changing the contact interaction strength, Ū , or
increasing its disorder, W , does not significantly affect the
DOS.

To quantify the localization of the atomic states and track
the effects of the disorder, we use the inverse participation
ratio (IPR), I2. For normalized eigenfunctions �(x, y), it is
defined by

I2 =
∑
x,y

|�(x, y)|4. (13)

The participation ratio P2 = 1/(N2I2) represents the fraction
of sites that are occupied by the wave function (see Ap-
pendix B). Note that, because of the N2 factor, the IPR is
not simply the inverse of the participation ratio [35], and
hence it is sometimes called inverse participation or inverse
participation number. As we increase the system size N , wave
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FIG. 5. Density of states (arbitrary units) as a function of energy
and IPR for a chain of N = 50 sites and nd = 10 different realiza-
tions over the disorder. The average on-site potential is Ū = 6 and
different values of W between 0 and 10 are considered. Roughly
speaking, here, an IPR in the 10−3 range means 2D-delocalized, in
the 10−2 range it means 1D-delocalized, and in the 10−1 range it
means localized. Different types of states are indicated in white.

functions that are completely delocalized over the whole sys-
tem are expected to have I2 ∼ 1/N2; those localized along
one direction and delocalized along the other (such as bound
states in the absence of disorder) should have I2 ∼ 1/N , while
completely localized wave functions should have I2 ∼ N0.

Through full diagonalization of the Hamiltonian of systems
with N = 50, as shown in Fig. 5, we observe different types
of eigenstates with different localization properties. We focus
here on delocalized atomic states with energy between −4
and 4 and analyze the molecular states later. Depending on
the energy range and on the parameters Ū and W , we identify
four broad categories of such atomic states—(a) quasi-ideal
states, (b) chaotic states, (c) resonant states, and (d) separatrix
states—that we discuss in turn. States (a), (c), and (d) are
finite-size effects that are expected to become negligible in
the thermodynamic limit compared to states (b) that form the
majority of the atomic band.

(a) In Fig. 5(a), at vanishing disorder W = 0 and interac-
tion strength Ū = 6, we observe an IPR of I2 ≈ 6 × 10−4 

1.5/N2 for N = 50, which corresponds to a participation ratio
P2 ∼ 67%. This is compatible with the analytical solution of

the problem at W = 0 [see Eq. (11)], which gives modified
planes waves that we called “scattering states.”

Their participation ratio varies continuously as a function
of Ū between 2/3 
 67% when Ū → ∞ (similar to standing
waves in a box with open boundary conditions) and 100%
for plane waves when Ū → 0. When numerically computing
the IPR, we took care in removing the possible degeneracy of
scattering states by slightly twisting the boundary conditions
(i.e., adding a small random magnetic flux across the two
noncontractible loops of the real-space torus).

When weak disorder is turned on, we observe modifi-
cations in the eigenfunctions’ IPR of the atomic band [see
Fig. 5(b)]. In most cases, the IPR increases upon introduc-
ing finite disorder (this is discussed below under the name
“chaotic states”). However, mainly at the atomic band edges
[see Fig. 5(c)], some states remain very delocalized. They are
called quasi-ideal by [23] because their weight on the disor-
dered diagonal is small and they are almost like scattering
states unaffected by the disorder [see Fig. 6(a)]. In [23], where
Ū = 0, the authors argue that quasi-ideal states only exist due
to finite-size effects in the presence of disorder and that their
number is expected to vanish when N → ∞. In Appendix C,
we provide a generalized proof, valid also for Ū �= 0, that
quasi-ideal states actually exist in the thermodynamic limit.
However, they still can be considered as finite-size effects,
because they form a vanishing measure set, the ratio of their
number over that of chaotic states tending to 0 when N → ∞.

(b) Most states inside the atomic band are “chaotic” [see
Figs. 5(b) and 5(c)]: their IPR slightly increases and scales
as 3/N2, so that the participation ratio is lower (
 33%) but
wave functions are still delocalized [see Fig. 6(b)]. What we
call “chaotic states” are similar to the ones observed by [23]
and are typical of chaotic billiards. Such quantum states are
discussed in detail in Chap. 15 of Gutzwiller’s book [20]
(see, in particular, Figs. 44–46). They are delocalized, have
a random character (but are not speckle), and have the same
participation ratio (1/3) as eigenvectors of random matrices in
the Gaussian orthogonal ensemble (GOE); see, e.g., [36]. In
addition, they feature filaments due to a preferred wavelength
related to their energy content (see Fig. 2 in [23]). But fila-
ments are not captured by eigenvectors of random matrices.
Similarly to what was done in the continuum in [37] follow-
ing a conjecture by Berry [38], in “tight-binding billiards,”
filaments can also be reproduced by building random super-
positions of Bloch waves of a given energy. Fixing the energy
is what selects a given wavelength that defines the width of
the filaments. These filaments should be clearly distinguished
from quantum scars [36,39]. The latter are enhanced proba-
bility in an eigenstate’s wave function due to an underlying
unstable periodic orbit of the corresponding classical billiard.

(c) When the bottom of the molecular band at energy Ū −
W becomes smaller than the top of the atomic band at 4, there
is band overlap. In the overlapping energy range, we observe
states with an IPR in between that of typical atomic states and
that of Anderson-localized molecular states [see Fig. 5(d)].
These states are mainly localized along the diagonal, and
their wave function is close to that of Anderson-localized
molecular states. However, because their energy matches that
of scattering states, they hybridize with them, which creates
weight away from the diagonal [see Fig. 6(c)]. They represent
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FIG. 6. Typical atomic eigenstates for a disordered interaction on
a chain of N = 50 sites: (a) quasi-ideal, (b) chaotic, (c) resonant, and
(d) separatrix.

molecules that are coupled to atomic states and are partially
dissociated. We call them “resonant states.” They could also
be called virtual bound states in analogy with the well-known
phenomena occurring with impurities in metals discovered by

Friedel (see, e.g., [40]). We expect these states to become
negligible in the thermodynamic limit as their number is at
most N (which is the number of bound states). They are
discussed in more detail in Sec. V.

(d) The last type of atomic states that we observe are
found in the middle of the atomic band near zero energy [see
Fig. 5(d)]. Their IPR is quite large compared to the rest of the
band (I2 ∼ 1/N). In fact, they are states that are localized only
along the x+ direction but extended into the relative motion
direction x− [see Fig. 6(d)]. These “separatrix states” are a
consequence of the separatrix (isoenergy E = 0) line in the
dispersion relation when there is no interaction. They share
some properties of scarred states [36,39] familiar in the con-
text of quantum billiards but are clearly distinct (actually, we
do not see scarred states in the present model). Since we could
not find a description of these states elsewhere, we devote a
complete section to them (see Sec. VI). As the number of
these states is N/2 � N2, they are also expected to become
negligible in the thermodynamic limit.

B. Level-spacing statistics

The localization of eigenfunctions can also be observed by
the level-spacing statistics (for a review, see, e.g., [41]). For a
given energy E , an ensemble of normalized level spacings s is
obtained from an ensemble of the Hamiltonians, H (r), where
r is an integer index for the disorder realization, by

�E (r)
n = E (r)

n+1 − E (r)
n , with E ≈ E (r)

n , E (r)
n+1;

s(r)
n = �E (r)

n

�E
, (14)

where �E denotes the mean of the values of �E (r)
n . This

procedure is known as spectrum unfolding in the literature on
level-spacing statistics.

In the absence of disorder, for an integrable system with
more than one degree of freedom, we generically expect that
the normalized level spacings s have an exponential distribu-
tion (in this context also called Poisson distribution) [42]:

p(s) = e−s. (15)

The level spacing statistics is altered by disorder. Weak
disorder usually breaks integrability and couples nearly de-
generate eigenstates, leading to level repulsion and a universal
behavior of the level spacing distribution, close to the Wigner
surmise for the GOE:

p(s) = π

2
s exp

(
−π

4
s2

)
. (16)

We will refer to this universal type of behavior as Wigner-
Dyson or GOE distribution. Strong disorder, however, leads
to Anderson localization of energy eigenstates. Thus nearly
degenerate eigenstates can have wave functions localized to
distant parts of the system, preventing hybridization between
them. In this case, the level-spacing statistics is again expected
to be Poissonian, if the system size is considerably larger
than the localization length. There are therefore two quite
different situations in which Poisson statistics is obtained: a
clean integrable system (localized in momentum space) or a
strongly disordered Anderson-localized system (localized in
real space).
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(a) (b)

(c) (d)

FIG. 7. Level-spacing distribution of atomic states for differ-
ent regimes of energy E , mean interaction Ū , strength of disorder
W , chain size N , and number of disorder realizations nd . (a) E ∈
] − 4, +4[, Ū = 6, W = 0, N = 70, and nd = 100. Twisted bound-
ary conditions were used to eliminate possible degeneracies. (b) E
between −10−3 and −10−10 (in order to isolate separatrix states),
Ū = 0, W = 0.01, N = 200, and nd = 100. (c) E ∼ 1.7, Ū = 6,
and W = 6, N = 900, and nd = 1000. (d) Same as (c) except that
E 
 0.1. In (c) and (d), the Lanczos method was used to diagonalize
the Hamiltonian. Both the histogram and the crosses in the inset
represent the numerical data either with a linear or a log scale. Blue
curves are the expected Poisson distribution for (a) and (b) and the
GOE distribution for (c) and (d).

Without disorder (W = 0), for the band of atomic states,
as expected for a 2D integrable system, we have a Poisson
distribution [see Fig. 7(a)]. At Ū → ∞ or W → ∞, we ex-
pect the band of atomic states to be integrable and get a
Poisson distribution as the wave functions are expelled from
the diagonal because of the on-site potential on the diagonal,
which tends to be infinite.

The question of the level-spacing statistics at finite Ū and
W is more subtle. For a finite Ū and a small W , in Appendix
C, we show that a perturbation in energy of the atomic scatter-
ing states due to U scales as W/(Ū 2N3/2) cos2(k+/2) sin2 κ−,
where k+ is the center-of-mass momentum, and κ− is one of
the N − 1 real solutions of the Bethe ansatz equation. They
have to be compared with the mean level spacing, which
scales as 1/N2. If the perturbation is larger than the mean level
spacing, atomic wave functions, because they are extended,
lead to level repulsion and GOE statistics. Below this mean
level spacing, we still have a Poisson distribution. Eventually,
we conclude from Appendix C that, in the thermodynamic
limit, we should obtain a distribution of level-spacings which
converges slowly toward GOE. The computation of Ap-
pendix C does not take the contribution of the molecular
band into account. However, as we will see in Sec. IV, this
convergence is speeded up when the molecular band overlaps
the atomic band, the coupling between disorder and atomic
states being much larger. This is why, in practice, we could
obtain the GOE statistics for reasonable N but for Ū − W < 4
[see Fig. 7(c)]. Indeed, in order to study the level-spacing
statistics of the majority of states in the atomic band, we need

to reach sample sizes much larger than in [23] in order to
suppress the contribution of minority states (quasi-ideal states,
resonant states, and separatrix states).

At the center of the energy band near E = 0, we do not
obtain a universal level-spacing distribution because chaotic
and separatrix states are mixed [see Fig. 7(d)]. At small dis-
order, separatrix states are localized along the direction of
the center of mass and delocalized in the relative motion
direction. Their IPR scales as 1/N (see Appendix B). They
do not overlap and their level-spacing statistics agrees with
the Poisson distribution [Fig. 7(b)]. For higher disorder, some
of these separatrix states couple with atomic states and delo-
calize (therefore leading to level repulsion), while the others
remain localized, which leads to the nonuniversal distribution
seen in Fig. 7(d).

IV. MOLECULAR STATES

In this section, we focus on the molecular band made of
bound pairs of particles, which is analogous to defect or sur-
face states in a 2D billiard. We consider the large-interaction
(Ū − 4 > 0) and weak-disorder (W < Ū − 4) regime, where
these molecular states are clearly separated in energy from
the atomic states, and we discuss the effect of disorder on this
molecular band.

A. Energy spectrum and level-spacing statistics

The density of states (DOS) of the molecular band without
disorder (W = 0) is similar to that of a clean 1D system with
van Hove singularities at the edges (see Fig. 4). When disorder
is small, Lifshitz tails [43] appear at the edges of the band
between Ū − W and Ū for the bottom and

√
Ū 2 + 16 and√

(Ū + W )2 + 16 for the top. They correspond to very rare
events where the potential is approximately constant and min-
imal (for the bottom) or maximal (for the top) over a certain
region, resulting in a boxlike potential. The corresponding
states are localized by disorder, but like a particle-in-a-box
rather than due to interferences as in Anderson localization.

When the disorder increases, the DOS of the molecu-
lar band becomes flat and structureless. For weak disorder
W < Ū − 4, the energy of the molecular band is in the range
[Ū − W,

√
(Ū + W )2 + 16] and lies outside the atomic band

(whose energy is in the range [−4,+4]). All such states are
found to be localized around the diagonal contact interaction.

At vanishing disorder, the system is integrable. The level-
spacing statistics of the molecular band is not of universal type
(i.e., neither Poisson nor GOE), see Fig. 8(a), as is well known
for a 1D integrable system [42]. Disorder (W > 0) leads to
Anderson localization of the molecular states, and we find a
Poisson distribution of level spacings [see Fig. 8(b)].

B. Molecular eigenfunctions

For the molecular band without disorder (W = 0), quasi-
momentum conservation ensures extended states in the
center-of-mass x+ direction. For interaction strength Ū = 6
and N = 50, we find an IPR of I2 
 10−2, corresponding
to exponentially localized states in the direction of relative
motion, x−; see Fig. 3. The bound-state wave function is
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(a) (b)

FIG. 8. Level-spacing distribution for the molecular band (ener-
gies E such that |E | > 4.4 in order to atomic states) computed for
a chain of length N = 70, a mean interaction Ū = 6, and nd = 100
disorder realizations. (a) W = 0. (b) W = 4.

known analytically in that case; see Eq. (8). Along x−, it
has an exponential decay over a typical lengthscale ξmol =
1/(2κ ) ∼ 0.3, where sinh κ = Ū/[4 cos(k+/2)] ∼ Ū/(2

√
2),

as per Eq. (9). We can check that the theoretical IPR is indeed
I2 ≈ 1

4Nξ 2
mol

∫
dx−e−2|x−|/ξmol 
 1.5 × 10−2.

When disorder is switched on, the IPR of the molecu-
lar states increases, reaching approximately I2 
 0.3 when
W = 2 and Ū = 6, as shown in Fig. 5. We observe Anderson
localization in the center-of-mass direction for the molecular
states; see Fig. 9. Considering that the size of the molecules,
ξmol mostly depends on the mean interaction, Ū , the char-
acteristic Anderson localization length can be computed in
the same manner as ξmol and we find ξloc 
 0.625. Under the
influence of disorder, the molecular band spreads and flattens.
Its lowest energy is Ū − W = 4. When W reaches Ū − 4,
the two bands start to overlap and the molecular and atomic
bands are no longer well separated. The case of overlap, cor-
responding to small interaction Ū − 4 < 0 or strong disorder
W > Ū − 4, is analyzed in Sec. V.

V. OVERLAPPING BANDS

If the interaction is weak (Ū − 4 < 0) or if the disorder
strength is large (W > Ū − 4), there is an overlap in energy
between the low-lying states of the molecular band and the
higher-lying states of the atomic band. Let us consider the
case in which the overlap is due to Ū < 4 and the disor-

(a)

(b)

FIG. 9. Anderson localized molecular state for a disorder W = 8
and Ū = 6 on a chain of N = 50 sites. (a) Probability of an eigen-
mode in the (x, y) plane. (b) Cross-section of this wave function
in the antidiagonal direction x− (blue curve) showing the extension
of the molecule ∼ξmol. Cross-section in the diagonal direction x+
(yellow curve) showing the localization length ∼ξloc of the center
of mass. A logarithmic vertical scale is used to emphasize the expo-
nential decay.

der is weak W � 1. Because of disorder, bound states and
scattering states are coupled. As a result, on the one hand,
bound states dissociate and delocalize to become resonant
(or virtual bound) states [see Fig. 6(c)]. On the other hand,
most scattering states couple weakly to molecular states and
therefore remain almost unaffected, which we call quasi-ideal
states [see Fig. 6(a)].

For even larger disorder, W > Ū , the interaction
Ux at some positions can become negative, and some
molecular states with energy below the atomic band
emerge. The molecular band then spreads in the range
[−

√
(Ū − W )2 + 16,

√
(Ū + W )2 + 16] and all the atomic

band is fully overlapped by molecular energies. When
W → ∞, we expect that the distribution of the molecular
energies of the system tends to that of the on-site potential
energies, i.e., a uniform distribution between Ū − W and
Ū + W .

In the following, we discuss some properties of the states
in the overlapping-band region.

A. Eigenfunction analysis

The regime of overlapping bands opens new channels of
decay for some of the molecular states by removing the trans-
lation invariance of the center-of-mass mode. Those whose
energies are shifted into the band of atomic states can hy-
bridize, dissociate, and become delocalized. Instead of true
bound states, they become resonances with finite lifetime (see
Appendix E for a definition of this lifetime). This is a kind
of reentrance effect of disorder: delocalized molecular states
at W = 0 are localized by weak disorder 0 < W < Ū − 4
and then dissociate and delocalize due to hybridization with
atomic states when the disorder increases further W > Ū − 4.
If the whole energy spectrum is viewed as a single band, then
a mobility edge at energy 4 separates high-energy states that
are localized from low-energy states that are delocalized.

In Fig. 5, we see that the DOS is very weak at the edges
of the disordered molecular band. These are the exponentially
small Lifshitz tails [43]. Therefore, we do not expect a large
overlap of these tails with the atomic band for a finite-size
system, and, in practice, we observe resonances only when a
macroscopic fraction of molecular states overlaps the atomic
band, i.e., W − Ū + 4 � 1. Moreover, the IPR increases, e.g.,
I2 ≈ 0.5, for N = 50, W = 4, and Ū = 6, corresponding to
ξloc ∼ 0.42. Eventually, at W � 8, the disorder is so strong
that some previous resonant states leave the atomic band
to spread below it and become again Anderson-localized
molecules.

Atomic eigenfunctions are marginally affected by disorder
when the molecular band is well separated from the atomic
band, i.e., W < Ū − 4. Indeed, molecular eigenfunctions have
an exponential decay over a typical length ξmol, and a cou-
pling with the diagonal for atomic functions is then allowed
but marginal. In the opposite limit of W̄ → ∞, atomic wave
functions have vanishing weight on the diagonal and are thus
practically unaffected by the randomness. However, when the
molecular band overlaps with the atomic band, i.e., W >

Ū − 4 and W finite, we expect a rather different behavior.
Molecular wave functions with energies in the atomic range
hybridize with atomic wave functions and delocalize, bring-
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ing a stronger coupling of the atomic wave functions to the
disordered potential. We can understand that in this regime,
the coupling affects the atomic band much more intensively
than in the case of W < Ū − 4. It is in this regime that we find
GOE statistics for the chaotic states, as shown in Fig. 7(c).

B. Molecular probability

By definition, a molecular state is an eigenstate with energy
outside the range [−4,+4]. In this section, we are interested
in the probability for two particles initially on the same site j
to remain bounded at long times.

We define the molecular (or survival) probability Pmol as
the square of the overlap between such a highly localized
initial state and the molecular eigenstates:

Pmol( j) =
∑

|Emol|>4

|〈ψmol|x = j, y = j〉|2, (17)

where j ∈ Z is the initial position. This overlap is the long-
time limit of the probability that two particles started initially
from the same site j do not dissociate and their distance re-
mains bounded. Since its value depends on the initial position
j for any realization of disorder, we can associate a probability
distribution of Pmol values to any set of parameters, as we dis-
cuss below. For the moment, we concentrate on the long-time
behavior and do not discuss the dynamics (see Appendix E for
a discussion of the lifetime).

We first consider how the distribution of the molecular
probability Pmol depends on the disorder W at fixed Ū = 6,
shown in Fig. 10. At low disorder, the molecular band is
separated from the atomic band by a gap. Here the molecular
probability is 91%—computed exactly as 2K (−16/Ū 2)/π us-
ing Eqs. (8) and (9), where K is the complete elliptic integral
of the first kind. When W > 2, a fraction of the molecular
states is coupled with the atomic states, and we thus find
a bimodal distribution of molecular probabilities: either the
initial state has a large overlap with an Anderson localized
molecular state, and Pmol ≈ 1, or the initial state is mostly
supported by resonant states with finite lifetimes, Pmol ≈ 0. As
the disorder increases, at first more and more molecular states
are coupled with the atomic states, and therefore the average
Pmol decreases.

For W > 8, however, we observe a reentrant increase of
Pmol: here increasing W pushes some molecular states below
the atomic band, and thus the mean Pmol increases as a func-
tion of W . Thus, at high disorder, the mean Pmol directly gives
the fraction of molecular states with energy outside the atomic
band. Qualitatively, the ratio between the number of molecular
states (states that do not overlap in energy with the atomic
band) and the number N of bound states reproduces the trend
of the molecular probability (see the orange curve in Fig. 10).
As molecular states also have weight away from the diagonal
sites, the latter ratio gives an upper bound on the molecular
probability.

One can also look at the molecular probability with respect
to the average interaction Ū for different strength of disorder
W ; see Fig. 11. At vanishing disorder, it is possible to compute
this probability analytically. In Fig. 11(a), the solid red line is
the theoretical prediction made using the definition of Sec. II

FIG. 10. Molecular probability vs disorder W for an average
potential Ū = 6 on a chain of size N = 50 and nd = 10 disorder
realizations (for each, 10 randomly chosen initial conditions on
the diagonal are taken). The radius of a black dot is proportional
to the number of occurrences. The blue curve is the mean of the
distribution. The orange curve is the average on nd = 100 disorder
realizations of the ratio between the number of molecular states (i.e.,
energies outside [−4, +4]) and the number N of bound states.

and Eqs. (8) and (9):

Pmol =
∫ kc

−kc

dk+
2π

tanh κ = 2Ū

π

F
[ kc

2 , 16
16+Ū 2

]
√

16 + Ū 2
, (18)

where F is the elliptic integral of the first kind, and kc =
Re 2 arccos

√
1 − (Ū/4)2 is a cutoff that varies between 0 and

π as a function of Ū . The origin of this cutoff is the definition
that molecular states have energies E such that |E | > 4.

For high disorder [W = 4, Fig. 11(d)], we recover a bi-
modal distribution due to Anderson localization. There is a
regime of rapid growth of the molecular probability when Ū
increases, which corresponds to the decoupling of molecular
states leaving the atomic band. When the molecular band is
completely outside the atomic band (Ū > W + 4), the initial
state on the diagonal is mostly overlapped by a few Anderson-
localized molecular eigenstates. However, their exponential
decay over a length ξmol allows a marginal coupling between
the initial state and the atomic functions. This coupling van-
ishes when Ū → ∞. The greater Ū is, the lower ξmol is, and
the greater the molecular probability is.

VI. SEPARATRIX STATES

Having treated the broad classes of molecular and atomic
states and also the band overlap, we now focus on a special
class of states at E ≈ 0 that we call “separatrix states.” These
states are best understood by starting with the model without
interaction (free time evolution of two particles hopping on
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(a) (b)

(c) (d)

FIG. 11. Molecular probability vs the average interaction Ū for
different disorders W on a chain of size N = 50 and nd = 10 disorder
realizations (for each, 10 randomly chosen initial conditions on the
diagonal are taken). (a) W = 0. The red curve is the theoretical pre-
diction of Eq. (18). (b) W = 1, (c) W = 2, (d) W = 4. Black dots are
the numerical computation of the molecular (survival) probability.
The radius of a black dot is proportional to the number of occur-
rences. Blue curves are the mean of distributions. Orange curves give
the average on nd = 100 disorder realizations of the ratio between the
number of molecular states (i.e., energies outside [−4,+4]) and the
number N of bound states.

a chain), and then considering how the disordered interac-
tion affects the zero-energy eigenstates of the free model.
Throughout this section, we assume the number of sites N to
be even for simplicity.

A. The zero-energy eigenspace of the noninteracting case

The zero-energy subspace of the noninteracting problem,
i.e., two particles on a chain of N sites (Ū = W = 0), is
spanned by 2N − 2 plane waves. The corresponding quasimo-
menta lie on the separatrix in the two-dimensional Brillouin
zone (kx, ky). The separatrix is the isoenergy line at zero en-
ergy (separating particlelike and holelike states in the band
structure of the square lattice) with the shape of a rotated
square, as shown in Fig. 12, with

red lines: ky = ±π + kx ⇒ k− = kx − ky

2
= ±π

2
; (19)

green lines: ky = ±π − kx ⇒ k+ = kx + ky = ±π. (20)

We note that using the alternative Brillouin zone defined in
Appendix A, the equations for green lines become k+ = −π

with −π � k− < π .
Out of the plane-wave zero-energy modes, we can form

3N/2 − 2 linear combinations having wave functions that
vanish for x = y, as we show below. These will be eigen-

FIG. 12. Dispersion relation at Ū = 0 and W = 0. The red and
green lines are the E = 0 isoenergy lines. Linear combinations of the
plane waves on green lines give unperturbed states when disorder is
turned on, whereas those on red lines give rise to separatrix states.
Red points (b)–(c) and (d)–(e) correspond, respectively, to initial
wave packets of Figs. 14(b), 14(c) and Figs. 14(d), 14(e).

states of the system even if the on-site interaction between
the particles is switched on. These come from two groups of
zero-energy states, which we call diagonal and antidiagonal
states.

The N diagonal states are linear combinations of the plane-
wave modes along the green lines in the Brillouin zone,
chosen so that the distance between the two particles is fixed.
The value of the distance j = −N/2,−N/2 + 1, . . . , N/2 − 1
specifies the state,

|ψd ( j)〉 = 1√
N

N∑
x=1

|x, y = x + j mod N〉 . (21)

Out of these N mutually orthogonal states, N − 1 have the
property that their wave functions vanish for x = y. Only the
state |ψd (0)〉 is affected by the on-site interaction.

The antidiagonal states are N − 2 linear combinations of
the plane-wave modes along the red lines in the Brillouin
zone. We only take plane quasimomenta with kx �= 0 and
ky �= 0, since those plane-wave modes were included in the
construction of the diagonal states.

We can form N/2 − 1 linear combinations of the antidi-
agonal plane-wave states that have 0 weight on x = y. These
can be labeled by the quasimomentum component kx, which
is 0 < kx < π , and it takes on N/2 − 1 different values. The
states read

|ψad−(kx )〉 = 1√
2N

∑
x,y

(eikxxei(kx−π )y − ei(kx−π )xeikxy) |x, y〉 .

(22)
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FIG. 13. Separatrix states. (a) An eigenstate of the perturbation
U having a non-negligible overlap with the state |ψd (0)〉. It rep-
resents a minority of eigenstates. (b) A typical eigenstate of the
perturbation U having a negligible overlap with the state |ψd (0)〉.

The remaining N/2 − 1 linear combinations of antidiago-
nal plane-wave states will be affected by the interaction. Their
wave functions can be written as

|ψad+(kx )〉 = 1√
2N

∑
x,y

(eikxxei(kx−π )y + ei(kx−π )xeikxy) |x, y〉 .

(23)

B. Perturbative effect of interaction on the separatrix states

We now consider the effect of a weak interaction potential
on the eigenstates, perturbatively up to first order in U . For
simplicity, we restrict to the case Ū = 0 and finite W . We will
refer to the N/2 states affected by the disorder as “separatrix
states.”

To study separatrix states, we are therefore led to diago-
nalize an N/2 × N/2 matrix. We can numerically diagonalize
this matrix to obtain eigenvectors that typically look like
that shown in Fig. 13. The right panel [see Fig. 13(b)] re-
produces the main feature of the separatrix states, which
is the localization along the center-of-mass x+ direction to-
gether with delocalization along x−. Further details on this
disorder-induced localization are given in Appendix D. The
perturbative analysis is valid for energy lower than the first
nonzero energy (scaling as 1/N2). The eigenvalues of U typ-
ically scale as W/N , thus the disorder should be very small
(W � 1/N) for perturbation theory to hold.

C. Wave-packet dynamics

The localization of separatrix states along the center-
of-mass x+ direction leads to an interesting effect for the
scattering of the two particles, which we discuss below.
Because of the disorder in the interaction potential, the center-
of-mass momentum is not conserved. However, as we show
below, if the two particles have wave packets with equal and
opposite energies, +E and −E , then during the scattering
the center-of-mass momentum does stay approximately con-
served (in fact, the center of mass is stationary). We note that
this is the same problem as that of a single particle moving on
a two-dimensional lattice with a disordered diagonal potential
barrier.

To set up a generic scattering problem, we prepare both
particles in Gaussian wave packets, far from each other, cen-

tered around positions x and y with x < y. The velocities
of the particles, vx,y = ∂E (kx,y)/∂kx,y, should be such that
vx > vy so that a scattering event does occur. An example for
initial-state quasimomenta kx0, ky0 representing this condition
is indicated by the symbols “(b)” and “(c)” in Fig. 12. The
corresponding distribution of positions is shown in Fig. 14(a).
In the case of a translation-invariant contact interaction, dur-
ing the collision both the energy E and the center-of-mass
momentum k+ are conserved. In that case, after the colli-
sion, transmitted and reflected parts of the wave function will
be wave packets with kx ≈ kx0, ky ≈ ky0 and kx ≈ ky0, ky ≈
kx0, respectively. The corresponding position distribution, ob-
tained numerically, is shown in Fig. 14(b). If the interaction
is disordered, the center-of-mass momentum is no longer con-
served, only the total energy is. Thus after the collision we
expect to see a broad distribution of quasimomentum values
kx, ky both for the reflected and the transmitted parts. Thus
the distribution of postcollision velocities is broader, and as
a result—as shown for a concrete example in Fig. 14(c)—the
postcollision position distributions are broader.

A special case of the scattering problem is if the two
incident wave packets have opposite energies, so that the total
energy is approximately zero. Thus kx0, ky0 lie somewhere on
the red separatrix line of Fig. 12, an example indicated in the
figure by the symbols “(d)” and “(e).” Then the initial state
has a significant overlap with antidiagonal separatrix states,
which, as explained in the previous section, are extended
along x− but localized along x+. Moreover, it has practically
no overlap with diagonal states (eigenstates formed by linear
combinations of plane waves from the green parts of the
separatrix). Thus the postcollision state should be composed
of mostly plane-wave modes at or near the red parts of the
separatrix, with velocities vx ≈ −vy. This explains why the
postcollision position distribution in this case can be broad
along x−, but should be not significantly broadened along
x+: the center-of-mass is approximately conserved. This is
confirmed by a numerical example in Fig. 14(e). For com-
parison, the postcollision position distribution with the same
parameters, but without disorder in the interaction, is shown
in Fig. 14(d). We note that disorder in the interaction also
leads to a comblike interference pattern of the position distri-
bution of both the reflected and transmitted parts, which would
merit further investigation. For the same time evolution and
because of the nonparabolic dispersion relation, the natural
wave-packet spreading is much smaller in Fig. 14(d) than in
Fig. 14(b).

D. Summary

Separatrix states have a small participation ratio (P2 ∼
N/N2 = 1/N � 1 when N 	 1) and as such could be mis-
taken for scarred states, well-known in the quantum chaos
context [36,39]. However, they are markedly different. In-
deed, they are due to separatrix isoenergy lines, which do
not exist in a continuum billiard. In addition, they are
not related to unstable and periodic classical orbits. Our
understanding is that they are related to stable classical
orbits in a peculiar billiard with a particular kind of ki-
netic energy H (kx, ky) = −2 cos(kx ) − 2 cos(ky) instead of
H (kx, ky) = (k2

x + k2
y )/(2m). We leave it to future work to
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FIG. 14. Position distributions of the two particles before (a) and
after (time t = 25) (b)–(e) a scattering of two Gaussian wave packets
on each other, for different initial momenta and with a translation
invariant (b),(d) or disordered (c),(e) contact interaction Ū = 2, in
a system of size N = 80. (a) Initial wave packets (time t = 0) both
have a width of five sites, prepared at x0 = 20, y0 = 60, with wave
vector k+

0 = 0 (i.e., vanishing group velocity along x+) and either to-
tal energy E �= 0, momentum k−

0 = π/4 [case (b) and (c) in Fig. 12],
or E = 0, k−

0 = π/2 [case (d) and (e) in Fig. 12]. (b),(d) Without
disorder, the postcollision wave function has two wave packets,
somewhat broadened, but centered on the same x+ coordinates, due
to the conservation of center-of-mass momentum—irrespective of
the initial momenta. (c) When disorder in the contact interaction
breaks translation invariance, and the total energy E �= 0, we see
a broader distribution of postcollision x+ and x− coordinates. (e)
When the contact interaction is disordered, and E = 0, we see a
broadening of the postcollision x−, but only slight broadening of the
x+ distribution. This is due to the dominance of separatrix states in
the initial wave packet, as explained in the main text.

study these unusual classical billiards. We have not found
scarred states in the present model.

VII. CONCLUSION AND DISCUSSION

In the absence of disorder, two interacting particles on
a chain can have a coherent dynamic as a bound state or
independent motion as scattering states. When the interaction
becomes spatially disordered, two very different effects are
expected for the molecular bound state.

On the one hand, if the energy of the initial molecular
state does not overlap with the atomic band, the molecule
becomes Anderson-localized due to disorder. On the other
hand, because the disorder in the interaction breaks the con-
servation of the center-of-mass quasimomentum and spreads
the molecular band in energy, an initially bound state with an
energy that overlaps with the atomic band becomes a reso-
nance with a finite lifetime and delocalizes over the whole
system. The disorder breaks both the molecular bound state
and the Anderson localization.

Likewise, a few scattering states in the atomic band persist
even when disorder is turned on. These are called quasi-ideal.
Both resonant states and quasi-ideal states are not very differ-
ent from bound states and scattering states that exist in the
absence of disorder. Their existence is due to the fact that
the disorder is only a “surface effect” in our model. They are
expected to become negligible in the thermodynamic limit as
their number increases with N but not as fast as N2.

Near the center of the atomic band, we observe unusual
states due to the disordered interaction and related to the
presence of a separatrix zero-energy line in the square lattice
dispersion relation. These separatrix states do not exist in
standard quantum billiards (defined in the continuum rather
than in a tight-binding model). They feature disorder-induced
localization in real space but not of the Anderson type (not an
interference effect). A remarkable consequence is that a wave
packet with zero average energy, i.e., built on these separatrix
states, cannot be laterally scattered when hitting a disordered
barrier. The number of separatrix states (N/2) makes them
negligible in the thermodynamic limit.

Apart from resonant, quasi-ideal, and separatrix states,
which are all finite-size effects, most states in the atomic band
are chaotic states. They are the typical states of a peculiar
toric billiard possessing a disordered barrier along a closed
loop that winds around the torus. These states are delocalized
(with a participation ratio of 1/3), have a random character,
and feature filaments.

We also changed the disorder distribution (either Gaussian
or binary, i.e., Bernoulli) and checked that the main effect is
still valid: when a molecular state resonates with the atomic
band, it delocalizes. In the Gaussian case, the main difference
comes from the tails of the distribution, which make it impos-
sible to clearly separate a regime in which the molecular and
atomic bands either overlap or do not overlap. In the binary
(Bernoulli) case, we draw with a probability p an on-site
interaction strength U1 and with probability 1 − p an on-site
interaction strength U2 > U1. When p �= 0, 1, the molecular

energies are between U1 and
√

U 2
2 + 16, and this does not

depend on the disorder parameter p. In summary, the main
results are robust to changing the disorder model, but there
are some differences in the details.

We now discuss possible experimental realizations of the
random U Hubbard model. The type of disordered interaction
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we have considered could be realized with cold atoms trapped
in an optical lattice. There the interaction between the trapped
atoms can be magnetically tuned using Feshbach resonances
[44]. In a variant of this technique, namely optical Feshbach
resonances [45], the resonance condition between the states is
fulfilled with the help of an extra laser field (or a pair of laser
fields). Here the interaction strength can be made position-
dependent if the spatial form of the lasers is modulated by
optical speckle patterns.

An alternative experimental route would use the analogy to
quantum billiards, i.e., realize the system as a single particle
moving in two dimensions with a line of potential defects.
This could be realized with photonic waveguides fabricated
using femtosecond laser inscription, as in a recent experiment
by Mukherjee et al. [46]. There the two-body 1D Hubbard
model was mapped to a square tight-binding model in the
presence of a barrier along the diagonal. Similarly, Di Lib-
erto et al. [32] have suggested this approach to simulate the
effects of interaction in the Su-Schrieffer-Heeger model. In
such an experimental setup, disorder could simply be included
by varying the parameters of the waveguides also along the
diagonal. This seems to be possible using the level of control
over the parameters of the waveguides already demonstrated
in the experiment [46].
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APPENDIX A: CENTER-OF-MASS FRAME

In the main text, we use a mapping from the two-particle
problem on a chain onto the dynamics of a single particle on a
square lattice. In this Appendix, we describe the basis change
from the canonical frame ( �ex, �ey) to the center-of-mass frame
( �e+, �e−), which reads

�e+ = �ex + �ey, || �e+|| =
√

2,

�e− = �ex − �ey

2
, || �e−|| = 1/

√
2.

In this orthogonal, but not normed, center-of-mass frame,
the site coordinates (x, y) ∈ Z2 are replaced by the center of
mass x+ = x+y

2 and the relative coordinate x− = x − y.
The vectors ( �e+, �e−) generate a rectangular lattice which

shares only half of the square lattice sites. This leads to integer
and half-integer coordinates for the square lattice sites: x+
takes integer values when x− is even and half-integer values
when x− is odd.

Turning to reciprocal space, we have the canonical re-
ciprocal frame �e∗

x = 2π �ex and �e∗
y = 2π �ey, wave vectors �k =

k∗
x �e∗

x + k∗
y �e∗

y = kx �ex + ky �ey, and the associated first Brillouin
zone defined by (k∗

x , k∗
y ) both in the range [−1/2, 1/2[ or

(a) (b)

FIG. 15. (a) Portion of the square lattice with the coordinate and
basis vectors for the natural frame (x, y) in blue and the center-of-
mass frame (x+, x−) in red. (b) First Brillouin zone of the reciprocal
lattice in gray. The dual vectors of each frame are indicated, in blue
(red) for the natural (center-of-mass) frame. The dots represent the
allowed values taken by the wave vector for a finite-size system with
N = 10. An alternative Brillouin zone better adapted to k+ and k− is
indicated in yellow.

equivalently (kx, ky) = 2π (k∗
x , k∗

y ) both in the range [−π, π [.
The reciprocal frame associated with the center-of-mass coor-
dinates reads

�e∗+ = π �e+ =
�e∗
x + �e∗

y

2
, || �e∗+|| = π

√
2,

�e∗− = 4π �e− = �e∗
x + �e∗

y , || �e∗−|| = 2
√

2π.

Working with a finite N × N patch with periodic boundary
conditions amounts to selecting a finite set of allowed �k vec-
tors, whose coordinates (kx, ky) inside the first Brillouin zone
[gray region in Fig. 15(b)] read 2π jx,y/N with ( jx, jy) in the
range [−N/2, N/2 − 1] for N even and [−(N − 1)/2, (N −
1)/2] for N odd.

In the center-of-mass reciprocal frame, these allowed �k
vectors read �k = k∗

+ �e∗+ + k∗
− �e∗− = k+ �e+/2 + 2k− �e− with

k+ = 2π ( jx + jy)/N,

k− = π ( jx − jy)/N,

with ( jx, jy) running in the same range as above.
The two direct space frames ( �ex, �ey) and ( �e+, �e−) are

shown in Fig. 15(a), and the two reciprocal frames { �e∗
x , �e∗

y}
and { �e∗+, �e∗−} together with allowed �k vectors (with N = 10)
in the first Brillouin zone are displayed in Fig. 15(b).

The extremal values taken by one coordinate of the re-
ciprocal center-of-mass frame when ranging over the first
Brillouin zone [gray region in Fig. 15(b)] depend on the other
coordinate. In practice, this makes computation harder. How-
ever, one can define equivalently an alternative Brillouin zone
[yellow region in Fig. 15(b)], in which both coordinates range
over [−π, π [. The allowed (k+, k−) coordinates now read

k+ = 2πK/N,

k− = πq/N,

where K takes integer values in [−N/2, N/2 − 1] and q ∈
[−N, N − 1] takes even (odd) values when K is even (odd).
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TABLE I. Scaling of IPR with respect to system size N for the
different types of states and sorted in increasing order (from most
delocalized to most localized).

Types of states IPR scaling with system size N

scattering (W = 0) or 1
P2N2 with P2 � 67%

quasi-ideal (W �= 0)
chaotic 1

P2N2 with P2 
 33%
separatrix ∼1/N when W � 1, Ū = 0

no proper scaling for finite W or Ū
resonant no proper scaling
delocalized bound ∼1/N when W = 0
Anderson localized molecular ∼1/N0

APPENDIX B: SCALING OF THE INVERSE
PARTICIPATION RATIO

The localization of eigenfunctions can be measured using
the inverse participation ratio (IPR) defined in Eq. (13). The
scaling of the eigenfunctions’ IPR with respect to the system
size N shows different behaviors according to the degree
and nature of localization. As we increase the system size,
wave functions completely delocalized over the whole system
should have an IPR ∼1/N2; those localized along only one
direction are expected to have an IPR ∼1/N ; and completely
localized wave functions should have an IPR ∼N0 for large
N . Table I associates the different types of states defined
throughout the article with their corresponding IPR scaling.

Without disorder, eigenfunctions of the atomic band are the
scattering wave functions which scale as 1/N2; the fit shows
a participation ratio P2 
 63% [see Fig. 16(a)] (we employ
twisted boundary conditions in order to avoid degeneracy).
This numerical result matches the analytical computation of
the participation ratio, using Eqs. (11) for Ū → ∞, which
gives 2/3 
 67%. The second fit in Fig. 16(a) shows a de-
pendence in 1/N which corresponds to the molecular states
delocalized along the center-of-mass direction and localized
along the relative motion direction.

With disorder, molecular states become Anderson-
localized, so that their IPR does not depend on N anymore [see
Fig. 16(b)]. The majority of atomic states remain delocalized
and their IPR scales as 1/N2. In this regime (both bands do not
overlap), the latter are either quasi-ideal states (P2 ∼ 67%) or
chaotic states (P2 ∼ 33%). One notices that the distribution
of IPR [see Fig. 16(b)] is larger than in the free-disorder
case. The average value of the participation ratio is P2 ∼ 46%.
The participation ratio of chaotic states (1/F 
 33%) can be
obtained analytically from random matrix theory (with F = 3
for the GOE); see, e.g., [36]. However, we observe that the
distribution of atomic states’ IPR widens as N increases,
which is due to a minority of states: the separatrix states.
At finite Ū and W , those states do not show a well-defined
IPR scaling but rather form a continuous transition between
the 1D localized regime (IPR ∼ 1/N) and the 2D completely
delocalized regime (IPR ∼ 1/N2).

When both bands overlap (Ū − W < 4), the disorder is
strongly felt by atomic states (see Sec. V). Figure 16(c) shows
an IPR for atomic states scaling as N−2, i.e., a participation
ratio P2 ∼ 28% not far from 33% expected for chaotic states.

FIG. 16. Log-log plot of the inverse participation ratio (IPR) of
eigenfunctions with respect to the size of the system N for dif-
ferent average interaction strength Ū and disorder W . (a), (b), and
(c) Complete energy spectrum for system sizes from N = 50 to 200
by increments of 10. (a) Ū = 8, W = 0; (b) Ū = 8, W = 4; and
(c) Ū = 0, W = 3. (d) Only separatrix states at Ū = 0 and W =
0.001 between N = 50 and 300 by increments of 10. Linear fits in red
highlight three types of behavior: I2 = 1/(P2N2) (2D-delocalized),
∼1/N (1D-delocalized), and ∼N0 (localized). The black dotted line
in (c) delimits the region between localized and 2D-delocalized
states.

The difference probably comes from the fact that not all
atomic states are chaotic states: there are also quasi-ideal,
resonant, and separatrix states. Their effect should disappear
in the thermodynamic limit. Similarly to the separatrix states,
the resonant states do not have a proper scaling and smoothly
connect the completely localized with the 2D completely de-
localized IPR distribution.

However, it is possible for separatrix states to exhibit a
well-defined IPR scaling when they do not couple with other
atomic states. They should present a 1/N scaling for the IPR
because they are localized in the center-of-mass direction and
delocalized in the relative motion direction. We know that
they are related to states at energy E = 0 when Ū = W = 0.
To keep track of them, we perturb slightly the system (W =
0.001 and Ū = 0) to stay in the regime where separatrix and
atomic states do not resonate [see Fig. 16(d)] and indeed find
the expected 1/N behavior.

APPENDIX C: FIRST-ORDER PERTURBATION OF THE
BETHE ANSATZ SOLUTIONS

In this Appendix, we use perturbation theory in the disor-
der strength W to study the effect of the interaction potential U
(with average Ū and fluctuations W ) on the exact eigenstates
of the two-particle problem known at nonzero Ū but W = 0.
For convenience, we describe the system as the dynamics of
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a single particle on a two-dimensional grid (with periodic
boundary conditions), with a disordered on-site potential on
the diagonal.

The cases Ū = 0 and Ū �= 0 are expected to lead to dif-
ferent quantitative results. Indeed, the disordered diagonal
perturbs eigenfunctions of Ū = 0 (plane waves) much more
intensively than eigenfunctions of Ū �= 0 (scattering states)
because their weight on the diagonal is greater.

1. Ū = 0

We start by considering Ū = 0 and follow the steps of [23].
The first-order perturbation in energy is given by the matrix
element of the perturbation operator U between unperturbed
eigenvectors, i.e., plane waves obtained at W = 0. In our case,
the potential is on a diagonal, whereas in [23] it is along
the four edges of a square billiard. The weight of a plane
wave on a site is 1/N2. The typical deviation of the energy
is the standard deviation σ of the variable U = ∑N

x=1 Ux,
where Ux’s are the random diagonal potential uniformly cho-
sen in [−W,+W ]. We have σ (U ) = W

√
N/

√
3, where N

is the length of the disordered barrier. We therefore obtain
a typical perturbation in energy scaling as W N−3/2, which
has to be compared to the mean level spacing ∼N−2. In
the thermodynamic limit N → ∞, as W N−3/2 	 N−2, every
state will be sensitive to the neighboring energy levels, and
we will eventually lead to GOE statistics. In addition, taking
into account that the DOS is not flat but has a maximum at
E = 0 and minima at band edges E = ±4 (see Fig. 4), the
last states to be affected by the disorder are those near band
edges. Indeed, quasi-ideal states (i.e., states almost unaffected
by the disorder) are found mostly near band edges.

2. Ū �= 0

Next we consider Ū �= 0. When W = 0 and with periodic
boundary conditions, scattering states at finite Ū are given by
the Bethe ansatz [4,12], and they read

ψsc(x, y) = Ceik+x+

[
sin(κ−x−)

− 4

Ū
cos

k+
2

sin κ− cos(κ−x−)

]
, (C1)

where C = √
2/(N

√
1 + 16/Ū 2 cos2 k+

2 sin2 κ−) is the
normalization constant, k+ = kx + ky = 2πK/N , and
K ∈ �−N/2, N/2 − 1�. The quantity κ− is the solution
of the Bethe ansatz equation: κ−N = 2πλ + θ , where
λ ∈ �−N/2, N/2 − 1�, and θ is such that

eiθ = −1 + 4i/Ū cos(k+/2) sin κ−
1 − 4i/Ū cos(k+/2) sin κ−

. (C2)

At zeroth order in Ū , one has κ− 
 2πλ/N = k− and the
normalization constant C 
 √

2/N .
The weight of the eigenvectors on a disordered site (x− =

0) is C216Ū −2 cos2 k+
2 sin2 κ−. By a similar computation to

the one done in the case Ū = 0, the first-order perturbation
scales as WŪ −2 cos2 k+

2 sin2 κ−N−3/2. The number of Bethe
solutions for which the first-order perturbation is lower than
the mean level spacing ∝ 1/N2 depends on the value of k+.

The latter satisfy the condition

cos2 k+
2

sin2 κ− � Ū 2W −1N−1/2. (C3)

We distinguish two regimes: (i) when k+ is far from π ,
and (ii) when k+ is close to π . For the first case, we find
that among the N − 1 scattering states, a number of levels
proportional to N3/4 do not hybridize with other levels. For
the second case, the interval is split in two. In the first interval,
the number of Bethe solutions unaffected by other levels is
sublinear ∝ N1−p, with p > 0. In the second interval, the
latter grows linearly, however the interval shrinks to 0 when
N → ∞.

(i) If k+ is far enough from π such that cos2 k+/2 = a ∼ 1
not too close from 0, then | sin κ−| � ŪW −1/2N−1/4. As a
consequence, the sine being small for N → ∞ and κ− ∼
2πλ/N , among the N Bethe solutions of a fixed value k+, only
a number growing as ∝ ŪW −1/2N3/4 does not hybridize with
other levels.

(ii) If k+ = π − 2πr/N , with r an integer such that
0 � r � r1 with 2πr1/N � 1 and r1 is the upper bound
of r. Below it, the following approximation is valid:
cos(k+/2) ∼ r2/N2 and | sin κ−| � ŪW −1/2N7/4r−2. When
r > r1, we are then back to the first case (i). We want
to estimate r0, the number of k+ for which the overall N
corresponding to Bethe solutions do not hybridize with neigh-
boring levels. It is fulfilled when ŪW −1/2N7/4r−2 > 1 ⇒
r <

√
ŪW −1/4N7/8 = r0. In the following, it will be nec-

essary to get an upper bound r′
0 on this r0, so we relax

the constraint and ask for ŪW −1/2N7/4r−2 > ŪW −1/2N−p,
where p > 0, and the upper bound is r′

0 = N7/8+p/2. For
r1 � r � r′

0, | sin κ−| � ŪW −1/2N7/4r−2 � ŪW −1/2N−p ⇒
λ � N1−p. We expect that the number of Bethe solutions
that do not hybridize scales as N1−p. We choose p < 1/4 and
obtain at the thermodynamic limit that r1 > r′

0.
In summary, we want to estimate the total number of Bethe

solutions S = ∑N/2−1
j=−N/2 f (2π j/N ) for which the first pertur-

bation energy does not cross neighboring energy levels, where
f is the function that counts these Bethe solutions at fixed k+.
We obtain three typical different behaviors for f depending on
the value of k+ = 2π j/N = π − 2πr/N ⇒ j = N/2 − r. We
define j0 = N/2 − r0 and j1 = N/2 − r1. f0 is the behavior
of f (2π j/N ) for 0 � | j| < j1 computed in the first case (i).
f1 and f2 described the behavior of f (2π j/N ), respectively,
in the interval j1 � | j| � j0 and j1 < | j| � N/2 computed in
the second regime (ii). Then

S <

j1−1∑
| j|=0

f0 +
j0∑

| j|= j1

f1 +
N/2∑

| j|= j0+1

f2, (C4)

where f0 ∝ ŪW −1/2N3/4, f1 ∝ N1−p, and f2 = N . The num-
ber of terms in the first and second sum is proportional to
N . In the third sum, the number of terms is proportional to
r′

0 = N7/8+p/2. For 0 < p < 1/2, S scales as Nα , where α < 2.
Therefore, in the thermodynamic limit, these states, which do
not see neighboring levels, will not be the majority.

This result is quite different from the case Ū = 0. When
Ū = 0 and in the thermodynamic limit, every state will even-
tually hybridize and lead to GOE statistics. At Ū �= 0, some
states will not hybridize. As their number scales as Nα with
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α < 2, they are a minority compared to the total number N2

of eigenstates of the problem.

APPENDIX D: LOCALIZATION OF SEPARATRIX STATES
ALONG THE CENTER-OF-MASS DIRECTION

This Appendix presents the typical form of eigenstates in
Fig. 13, in particular that of typical separatrix states shown
in panel (b). We wish in particular to explain the mechanism
of disorder-induced localization and to distinguish it from
Anderson localization.

The interaction operator U in the basis made of the diag-
onal state ψd (x− = 0) plus the N/2 − 1 symmetric red states
reads (

b
√

2u√
2u† 2U|

)
, (D1)

where b = 1
N

∑
j Uj , u is a vector of length N/2 − 1, and U|

is a matrix of size N/2 − 1 × N/2 − 1. It has components and
matrix elements

uk+ = 1

N
√

N

∑
j

Uje
−i(k++π ) j, (D2)

U|k+,k− = 1

N2

∑
j

Uje
−i(k+−k′

+ ) j (D3)

with k+ = 2πK
N , k′

+ = 2πK ′
N , K and K ′ being one of the N/2 −

1 even integers in [−N/2 + 1, N/2[.
The interaction operator written in this basis looks almost

like an on-site potential Hamiltonian Hop of dimension N/2
but written in the plane-wave basis

Hop =
∑

j

Uj | j〉 〈 j| =
√

2/N
∑
k,k′

Uje
2iπ j(k−k′ ) |k′〉 〈k| .

(D4)
If the interaction operator would be exactly proportional

to Hop by establishing the one-to-one correspondence be-
tween the quasimomentum center-of-mass k+ [see Eqs. (D2)
and (D3)] and the 1D quasimomentum k [see Eqs. (D4)],
each eigenvector would be localized exactly on one center
of mass x+ and delocalized in the relative motion direction
x−. Figure 13(b) shows a localization of eigenvectors along
the center-of-mass direction, but we cannot assign precisely a
center-of-mass position to an eigenvector. In the following, we
make explicit the differences between the interaction operator
U and the on-site potential Hamiltonian Hop.

Making the substitution Uj → Uj

√
2/(N

√
N ), and es-

tablishing a one-to-one correspondence between the quasi-
momentum center-of-mass k+ of Eq. (D3) and the 1D
quasimomentum k of Eq. (D4), 2U| corresponds exactly to
the restricted part of Hop onto the (N/2 − 1)-dimensional
subspace where we remove the plane wave of lowest quasi-
momentum k = −π . However, if one wants b of Eq. (D1) to
match with the first matrix element of Hop, one has to make a
different substitution Uj → Uj/(

√
2N ). Eventually, the corre-

spondence between
√

2u of Eq. (D2) and 〈−π | Hop |k �= −π〉
is established by still another substitution Uj → Uj/N . There-
fore, numerical factors (and scaling with N) do not match
between the different parts of the matrix in Eq. (D1), and this

FIG. 17. Time evolution of the probability P(t ) =
|〈ψ (0)|ψ (t )〉|2 for three different disorder strengths: W = 0.1
(blue), 0.5 (yellow), and 1 (green). The initial bound state |ψ (0)〉
is an eigenstate at W = 0 with energy E0 
 3.087 for Nx = 30
and Ū = 2. From P(t ) 
 1 − t/τ (dashed lines), the lifetime τ is
(a) 365, (b) 16, and (c) 4, which agrees with τ ∼ 3.5/W 2.

constitutes one of the differences with the on-site potential
Hamiltonian of Eq. (D4).

The other difference is that the first vector in Eq. (D1) is
the diagonal state ψd (0) and is not a plane-wave state as the
other symmetric red states or the 1D plane wave of the on-site
potential model.

If one would have Hop instead of U , the eigenvectors would
be the symmetric antidiagonal states, well-localized on one
center-of-mass position. The resulting interaction operator
being quite similar to Hop, we do not expect very different
eigenstates, and we observe also localization along the center-
of-mass direction. If this analogy with the potential model
holds, the localization leading to separatrix states is a trivial
localization by disorder potentials (indeed there is no kinetic
energy in the potential model) and not an Anderson localiza-
tion resulting from multiple scattering interferences.

APPENDIX E: LIFETIME OF RESONANT STATES

For resonant states (or virtual bound states), one may define
a lifetime. Resonant states can be seen as the result of the
coupling, via the disorder, between bound states and scatter-
ing states that coincide in energy, i.e., in the region of band
overlap. Because of this coupling, bound states are no longer
eigenstates but acquire a finite lifetime. For example, we take
Ū = 2 and W = 0 and consider a bound state with energy
E0 in between Ū and 4. Such a bound state will be taken as
initial state |ψ (0)〉. It satisfies H0|ψ (0)〉 = E0|ψ (0)〉. Now, we
turn on a finite but weak disorder 1 	 W > 0, and we study
the time evolution of |ψ (t )〉 = e−iHt |ψ (0)〉 by considering
the probability P(t ) = |〈ψ (0)|ψ (t )〉|2. At short time t � τ ,
we expect that it decays as e−t/τ 
 1 − t/τ , where τ is the
lifetime given by Fermi’s golden rule 1/τ ∼ ρ(E0)W 2, where
ρ(E0) is the density of states (per site) of the atomic band at
energy E0. The lifetime should therefore scale as 1/W 2. This
is indeed what we observe: for example, for E0 
 3.087, we
find τ ∼ 3.5/W 2; see Fig. 17. At longer time, the evolution is
more complicated.
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