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Generalization of exceptional point conditions in perturbed coupled resonators
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The phase singularity in open systems, known as the exceptional point (EP), has revealed exotic function-
alities, especially in optics—as an illustration, ultrasensitive sensors and laser beam unidirectionality. The
strong sensitivity to perturbations around the EP has been suggested for sensing applications. Nevertheless, the
characteristics of such highly sensitive systems can be affected by unwanted perturbations during the fabrication
process. However, if one can control perturbation, it can be considered as an additional degree of freedom
to create and tune EPs, enabling fascinating phenomena. In this paper, we propose an analytical method to
investigate such systems. We analytically derive the general conditions of EPs in the perturbed pair of coupled
ring resonators, where both resonators can be perturbed by different scatterers. Several numerical examples
are employed to verify the proposed analytical method. We propose a simple experimental scheme where the
predicted effects can be confirmed. It is also shown that by changing the relative position of the scatterers with
respect to each other, quite interesting states such as a chiral EP in one resonator or simultaneous chiral EPs
in both resonators could be observed, making such a system a highly functional tunable device which can have
several applications such as quantized reflection/transmission and q-bits.

DOI: 10.1103/PhysRevB.104.205405

I. INTRODUCTION

Unlike Hermitian systems, in which eigenvectors are or-
thogonal at degenerate eigenvalues, in non-Hermitian systems
the eigenvectors are also degenerate (i.e., eigenvalues and
eigenvectors coalesce simultaneously). This singularity in
non-Hermitian systems is called the exceptional point (EP),
leading to abrupt phase changes in the eigenvalue spectra.
Such abrupt phase transitions around the EP in photonic
systems lead to exotic functionalities such as laser mode
selectivity and sensitivity enhancement [1–4]. PT-symmetric
systems can have entirely real eigenvalues, despite that they
are non-Hermitian. However, beyond a critical condition, their
eigenvalues become complex (broken PT symmetry), where
this critical point has properties of the EP. In addition to
lasing and sensing applications, parity-time symmetric sys-
tems enable robust wireless power transfer [5–7] and perfect
absorption [8,9].

Exceptional point degeneracy can be realized in differ-
ent optical and photonic systems supporting PT-symmetric
schemes, such as a ridge optical waveguide where the loss
is controlled by a Cr layer in half of it [10], and by a pair of
coupled microtoroidal whispering-gallery-mode (WGM) res-
onators, where the gain in one of the resonators is achieved by
Er3+ doping [11]. Instead of using (real) gain or loss, Ref. [12]
proposes time modulation of an applied source as an equiva-
lent to the gain or loss. This virtual PT-symmetric system [13]
can have applications in critical coupling in high-Q resonators
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[14] and pulling force for a passive resonant object of any
shape and composition [15]. Another mechanism to tune the
energy spectra of a resonator is manipulating its geometry. By
engineering the height and radius of a cylinder with a high
refractive index, a high-Q supercavity mode can be achieved
by realizing the regime of bound states in the continuum
[16,17]. This structure has shown a considerable enhancement
of second harmonic generation [18]. The supercavity mode
as well as EP can also be realized in a deformed shape of a
cylindrical resonator [19]. Furthermore, an EP is achieved in
parallel circular dielectric cylinders [20], two-layer cylindrical
waveguides [21], graphene incorporated multilayer metama-
terials [22], nonlinear non-Hermitian systems [23–27], and
arrays of particles [28,29].

Due to the high sensitivity of such systems, small per-
turbations during the fabrication process can considerably
affect the aforementioned singularity, therefore resulting in
a need for an additional element such as a heating scheme
for fine-tuning of the resonators [3]. On the contrary, gaining
control over the perturbations and being able to engineer them
can open significant degrees of freedom in engineering the
desired responses, such as chiral EPs and high-Q multifunc-
tional resonators. It was recently shown that by employing
two nanoparticles (which can be considered as a perturbation)
along the surface of a microresonator, and tuning their posi-
tions, the backscattering from CW (CCW) to CCW (CW) can
be removed (CW: clockwise; CCW: counterclockwise), and
as a result, the resonator will support only CW (CCW) modes
at this specific condition, which can be associated with the ap-
pearance of so-called chiral states [30–32]. This asymmetric
backscattering and nonorthogonal modes can also be achieved
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in a resonator incorporating notches [33], or in a deformed
resonator [34,35]. Furthermore, it was shown that employing
scatterers or notches in coupled resonators can give rise to new
functionalities such as EP-assisted absorption/transparency
[36], and enhancement of laser emission directionality [37].

In this paper, perturbations are considered as an additional
degree of freedom to create degeneracy in these systems,
which may be lifted due to fabrication imperfections. Also,
they can be utilized to create fascinating phenomena which
can have application in unidirectional lasing, high-Q res-
onators, and sensors. We derive general conditions that can
bring a perturbed pair of coupled resonators to the EP
regime. With engineering the perturbations, we can generate
EPs in the system, and these expressions can be useful to
study the effect of unwanted perturbations which may arise
during the fabrication process. Regarding the perturbation
values, the location of the EP can be tuned in parameter space,
and the amount of loss/gain can be varied. Besides, with en-
gineering the position of the scatterers, some interesting field
distributions such as a chiral EP in one resonator, individually,
and both of them simultaneously are observed in the structure,
making the system a tunable device which can shift from one
state to another one by changing the position of the scatterers.
Furthermore, to confirm the method, the numerical result from
COMSOL is compared to coupled mode theory (CMT).

II. A COUPLED PAIR OF RESONATORS: ONE
PERTURBED AND ONE UNPERTURBED

We work with a system of coupled resonators supporting
WGMs. To generalize the result, we use dimensionless param-
eters, then suggest a possible physical system. Perturbation
along the surface of a disk or ring can give rise to both
clockwise (CW) and counterclockwise (CCW) modes with
different field amplitudes. In a pair of resonators, the CW
(CCW) mode in the first disk excites a CCW (CW) mode in
the second one, as shown schematically in Fig. 1(a). There-
fore, utilizing coupled mode theory [38,39], such system can
be described using the following equations:

da1

dt
= (−iω1 − γ1)a1 − iκ12a2 − iκabb2, (1a)

da2

dt
= (−iω1 − γ1)a2 − iκ21a1 − iκabb1, (1b)

db1

dt
= (−iω2 − γ2)b1 − iκaba2, (1c)

db2

dt
= (−iω2 − γ2)b2 − iκaba1. (1d)

In this set of equations κab is the coupling rate between two
rings. In the first ring, κ12 and κ21 are the coupling rates from
CCW to CW and CW to CCW modes, respectively, which
exist due to the presence of the scatterer beside the resonator
(even without the scatterers, we can observe a coupling be-
tween CW and CCW in each resonator due to the coupling
between the resonators, which can usually be ignored). We
note that there is no coupling (or negligible coupling) between
CW and CCW in the second ring, since in this system the
second ring is unperturbed. If we assume a monochromatic
excitation, we can consider d/dt → −iμ; therefore, Eq. (1)

FIG. 1. Evolution of the eigenvalues, with gray (blue and red)
curves leading (not leading) to EP degeneracy. Panels (c)–(d) and
(e)–(h) belong to Secs. II and III, respectively. (a) Perturbation in
the first resonator. (b) Perturbation in both resonators. Perturbation
in one ring: (c) Real and (d) imaginary part of eigenvalue
for κab = 0.5, κ12 = 0.1 − 0.01i, κ21 = 0.2 − 0.015i, δ =
2κab − Im(

√
κ12κ21). Perturbation in both rings: (e) Real and (f)

imaginary part of eigenvalue for κab = 0.5, κ12 = 0.2 − 0.01i, κ21 =
0.3 − 0.02i, κ ′

12 = 0.35 − 0.05i, κ ′
21 = 0.1 − 0.01i, and δ is

considered from Eq. (9b). (g) Real and (h) imaginary parts of
eigenvalue for κ ′

12 = 0.35 − 0.05i, κ ′
21 = 0.2336 − 0.0294i,

while the other parameters are the same as before. EP occurs at
� = −0.041 which corresponds to Eq. (9a).

can be written as an eigenvalue problem, where the complex
frequency of the resonators is considered �1 = ω1 − iγ1 and
�2 = ω2 − iγ2:

μ

⎛
⎜⎝

a1

a2

b1

b2

⎞
⎟⎠ =

⎛
⎜⎝

�1 κ12 0 κab

κ21 �1 κab 0
0 κab �2 0

κab 0 0 �2

⎞
⎟⎠

⎛
⎜⎝

a1

a2

b1

b2

⎞
⎟⎠. (2)

The eigenvalues of the system can be calculated using
∣∣∣∣∣∣∣

�1 − μ κ12 0 κab

κ21 �1 − μ κab 0
0 κab �2 − μ 0

κab 0 0 �2 − μ

∣∣∣∣∣∣∣
= 0. (3)
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After some mathematical manipulation, we can get the fol-
lowing characteristic equations:

(�1 − μ)(�2 − μ) − κ2
ab = √

κ12κ21(�2 − μ), (4a)

(�1 − μ)(�2 − μ) − κ2
ab = −√

κ12κ21(�2 − μ). (4b)

Using Eq. (4a), we can derive the two eigenvalues of the
system as

2μ =�1 + �2 − κ

±
√

(�1 + �2 − κ )2 − 4
(
�1�2 − κ�2 − κ2

ab

)
, (5)

where κ = √
κ12κ21 is defined. To have an EP, these

eigenvalues should be degenerate, which can happen if
(�1 + �2 − κ )2 − 4(�1�2 − κ�2 − κ2

ab) = 0. This condi-
tion can be written as a quadratic polynomial of �2 − �1:
(�2 − �1)2 + 2κ (�2 − �1) + κ2 + 4κ2

ab = 0, from which
we can derive a condition connecting corresponding complex
frequencies and couplings �2 − �1 = −κ ± 2iκab. Applying
the same procedure to Eq. (4b), we get a second condition
on complex frequencies as �2 − �1 = κ ± 2iκab. Rephrasing
these two conditions, we can derive the general conditions of
the EP:

� = ω2 − ω1 = Re (
√

κ12κ21), (6a)

δ = γ2 − γ1 = ±2κab − Im (
√

κ12κ21), (6b)

or

� = ω2 − ω1 = − Re (
√

κ12κ21), (7a)

δ = γ2 − γ1 = ±2κab + Im (
√

κ12κ21). (7b)

This reveals that for real values of κ , the EP can happen at
two locations � = ω2 − ω1 = −κ and � = ω2 − ω1 = κ for
δ = γ2 − γ1 = ±2κab.

As an illustrative example, Figs. 1(c) and 1(d) show the
real and imaginary parts of the eigenvalues as a function of
� [plotted using Eqs. (4)], for κ12 = 0.1 − 0.01i, κ21 = 0.2 −
0.015i, κab = 0.5, and δ = 2κab − Im(

√
κ12κ21) (we consider

ω1 = ω0 − �/2 and ω2 = ω0 + �/2, where ω0 can be an
arbitrary value). This shows that the exceptional point occurs
at � = Re(

√
κ12κ21) = 0.1414, which corresponds to the an-

alytical results in Eqs. (6a)–(6b) (note that the EPs are shown
by gray dots).

In the analytical model, we have considered no cou-
pling between CW (CCW) from one resonator and
CW (CCW) from another resonator, κcw,12 = κcw,21 = 0
(κccw,12 = κccw,21 = 0). Our numerical calculations confirm
the accuracy of this assumption. For specific configurations,
such as a scatterer in the coupling region between two res-
onators, the amount of these couplings can be nonzero (but
still small). Our analysis shows that we can still obtain an EP
for nonzero and specific values of these couplings. However,
in such a scenario the complexity of the problem increases,
and deriving closed-form analytical conditions for the EP
would be more challenging.

III. A COUPLED PAIR OF RESONATORS: BOTH
PERTURBED

In the previous section, we considered a system of a
coupled pair of resonators where one of the resonators was
perturbed due to the presence of a scatterer next to it, while
the other resonator was unperturbed. Here, we consider a
more complex scenario where both resonators are perturbed
through different scatterers [see Fig. 1(b)]. This system can
be described using the following equation:

μ

⎛
⎜⎝

a1

a2

b1

b2

⎞
⎟⎠ =

⎛
⎜⎝

�1 κ12 0 κab

κ21 �1 κab 0
0 κab �2 κ ′

12

κab 0 κ ′
21 �2

⎞
⎟⎠

⎛
⎜⎝

a1

a2

b1

b2

⎞
⎟⎠, (8)

where, compared to Eq. (2), an additional coefficient κ ′
12

(κ ′
21) is employed to take into account the coupling between

CCW (CW) and CW (CCW) in the second ring. Following the
same procedure as in the previous section, we can derive the
required conditions for EPs (detailed derivations are provided
in the Appendix):

� = ω2 − ω1 = Re
(√

κ12κ21 −
√

κ ′
12κ ′

21
)
, (9a)

δ = γ2 − γ1 = ±2κab − Im
(√

κ12κ21 −
√

κ ′
12κ ′

21
)
,

(9b)

κ12/κ21 = κ ′
21/κ

′
12. (9c)

Another set of equations is

� = ω2 − ω1 = − Re
(√

κ12κ21 −
√

κ ′
12κ ′

21
)
, (10a)

δ = γ2 − γ1 = ±2κab + Im
(√

κ12κ21 −
√

κ ′
12κ ′

21
)
,

(10b)

κ12/κ21 = κ ′
21/κ

′
12. (10c)

As can be seen from these conditions, in comparison to the
EP conditions for the scenario considered in the previous sec-
tion, here we have additional conditions relating the couplings
between CW and CCW in different resonators [Eqs. (9c) and
(10c)]. As an illustrative example, Figs. 1(e) and 1(f) show
real and imaginary parts of eigenvalues for κab = 0.5, κ12 =
0.2 − 0.01i, κ21 = 0.3 − 0.02i, κ ′

12 = 0.35 − 0.05i, κ ′
21 =

0.1 − 0.01i, and δ is calculated from Eq. (9b). Note that, here,
we intentionally consider a case where the last condition of
the EP in Eqs. (9) and (10) is not satisfied (i.e., κ12/κ21 �=
κ ′

21/κ
′
12). The results in Figs. 1(e) and 1(f) show that the real

(imaginary) parts coalesce while the imaginary (real) parts
depart, which is shown by blue (red) arrows, proving that the
EP cannot be achieved if the last condition is not satisfied.

Now let us consider the case where all the condi-
tions for the EP are satisfied, including the last condition
(i.e., κ12/κ21 = κ ′

21/κ
′
12). Figures 1(g) and 1(h) show the

eigenvalue for κ ′
12 = 0.35 − 0.05i, κ ′

21 = 0.2336 − 0.0294i
(κ12/κ21 = κ ′

21/κ
′
12) (other parameters are the same as

before), where the EP occurs at � = −0.041, which corre-
sponds to Eq. (9a).
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IV. PRACTICAL SCHEME

A. One scatterer

Here, we study the EP condition in a coupled pair of
resonators which contain one scatterer. In what follows,
we use full-wave numerical simulations using COMSOL
Multiphysics to analyze the eigenvalue problem in this
structure. First, we obtained the numerical value of the
unperturbed resonance frequency �0 = 859.42 THz for an
isolated single resonator (the unit of eigenvalues; therefore,
the components of the Hamiltonian are in THz, although they
could be converted to rad/sec as well as being unitless). Next,
we analyzed the isolated single resonator with one scatterer
in its vicinity, and obtained two eigenmodes of this structure
with eigenvalues μ1 = 858.88 + 0.40i THz and μ2 = 859.20
THz. Now we can calculate the coupling between CW and
CCW modes that happens due to the presence of the scatterer
next to the resonator. The Hamiltonian of this structure
corresponds to H = (�1 κ12

κ21 �1
), where �1 = �0 + V1 + U1,

κ12 = (V1 − U1)e−i2mβ1 , and κ21 = (V1 − U1)ei2mβ1 . In these
expressions, �0 is the resonant frequency of the unperturbed
resonator, while β1 and m represent the azimuthal position
of the scatterer and azimuthal wave number of the WGM
in the resonator, respectively [31]. The eigenvalues of this
Hamiltonian are μ1,2 = �1 ± √

κ12κ21. By substituting the
expressions for κ12, κ21, and �1, the eigenvalues can be rewrit-
ten as μ1 = �0 + 2V1 and μ2 = �0 + 2U1. We note that the
real part of both V1 and U1 is negative since by utilization
of the scatterer, the effective radius of the resonator would
be increased, and its effective resonant frequencies would be
reduced. On the other hand, in derivation of the Hamiltonian,
initially the scatterer is assumed to be in the zero degree (β1 =
0), and the perturbation variables V1 and U1 are inserted in the
Hamiltonian as frequency shift of even and odd modes,
respectively. Thus, the rotation of the scatterer would be con-
sidered as an exponential function of β1. Since the scatterer at
zero degrees affects the even mode more than the odd mode,
the absolute value of the real part of V1 is larger than U1,
leading to

√
κ12κ21 = |V1 − U1| = U1 − V1. By substituting

the values for �0 = 859.42 THz, μ1 = 858.88 + 0.40i
THz, and μ2 = 859.20 THz obtained from the numerical
simulations, we can calculate V1 = −0.27 + 0.20i THz and
U1 = −0.11 THz.

To calculate the coupling rate between two resonators,
we analyzed a pair of coupled similar and unperturbed res-
onators, which yields two eigenmodes with eigenvalues μ1 =
859.89 THz, μ2 = 858.99 THz (note that there are two other
modes as well, with degenerated eigenvalues). The associated
Hamiltonian can be written as H = (�0 κ

κ �0
) with eigenvalues

μ1 = �0 − κ , μ2 = �0 + κ . We already know the resonance
frequency of a single resonator (�0 = 859.42 THz) and eigen-
frequencies of the coupled pair of unperturbed resonators
(μ1,2 = 859.05 THz, 859.81 THz) from the numerical simu-
lations. By substituting these values, we find the coupling rate
κ ≈ 0.38 THz. The coupling coefficients can also be calcu-
lated based on the physical system under consideration, e.g.,
using a lumped wire model in a coupled rod geometry [40].

In our numerical example, by adjusting the refractive index
and radius of the second resonator, we tune the structure to
work at the EP [Fig. 2(a) shows the field distribution of this
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FIG. 2. (a) Eigenmode of coupled resonator with one scatterer in
EP. (b) Real and (c) imaginary parts of eigenvalue of coupled res-
onators with one scatterer. (d) Eigenmode of coupled resonator with
two scatterers in EP. (e) Real and (f) imaginary parts of eigenvalue
of coupled resonators with two scatterers.

structure in the EP]. Figures 2(b)–2(c) show the real and
imaginary parts of the eigenvalues of the coupled resonator
with one scatterer vs �r = r2 − r1, where the radius and
refractive index of the first resonator are set to r1 = 0.5 μm
and n1 = 2.45, and the refractive index of the second res-
onator is tuned to n2 = 2.45 − 0.001i. The gap between the
resonators and position of the scatterer are set to g = 0.86 μm
and ϕ = 148◦. These results show that the closest value to
the EP occurs at around �r = 0.33 nm. Therefore, the tuned
radius and refractive index for the second resonator for the
whole structure to operate at EP are r2 = 500.33 nm and
n2 = 2.45 − 0.001i, respectively. We then remove the scat-
terer and the first resonator to find the complex resonance
frequency of the second resonator (�2). The corresponding
complex resonance frequency for the second resonator is
�2 = 858.85 − 0.35i THz.

1. Comparison between numerical and analytical results

Now that we have numerically derived all the complex fre-
quencies and coupling coefficients for the simulated example
at the EP, we can verify the analytical EP conditions that we
presented in the previous sections. As was shown in Sec. II,
in order to have an EP in the coupled resonators with one
scatterer along the surface of the left resonator, Eqs. (6a)–(6b)
or (7a)–(7b) should be fulfilled. According to Eq. (7a), the
difference of the real parts of the resonant frequencies should
be equal to ω2 − ω1 = − Re(

√
κ12κ21) = Re(V1) − U1. Since
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FIG. 3. Comparison of COMSOL and CMT results for the struc-
ture with one scatterer: (a) Real and (b) imaginary, and two scatterers:
(c) real and (d) imaginary parts of eigenvalues.

ω1 = �0 + Re(V1) + U1, we can obtain

ω2 = �0 + 2 Re (V1) = 858.88 THz. (11)

Similarly, according to Eq. (7b), the difference of imagi-
nary parts of resonant frequencies should be γ2 − γ1 = 2κ +
Im

√
κ12κ21 = 2κ − Im(V1). Since γ1 = − Im(V1), we get

γ2 = 2κ − 2 Im (V1) = 0.36 THz. (12)

The resonant frequency and dissipation of the second res-
onator in Eqs. (11) and (12) are very close to the value
obtained from the COMSOL result �2 = 858.85 − 0.35i
THz, at the EP, which verifies the calculated EP conditions
in Sec. II.

Figures 3(a) and 3(b) represent a more complete compar-
ison between the COMSOL results with those obtained from
the coupled mode theory presented in Sec. II. For this com-
parison, instead of radius, we tune the imaginary part of the
refractive index of the second resonator, since by changing the
radius, some other parameters such as resonance frequency,
loss, and coupling between two resonators can change simul-
taneously. Also, it should be noted that in this figure, the
eigenvalues are plotted versus the difference of the (intrinsic)
dissipation of the resonators �γ = γ2 − γ1 with γ1 = 0.

For the structure with one scatterer, the setting of the
simulation is the same as in Figs. 2(b)–2(c), but with fixed
radius r2 = 500.33 nm (at which the EP can occur). The
imaginary part of the second resonator’s refractive index is
tuned (for which the corresponding complex frequency is
obtained by analyzing a single resonator with such refractive
indices). For CMT, we consider the eigenvalue problem,
Eq. (2), with �1 = �0 + V1 + U1, κ12 = (V1 − U1)e−i2mβ1 ,
κ21 = (V1 − U1)ei2mβ1 , �2 = �0 + 2Re(V1) − iγ2. The even-
and odd-mode frequency shifts are V1 = −0.27 + 0.20i THz
and U1 = −0.11 THz, respectively, angular momentum of
the resonators is m = 18, azimuthal rotation of the scatterer
is β1 = 148◦, resonant frequency �0 = 859.42 THz, and
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FIG. 4. (a)–(b) Real and imaginary parts of eigenvalues of sym-
metric and antisymmetric modes. (c)–(d) Field distribution of the
chiral EP.

coupling between two resonators with distance g = 0.86 μm
is estimated κ = 0.38 THz. Figure 3 shows good agreement
between COMSOL and CMT results for the structure with
one scatterer.

2. Chiral exceptional point

The chiral EP is an interesting type of EP that has been
shown to occur, e.g., in an individual resonator incorporating
two scatterers along its surface [31]. Such EP is due to the de-
structive optical interferences for either CW or CCW modes.
A similar effect can be observed in a coupled pair of res-
onators with one scatterer. The perturbed coupled resonators
have four eigenmodes: two symmetric and two antisymmetric.
If the eigenvalues of one symmetric and one antisymmetric
mode degenerate [see Figs. 4(a) and 4(b), right resonator],
we will observe the chiral EP in this structure. The associated
field distribution is shown in Figs. 4(c)–4(d) for �r = 5.5 nm.
Besides, the field distribution in the left resonator is seemingly
a linear combination of two WGMs with different radial and
azimuthal quantum numbers, with a specific weighting coef-
ficient. We note that in this figure, just below �r = 2 nm,
there is a coincidence point. However, at this point the eigen-
functions of two modes are orthogonal (even- and odd-mode
resonances); therefore, it cannot be considered an EP, for
which both eigenvalues and eigenfunctions should coalesce.

B. Two scatterers

In this section, we investigate the EP in a pair of
coupled resonators containing two scatterers (one next
to each scatterer). We consider the simplest form when
two scatterers as well as the radius of the resonators
are identical. Knowing κ12 = (V1 − U1)e−i2mβ1 , κ21 = (V1 −
U1)ei2mβ1 , κ ′

12 = (V1 − U1)e−i2mβ2 , κ ′
21 = (V1 − U1)ei2mβ2 , the

term
√

κ12κ21 − √
κ ′

12κ ′
21 in Eqs. (9) and (10) would be zero.

Therefore, the condition of Eq. (9c) or (10c) yields 2m(β1 +
β2) = nπ where n is an integer number, which can happen for
specific rotations of the scatterers. For instance, the rotation
of the first and second scatterers is considered 150◦ and −30◦,
respectively, while the angular momentum is m = 18, which
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FIG. 5. Chiral EP in (a) the right resonator, (b) left resonator, and
(c) both resonators.

fulfills the aforementioned condition. Figure 2(d) shows the
field distribution of this structure in the EP, and Figs. 2(e) and
2(f) show real and imaginary parts of its eigenvalues versus
�r = r2 − r1, where the EP happens at �r = 0. The radius
of the first resonator and gap between them are r1 = 0.5 μm
and g = 0.8 μm, while their refractive indices are tuned to
n1 = 2.45 and n2 = 2.45 + 0.0026i, respectively.

Figures 3(c) and 3(d) verify that the presented CMT in
Sec. III perfectly describes the coupled pair of resonators
with two scatterers. For two scatterers, the settings of the
simulation in COMSOL are the same as in Figs. 2(e)–2(f),
but with fixed radius r2 = 0.5 μm, and different values of
the imaginary part of the second resonator’s refractive index.
For CMT, Eq. (8) is used with �1 = �0 + V1 + U1, κ12 =
(V1 − U1)e−i2mβ1 , κ21 = (V1 − U1)ei2mβ1 , �2 = �0 + V1 +
U1 − iγ2, κ ′

12 = (V1 − U1)e−i2mβ2 , κ ′
21 = (V1 − U1)ei2mβ2 . The

azimuthal rotation of the first and second scatterers is β1 =
150◦ and β2 = −30◦, and the coupling rate of two resonators
with distance g = 0.8 μm is κ = 0.43 THz.

The chiral EP can also occur in the coupled resonators with
two scatterers. It is quite interesting to note that by tuning
the relative position of the scatterers, we can achieve a chiral
EP in one of the resonators, individually, or both of them,
simultaneously. Switching between these two states can be
done by changing the position of the scatterers.

Figure 5 shows different states of the chiral EP in this
structure, which are obtained by tuning the position of the
scatterers. The refractive indices of the left and right res-
onators are considered n1 = 2.45 and n2 = 2.45 + 0.0023i,
respectively. In Figs. 5(a), 5(b), and 5(c), the chiral EP occurs
in the right resonator, left resonator, and both of them, where
the azimuthal position of the scatterers (ϕ1, ϕ2) is tuned to
(150◦,−58.5◦), (150◦,−58◦), and (148.5◦,−28.5◦), respec-
tively. In Fig. 5(c), the gap between the scatterers and the
resonators (g1, g2) is tuned to (2,3) nm, while in Figs. 5(a)
and 5(b), there is no gap.

V. CONCLUSION AND OUTLOOK

We found three general EP conditions in the perturbed cou-
pled pair of resonators, and showed that, with manipulating

the perturbation, we can achieve the EP regime, if the system
fulfills these conditions. Our analytical model reveals several
exciting phenomena about the operational mechanism of these
structures. It shows that the location of the EP can be tuned
by the value of the perturbation, and we can achieve the EP
in a system with any arbitrary value of perturbations as far
as the mentioned conditions are satisfied. We studied a few
numerical examples using full-wave numerical simulations
to validate the presented analytical method. The numerical
results show that the presented analytical method can describe
the system with a very high accuracy. Having control over the
perturbation can enable engineering fascinating functionali-
ties such as creating a chiral EP in only one resonator as well
as both of them, simultaneously.

The more sophisticated Hamiltonian contains the effect of
the scatterer in the vicinity of one resonator on the other res-
onator, which will be the subject of future works. For instance,
numerical results show that some specific positions of the
scatterer yield closer conditions to the EP, compared to the
other positions, which can only be described by the indirect
effect of the scatterers on the intercoupling between the res-
onators, and on the coupling between CW (CCW) and CCW
(CW) of another resonator. To deal with such Hamiltonian
, with a considerable number of variables, some methods such
as deep learning can be incorporated, which was recently
employed in the photonics community to design various so-
phisticated structures. Besides, the scatterers in the coupling
region between the resonators can create some other interest-
ing results, such as chiral modes of higher-order resonances.
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APPENDIX

Setting the determinant of matrix Eq. (8) to zero gives
[
(�1 − μ)(�2 − μ) − κ2

ab

]2

= +κ ′
12κ

′
21(�1 − μ)2 + κ12κ21(�2 − μ)2

− κ12κ21κ
′
12κ

′
21 + κ2

abκ12κ
′
12 + κ2

abκ21κ
′
21. (A1)

If we assume κ12κ
′
12 = κ21κ

′
21 [in fact, this assumption gives

one of the conditions of the EP, Eq. (9c) or (10c)], we can
write

[
(�1 − μ)(�2 − μ) − κ2

ab

]2

= [√
κ ′

12κ ′
21(�1 − μ) + √

κ12κ21(�2 − μ)
]2

− 2κ12κ
′
12(�1 − μ)(�2 − μ) − (κ12.κ

′
12)2

+ 2κ2
abκ12κ

′
12, (A2)

which gives
[
(�1 − μ)(�2 − μ) − κ2

ab + κ12κ
′
12

]2

= [√
κ ′

12κ ′
21(�1 − μ) + √

κ12κ21(�2 − μ)
]2

. (A3)
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This equation can be decoupled to two second-order
polynomial equations. Following the same procedure as
in Sec. II, one of these equations gives �2 − �1 =

√
κ12κ21 − √

κ ′
12κ ′

21 ± 2iκab, and another one gives �2 −
�1 = √

κ ′
12κ ′

21 − √
κ12κ21 ± 2iκab for EP conditions, which

is equivalent to Eqs. (9a)–(9b) and (10a)–(10b), respectively.
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