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Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-
Abelian braid statistics and topological quantum computation. We construct a p-wave paired Bardeen-Cooper-
Schrieffer (BCS) wave function for composite fermions in the torus geometry, which is a convenient geometry
for formulating momentum space pairing as well as for revealing the underlying composite-fermion Fermi sea.
Following the standard BCS approach, we minimize the Coulomb interaction energy at half filling in the lowest
and the second Landau levels, which correspond to filling factors ν = 1/2 and ν = 5/2 in GaAs quantum wells,
by optimizing two variational parameters that are analogous to the gap and the Debye cutoff energy of the BCS
theory. Our results show no evidence for pairing at ν = 1/2 but a clear evidence for pairing at ν = 5/2. To
a good approximation, the highest overlap between the exact Coulomb ground state at ν = 5/2 and the BCS
state is obtained for parameters that minimize the energy of the latter, thereby providing support for the physics
of composite-fermion pairing as the mechanism for the 5/2 fractional quantum Hall effect. We discuss the
issue of modular covariance of the composite-fermion BCS wave function, and calculate its Hall viscosity and
pair correlation function. By similar methods, we look for but do not find an instability to s-wave pairing for
a spin-singlet composite-fermion Fermi sea at half-filled lowest Landau level in a system where the Zeeman
splitting has been set to zero.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] has proved
a treasure trove of exotic emergent phenomena. A striking
example is the FQHE at filling factor ν = 5/2 [2,3], which
corresponds to half filled second Landau level (LL) in GaAs
quantum well systems. The most promising theoretical ex-
planation of this state [4,5] passes through a succession of
remarkable emergences: First is the emergence of compos-
ite fermions (CFs), namely, electrons carrying two quantized
vortices, which arise as a result of the repulsive interaction
between electrons [6–8]. Composite fermions experience no
effective magnetic field at half filling and attempt to form a
CF Fermi sea (CFFS), in analogy to the CFFS at ν = 1/2
in the lowest LL (LLL) [9–15]. The CFFS in the second LL
(SLL), however, is unstable to a topological p-wave pairing
of fully spin-polarized composite fermions, which opens a
gap and thus produces a FQHE. Furthermore, this paired
state is predicted to give birth to its own new emergent
particles, namely, Majorana particles obeying non-Abelian
braiding statistics [4,5]. These are interesting in their own
right and have also generated exciting proposals for topo-
logical quantum computation [16]. The past three decades
have seen an intense theoretical and experimental investiga-
tion of the “5/2 state,” which has lent nontrivial support to
certain aspects of the above-outlined physical mechanism for
the 5/2 FQHE. Moore and Read (MR) proposed an ansatz
wave function for the paired CF state [4], which has a lower
energy than the CFFS [17] and a significant overlap with the
exact Coulomb ground state for small systems [18]. Further-
more, numerical calculations indicate that the CFFS in the

second Landau level (LL) is unstable to Cooper pairing [19].
More recently, it has been shown [20] that a wave function
belonging to the parton class [21] also describes topologi-
cal superconductivity of composite fermions and provides a
comparably decent quantitative account of the exact Coulomb
state. Experimentally, convincing evidence exists that the 5/2
state in the SLL is fully spin polarized [22–25], which is a
necessary condition for topological p-wave superconductiv-
ity. The appearance of a CFFS at ν = 5/2 at either elevated
temperatures [26] or at nearby filling factors [25] supports
the notion that the 5/2 state arises from an instability of the
CFFS. Furthermore, the thermal Hall conductance of the 5/2
state has been found to be half quantized [27], as expected
from topological superconductivity, although its value is in-
consistent with the expectation from the MR state or its hole
conjugate.

Even though the MR wave function can be readily seen
to describe pairing of composite fermions, it is not expressed
in the standard Bardeen-Cooper-Schrieffer (BCS) form. There
are several motivations to construct a CF-BCS wave function.
For one thing, the MR (or the parton) wave function does not
contain any variational parameters that would allow one to
optimize the pair wave function. (The absence of variational
parameters is a rather ubiquitous feature of the CF theory,
but often, especially in the LLL, the parameter-free wave
functions turn out to be such accurate representations of the
Coulomb ground states that the lack of variational parameters
is seen as a virtue rather than a shortcoming.) Second, a BCS
wave function should clarify how the paired state evolves out
of the CFFS. Finally, the BCS framework can in principle be
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used to study pairing of other symmetry types that might be
relevant at other filling factors.

We construct in this article a BCS wave function for com-
posite fermions. A significant aspect of our work is that we
employ the torus geometry, which is the most natural ge-
ometry for formulating pairing in the momentum space as
well as for revealing the underlying CFFS. We follow the
standard procedure of the composite-fermion theory [6–8] by
first constructing the BCS pair wave function for electrons and
then composite-fermionizing it by vortex attachment. There
are several technical obstacles that must be overcome, how-
ever. In particular, the standard Jain-Kamilla (JK) projection
method [28,29] does not preserve the quasi-periodic bound-
ary conditions. We show how a suitable modification of this
method accomplishes the goal and produces legitimate LLL
wave functions. (We note that it is convenient to work within
the LLL subspace; the SLL physics is simulated in the LLL
through an effective interaction that has the same Haldane
pseudopotentials [30] in the LLL as the Coulomb interaction
does in the SLL.) This wave function has two variational
parameters, analogous to the gap parameter and the Debye
cutoff of the BCS theory, and reduces to the CFFS in one
limit. We calculate the Coulomb energy of this wave function
as a function of these parameters. We find that at ν = 5/2,
the lowest energy is obtained for a nonzero gap, indicating
a pairing instability of the CFFS. No pairing instability is
found at ν = 1/2; here the minimum energy is produced by
the CFFS state.

One may ask what is the origin of such a striking differ-
ence in the behaviors at ν = 5/2 and ν = 1/2. An intuitive
way to understand this is by noting that while composite
fermions are much more weakly interacting than electrons,
there is nonetheless a residual interaction between composite
fermions, which depends on the interaction between elec-
trons in some complicated manner [31–33]. The interelectron
interaction pseudopotentials are different in the lowest and
the second LLs, and our results indicate that the resulting
residual interaction between composite fermions is repulsive
at ν = 1/2, but weakly attractive at ν = 5/2, thereby causing
a pairing instability [19]. Essentially, the binding of vortices
effectively screens the interaction between electrons, but at
ν = 5/2 it results in an over-screening.

There has been important previous work along this direc-
tion. Möller and Simon [34] implemented a CF-BCS wave
function in the spherical geometry. They showed that a good
approximation could be found for the exact Coulomb ground
state as well as the MR wave function for appropriate choices
of parameters. More recently, Wagner et al. [35] have con-
sidered s-wave pairing in quantum Hall bilayers, wherein an
electron-flux composite fermion in one layer and a hole-flux
composite fermion in the other layer form pairs and condense.
Yutushui and Mross [36] have shown how to study CF pairing
for large scale systems. All of these studies have employed the
spherical geometry.

We note that even though we follow the convention of
using the terminology “5/2 state,” which refers to the FQHE
state at half-filled SLL in GaAs based quantum wells, com-
pletely analogous states occur at other half fillings in GaAs
quantum wells (e.g., 7/2), AlAs quantum wells, and bilayer
graphene [37,38]. Our work also applies to all of these states

to the extent that corrections due to LL mixing and finite width
may be neglected.

While the actual state at ν = 5/2 is believed to be fully
spin polarized even in the absence of Zeeman energy, the
state at ν = 1/2 is believed to be a spin-singlet CFFS in the
limit of vanishing Zeeman energy. We investigate whether the
ν = 1/2 CFFS is unstable to spin-singlet pairing of composite
fermions when the Zeeman coupling is switched off. We find
no signature of s-wave pairing for the Coulomb interaction.

The paper is organized as follows. In Sec. II we review var-
ious previously known wave functions of composite fermions
on a torus. In Sec. III we construct a BCS wave function for
fully spin-polarized composite fermions with two variational
parameters: a gap parameter and a momentum cutoff. It is
shown that a modified JK projection preserves the quasiperi-
odic boundary conditions to produce legitimate LLL wave
functions. The variational parameters are determined by en-
ergy minimization in Sec. IV. The CFFS is found to be the
lowest energy state at ν = 1/2, indicating an absence of pair-
ing instability. In contrast, at ν = 5/2, pairing of composite
fermions leads to a lower energy. We compare the CF-BCS
state with the exact Coulomb ground state as well as the
MR wave function. In Sec. V we use this method to look
for a spin-singlet pairing instability at ν = 1/2 in a system
where the Zeeman energy is switched off. We calculate the
Hall viscosity of the CF-BCS state in Sec. VI. the appendices
provide various details omitted from the main text as well as
a brief review of the numerical methods.

II. COMPOSITE FERMIONS ON A TORUS

The torus geometry, with a magnetic field perpendicular to
its surface, was introduced for FQHE in the 1980s [39–41].
We begin with a brief review of the various CF states on the
torus, namely, the Laughlin, Jain, MR, and CFFS states, which
introduces concepts and technical details that are necessary
when we construct the CF-BCS wave function.

The torus is represented by a parallelogram in the complex
plane with periodic boundary conditions. The two sides of the
parallelogram are given by L and Lτ , where L is taken to be
along the real axis, and τ = τ1 + iτ2 is a complex number rep-
resenting the modular parameter of a torus [42]. The magnetic
field is perpendicular to the parallelogram with B = −Bẑ. We
use the symmetric gauge with A = B

2 (y,−x, 0), and define
the complex coordinates as z = x + iy. The single-particle
wave functions are taken to satisfy the quasiperiodic boundary
conditions along the two directions

t (L)ψ (z, z̄) = eiφ1ψ (z, z̄),

t (Lτ )ψ (z, z̄) = eiφτ ψ (z, z̄), (1)

where t (L) and t (Lτ ) are the magnetic translation operators
along the two edges of the parallelogram, whose general defi-
nition is

t (ξ ) = e− i
2�2 ẑ·(ξ×r)T (ξ ), (2)

where � = √
h̄c/eB is the magnetic length and T (ξ ) is the

translation operator for a vector ξ = (ξx, ξy) defined as

T (ξ ) = eξ∂z+ξ̄ ∂z̄ , (3)
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with ξ = ξx + iξy. The phases φ1 and φτ specify the Hilbert
space [41]. The commutation relation [t (L), t (Lτ )] = 0 re-
quires the number of flux quanta through the torus, Nφ =
L2Im(τ )B/φ0, to be an integer, where φ0 = hc/e is a flux
quantum. The relations

t (L)e
z2−|z|2

4�2 = e
z2−|z|2

4�2 T (L), (4)

t (Lτ )e
z2−|z|2

4�2 = e
z2−|z|2

4�2 e−iπNφ (2z/L+τ )T (Lτ ) (5)

will be useful below. The many-particle wave function 
 with
N particles should satisfy the properties

t j (L)
({zi}, {z̄i}) = eiφ1
({zi}, {z̄i}),

t j (Lτ )
({zi}, {z̄i}) = eiφτ 
({zi}, {z̄i}), (6)

where t j is the magnetic translation operator for the jth parti-
cle with j = 1, 2, ..., N .

We now briefly review some model wave functions that we
use in our calculations. We assume absence of LL mixing and
thus project the wave functions into the LLL. We simulate the
physics of the second LL by mapping the Coulomb interaction
to an effective interaction in the LLL [17,43,44].

A. The Laughlin wave function

The Laughlin wave function at filling factor ν = 1/m,
which we use later, is written in the disk geometry as [45]


L
1/m = exp

[
−
∑

j

|z j |2/4�2

]∏
i< j

(zi − z j )
m. (7)

In torus geometry, the analogous wave function satisfying the
periodic boundary conditions is given by [40,41,46]


L
1/m,kCM

= e
∑

i
z2
i −|zi |2

4�2

{
ϑ

[
φ1

2πm + kCM
m + N−1

2

− φτ

2π
+ m(N−1)

2

](
mZ

L

∣∣∣∣∣mτ

)}∏
i< j

{
ϑ

[ 1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)}m

, (8)

where Z = ∑N
i=1 zi is the center-of-mass (CM) coordinate,

and kCM = 0, .., m − 1 is related to the CM momentum, de-
fined through

tCM(L/Nφ )
L
1/m,kCM

= ei2π ( φ1
2πm + kCM

m + N−1
2 )
L

1/m,kCM
, (9)

where

tCM(L/Nφ ) ≡
N∏

i=1

ti(L/Nφ ). (10)

The m values of kCM refer to m degenerate ground-state wave
functions. Here we use the Jacobi θ function with rational
characteristics, defined as [47]

ϑ

[
a
b

]
(z|τ ) =

∞∑
n=−∞

eiπ (n+a)2τ ei2π (n+a)(z+b). (11)

The factor
∏

i< j ϑ[
1
2
1
2

]( zi−z j

L |τ ) is analogous to
∏

i< j (zi − z j ) of

the disk geometry [48]. For the special case of m = 1, Eq. (8)
gives the wave function 
1 for the filled LLL.

B. The Jain wave functions

For the ground and excited states at arbitrary filling factors
ν = N/Nφ , where N particles are exposed to Nφ flux quanta,
the Jain wave functions are constructed as


ν∗/(2pν∗+1) = PLLL
ν∗

2p
1 , (12)

where PLLL is the LLL projection operator, and 
ν∗ is the
many-particle wave function at filling factor ν∗ = N/N∗

φ , with
N∗

φ = Nφ − 2pN . For integer values of ν∗ = N/N∗
φ = n, 
n is

a Slater determinant representing n filled LLs, and the wave
functions 
n/(2pn+1) correspond to the incompressible Jain
states [6,49].

The LLL projection can be accomplished in more than one
way. A “direct” projection [50] is equivalent to expanding the

wave function in the Slater determinant basis and retaining
only the LLL part. Because the dimension of the Hilbert space
grows exponentially with the system size, this projection can
be accomplished only for relatively small systems. An al-
ternative method is the JK projection [28,29], which allows
treatment of much larger systems. The JK projection must be
modified in the torus geometry, as shown in Ref. [49], which
gives the explicit LLL projected form of the wave functions
in the torus geometry. We note that the wave function in
Eq. (12) is, in general, not an eigenstate of the CM momen-
tum; Ref. [49] has shown how all degenerate ground states
with definite CM momenta can be obtained from it.

C. The CFFS wave function

For the special case of N∗
φ = 0, 
ν∗ is a slater determinant

of plane waves, Det[eikn·rm ], producing the CFFS wave func-
tion at filling ν = 1/2:


CFFS
1/2,kCM

= PLLLDet[eikn·rm ]
L
1/2,kCM

, (13)

where we have used 
L
1/2,kCM

rather than 
2
1 to ensure that the

wave function has a well-defined CM momentum by choosing
kCM = 0, 1. In the rest of the paper, we take kCM = 0 and
omit this subscript. The wave vectors that are allowed by the
quasiperiodic boundary conditions for a torus are

kn =
[

n1 + φ1

2π

]
b1 +

[
n2 + φτ

2π

]
b2, (14)

where

b1 =
(

2π

L
,−2πτ1

Lτ2

)
, b2 =

(
0,

2π

Lτ2

)
. (15)

To project the wave function into the LLL, we note that

the terms in Eq. (13) have factors of the form eikn·rm e
z2
m−|zm |2

4�2 .
We first write eikn·rm = e

i
2 (knz̄m+k̄nzm ), where kn = kn,x + ikn,y.
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The “direct” projection [50] is accomplished by bringing z̄m

to the left and making the replacement z̄m → 2�2∂zm (with the
understanding that the derivative does not act on e−|zm|2/4�2

)
[6,51]. That gives

PLLLeikn·rm e
z2
m−|zm |2

4�2 = e
−|zm |2

4�2 e
i
2 kn2�2∂zm e

z2
m

4�2 e
i
2 k̄nzm

≡ e
z2
m−|zm |2

4�2 F̂kn (zm), (16)

where

F̂kn (zm) = e− kn�2

4 (kn+2k̄n )e
i
2 (k̄n+kn )zm eikn�

2∂zm . (17)

With this, the CFFS wave function at ν = 1/2 can be written
as


CFFS
1/2,kCM

= e
∑

m
z2
m−|zm |2

4�2 ϑ

[
φ1
4π

+ Nφ−2

4

− φτ
2π

+N−1

]

×
(

2(Z +∑
j i�2k j )

L

∣∣∣∣∣2τ

)
Det

[
F̂kn (zm)

] N∏
i=1

Ji,

(18)

where

Ji =
∏
j �=i

ϑ

[ 1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)

. (19)

Since the Slater determinant is made up of the operators
F̂kn (zm), this form is impractical for the treatment of large
systems. To overcome this issue, we resort to the JK projection
[28,29]. The idea of JK projection is to make in Eq. (18) the
replacement

Det
[
F̂kn (zm)

] N∏
i=1

Ji → Det
[
F̂kn (zm)Jm

]
(20)

and then project each element F̂kn (zm)Jm separately into the
LLL. However, a modification is necessary in F̂kn (zm)Jm in
the torus geometry to preserve the quasiperiodic boundary
conditions: the last factor in Eq. (17) must be replaced by

ei2kn�
2∂zm . The final form of the projected CFFS wave function

is [49,52–57]

PLLL
CFFS
1
2

= e
∑

i
z2
i −|zi |2

4�2

{
ϑ

[
φ1

4π
+ Nφ−2

4
− φτ

2π
+ (N − 1)

]

×
[

2
(
Z + i�2 ∑

j k j
)

L

∣∣∣∣∣2τ

]}
Det

[
Gkn (zm)

]
(21)

Gkn (zm) = e
kn�2

4 (kn+2k̄n )e
i
2 (k̄n+kn )zm

×
∏

j, j �=m

ϑ

[ 1
2
1
2

](
zm + i2kn�

2 − z j

L

∣∣∣∣∣τ
)

. (22)

Here, we have a nontrivial factor of 2 for the original transla-
tion by ikn�

2 in Gkn (zm) to preserve the PBC.

D. The MR wave function

The MR wave function, introduced in Ref. [4], refers to a
special form of CF pairing. In the disk geometry, it is given by


MR = exp

[
−
∑

j

|z j |2/4�2

]
Pf

(
1

z j − zk

)∏
j<k

(z j − zk )2.

(23)
Here Pf represents Pfaffian, which is defined, for an N × N
antisymmetric matrix Mi j (with even N), as

Pf{Mi j} = 1

2N/2(N/2)!

∑
σ

N/2∏
i=1

Mσ (2i−1)σ (2i), (24)

where σ labels all permutations. The term Pf( 1
z j−zk

) repre-
sents a paired state with pair wave function 1/(z j − zk ), and
the factor

∏
j<k (z j − zk )2 converts electrons into composite

fermions.
On a torus, the MR wave function can be written as [58–60]



(a,b)
MR = e

∑
i

z2
i −|zi |2

4�2

{
ϑ

[
φ1

4π
+ Nφ−2

4 + (1−2a)
4

− φτ

2π
− (Nφ−2)

2 − (1−2b)
2

](
2Z

L

∣∣∣∣∣2τ

)}
Pf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϑ

[
a
b

]( zi−z j

L |τ)
ϑ

[ 1
2
1
2

]( zi−z j

L |τ)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
{∏

i< j

ϑ

[ 1
2
1
2

](
zi − z j

L

∣∣∣∣∣τ
)}2

. (25)

The parameters (a, b) take values (0, 1/2), (1/2, 0), or (0,0).
The resulting wave functions correspond to the three-fold
topological degeneracy of MR states and lie in different Hal-
dane pseudomomentum (i.e., relative momentum) sectors [41]
(N/2, 0), (0, N/2), (N/2, N/2), respectively. These states are
exactly degenerate for the 3-body interaction for which the
MR wave function is the exact ground state and are believed to
become degenerate for the Coulomb interaction in the thermo-
dynamic limit. The correspondence of the MR wave function
in Eq. (25) with the more familiar disk geometry form of
Eq. (23) can be seen from the facts that the Pfaffian part in

Eq. (25) is analogous to Pf( 1
zi−z j

) since ϑ[
1
2
1
2
]( zi−z j

L |τ ) vanishes

for zi = z j while ϑ[a
b](

zi−z j

L |τ ) does not vanish for zi = z j for

the chosen values of (a, b).

III. CONSTRUCTION OF BCS WAVE FUNCTION FOR
COMPOSITE FERMIONS

The MR wave function in Eq. (25) represents a topological
px − ipy pairing of composite fermions and has exotic prop-
erties such as excitations with non-Abelian braiding statistics.
However, unlike the BCS wave function, it does not have any
variational parameters, and it is unclear how the MR state may
be connected to the CFFS by tuning the pairing strength. In
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this section, we construct a BCS wave function for composite
fermions with two variational degrees of freedom. This wave
function explicitly reduces to the CFFS in one limit. We cal-
culate its energy as a function of the variational parameters
and find that, to a good approximation, the minimum energy
wave function also has the highest overlap with the exact SLL
ground state. We take this as theoretical evidence for pairing
in the 5/2 state.

First consider a system of spin-polarized electrons with an
attractive interaction. The ground state of the system can be
described by the BCS wave function. The mean-field BCS
Hamiltonian can be written as [61]

H =
∑

k

εkc†
kck +

∑
k

(
1

2
�kc†

kc†
−k + H.c.

)
, (26)

where H.c. means Hermitian conjugate, εk = h̄2|k|2/2m −
h̄2|kF |2/2m and the gap function �k = � (kx − iky) is taken
to have p-wave symmetry. Here m is the electron mass and kF

is the Fermi wave vector. We take � to be a real number. The
BCS wave function for electrons can be written as [61,62]

|
BCS〉 =
′∏
k

(uk + vkc†
kc†

−k)|0〉, (27)

where
∏′ means that each k,−k pair only appears once. [We

choose φ1 = φτ = π so that the reciprocal lattice vectors are
given by k = (n1 + 1/2)b1 + (n1 + 1/2)b2; with this choice,
k = 0 is absent and the allowed wave vectors appear in pairs

±k.] The state |0〉 is the null state with no electrons. Following
the standard Bogoliubov transformation, we can obtain the
relation

gk ≡ vk

uk
=

εk −
√

ε2
k + |�k|2

�∗
k

= −g−k. (28)

The particle number is not conserved in |
BCS〉. After project-
ing |
BCS〉 into a fixed particle-number sector, the real-space
BCS wave function is given by [62]


BCS(r1, ...., rN ) = Pf[g(ri − r j )], (29)

where the function g is antisymmetric under exchange of two
particles. In the plane-wave basis, we have

g(ri − r j ) =
∑

kn

gkn eikn·(ri−r j ). (30)

We now write the BCS wave function for composite
fermions at ν = 1/2 as


BCS
1
2

= PLLLPf

(∑
kn

gkn eikn·(ri−r j )

)

L

1/2, (31)

where 
L
1/2 is given in Eq. (8). We assume that the form of gk

is still given by Eq. (28), but with the electron mass m replaced
by the CF mass m∗.

We need to project the wave function into the LLL. For
“direct” projection, we can follow the approach described for
the CFFS to project the paired plane wave eikn·(r1−r2 ):

PLLLeikn·(r1−r2 )e
z2
1+z2

2−|z1 |2−|z2 |2
4�2 = e

z2
1+z2

2−|z1 |2−|z2 |2
4�2 e− kn�2

2 (kn+2k̄n )e
i
2 (z1−z2 )(kn+k̄n )eikn�

2∂z1 e−ikn�
2∂z2

≡ e
z2
1+z2

2−|z1 |2−|z2 |2
4�2 F̂n(z1, z2). (32)

The CF-BCS wave function can then be written as


BCS
1
2

= e
∑

i
z2
i −|zi |2

4�2 ϑ

[
φL

1
4π

+ Nφ−2

4

− φL
τ

2π
+N−1

](
2Z

L1

∣∣∣∣2τ

)
Pf

[∑
n

gkn F̂n(zi, z j )

]∏
i

Ji, (33)

where φL
1 and φL

τ are the phases for the Laughlin part. At this
point, each matrix element

∑
n gkn F̂n(zi, z j ) in the Pfaffian is

an operator. One can directly confirm that the operators inside
the Pfaffain commute with the center-of-mass part of 
L

1/2,
since the momentum kn is always paired with −kn.

The above form is not amenable to calculations for systems
with more than eight particles. For that reason, we appeal
to the JK projection. As discussed previously, the JK pro-
jection in its simplest version fails to conserve the periodic

boundary conditions, and it is necessary to modify it. The
modification for the Jain states and the CFFS was discussed
in Refs. [49,56]. For the CF-BCS wave function, the situation
is even more complicated because we need to bring both Ji

and Jj into the Pfaffian, to write it as

Pf

[∑
n

gkn F̂n(zi, z j )

]∏
i

Ji → Pf

[∑
n

gkn F̂n(zi, z j )JiJj

]
,

(34)

and then project each matrix element separately. To preserve the boundary conditions, we find that we need to replace the

eikn�
2∂zi e−ikn�

2∂z j factor in F̂n(zi, z j ) by eikn�
2D̂( j)

zi e
−ikn�

2D̂(i)
z j , where the new derivative operator D̂( j)

zi is defined as

D̂( j)
zi

ϑ

[
1/2

1/2

]( zi − zl

L

∣∣∣τ) ≡

⎧⎪⎪⎨
⎪⎪⎩

∂
∂zi

ϑ

[
1/2

1/2

]( zi−zl
L |τ) if l = j,

2 ∂
∂zi

ϑ

[
1/2

1/2

]( zi−zl
L |τ) if l �= j.

(35)
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The final form for the JK projected wave function is


BCS
1
2

= e
∑

i
z2
i −|zi |2

4�2

{
ϑ

[
φL

1
4π

+ Nφ−2
4

− φL
τ

2π
+ N − 1

](
2Z

L

∣∣∣∣∣2τ

)}
Pf(Mi j ), (36)

where the Pfaffian matrix element is

Mi j =
∑

kn

gkn e− �2

2 kn(kn+2k̄n )e
i
2 (zi−z j )(kn+k̄n )

{
ϑ

[ 1
2
1
2

][
zi + ikn�

2 − (z j − ikn�
2)

L

∣∣∣∣∣τ
]}2

×
{ ∏

r
r �= i, j

ϑ

[ 1
2
1
2

](
zi + i2kn�

2 − zr

L

∣∣∣∣∣τ
) ∏

m
m �= i, j

ϑ

[ 1
2
1
2

](
z j − i2kn�

2 − zm

L

∣∣∣∣∣τ
)}

. (37)

Mi j is odd under exchange of i and j, as can be seen by noting that Mi j = ∑
k Mkn

i j , and that Mkn
i j is odd under kn → −kn and

exchange of i and j:

Mkn
i j = gkn e− �2

2 kn(kn+2k̄n )e
i
2 (zi−z j )(kn+k̄n )

{
ϑ

[ 1
2
1
2

](
zi + ikn�

2 − (z j − ikn�
2)

L

∣∣∣∣∣τ
)}2

{· · · }

= −g−kn e− �2

2 (−kn )((−kn )−2k̄n )e
i
2 (z j−zi )(−kn−k̄n )

{
ϑ

[ 1
2
1
2

](
z j − ikn�

2 − (zi + ikn�
2)

L

∣∣∣∣∣τ
)}2

{· · · } = −M−kn
ji , (38)

where {· · · } contains the last two terms in Eq. (37). The sum over the (kn,−kn) pairs give us Mi j = −Mji for i �= j. The boundary
conditions can be verified as shown in Appendix A.

To parametrize our BCS-paired wave function, we define a dimensionless variational parameter δkF , which we refer to as the
gap parameter,

δkF = �|kF |
h̄2|kF |2/2m∗ . (39)

The information of the pairing strength � and effective mass m∗ are both encoded in the definition of δkF . Now Eq. (28) can be
rewritten as

gkn =
h̄2|kn|2

2m∗ − h̄2|kF |2
2m∗ −

√( h̄2|kn|2
2m∗ − h̄2|kF |2

2m∗
)2 + |�kn|2

�(kn,x + ikn,y)
=

|kn|2 − |kF |2 −
√

(|kn|2 − |kF |2)2 + δ2
kF

|kF |2|kn|2
δkF (kn,x + ikn,y)|kF | . (40)

We introduce another variational parameter kcutoff , which
is a cutoff on kn in

∑
kn

in Eq. (36). More specifically, we set
that |gkn | = 0 for |kn| > kcutoff . This may be viewed as being
analogous to the Debye cutoff for the gap in the BCS theory.
We will minimize the energy of the wave function with respect
to these two parameters δkF and kcutoff .

We have shown above that our BCS wave function satisfies
the correct boundary conditions. Another important property
of a physical wave function in the torus geometry is modular
covariance. As mentioned above, the geometry of torus is
parameterized by the modular parameter τ . The correspon-
dence between τ and the geometry is not one-to-one. The
geometry is unchanged under the modular transformations
T : τ → τ + 1, S : τ → −1/τ and any combination of these
two transformations [42]. Obviously, any physical observ-
ables should be invariant under these transformations. This
requires that the mixing of a degenerate set of wave functions
is closed under these transformations. The wave functions
that satisfy this property are said to be modular covariant
[57,63,64]. The modified JK projection for Jain states and
CFFSs have been shown to be modular covariant [46,57,64].
In Appendix C, we show the CF-BCS-paired wave function

in Eq. (31) before LLL projection is modular covariant, and
its “direct” projection into the LLL also produces a modular
covariant wave function. This Appendix also shows that the
JK projection of the CF-BCS wave function in Eq. (36) does
not produce a modular covariant wave function. This makes
the situation problematic because it is this form of the wave
function that allows calculations for large systems. Fortu-
nately, we find that the JK projected wave function provides
an energy that is very close to that of the direct projected wave
function. This provides justification for using the JK projected
wave functions for our variational study below.

Appendix D shows that the CF-BCS wave function belongs
in the same Haldane pseudomomentum sector as the Pfaffian
wave function.

IV. NUMERICAL STUDY OF PAIRING INSTABILITY

Having constructed the wave function, we proceed, as in
the BCS theory, to find the value of the parameters, δkF and
the momentum cutoff kcutoff , that minimize the energy. We
wish to do this for both ν = 1/2 and ν = 5/2, to capture
the remarkably different physics at these two filling fractions.
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FIG. 1. The configurations of Fermi sea used in our calculations for N = 12 (left panel), N = 16 (middle panel) and N = 32 (right panel).
We also show the approximate circular Fermi surface.

For ν = 1/2 we simply work with (a periodic version of)
the Coulomb interaction. For ν = 5/2, we use an effective
interaction in the LLL to mimic the SLL coulomb interaction
by matching their Haldane pseudopotential coefficients. This
was earlier done in Ref. [17], which showed that an accurate
effective interaction is

V eff (r) = e2

ε

{
1

r
+ a1e−α1r2 + a2r2e−α2r2

}
. (41)

The best-fitted parameters are a1 = 117.429, a2 = −755.468,
α1 = 1.3177, and α2 = 2.9026, which guarantee that the first
four pseudopotential coefficients are the same as the second
LL Coulomb pseudopotentials. While calculating the energy
on torus geometry, the k-space summation of the interaction
should be used [39]. The details of the numerical calculations
are given in Appendix B. We neglect corrections due to finite
thickness and LL mixing throughout this work.

We have performed our calculation for systems with 12,
16 and 32 particles, because these produce fairly circular
Fermi seas for even N . The approximate magnitude of kF is
estimated using the following relation:

π |kF |2 = N |b1 × b2|. (42)

In Fig. 1, we show the k-space configurations of CFFS for
these systems, with the solid black lines showing the approx-
imate Fermi surfaces. For both ν = 1/2 and ν = 5/2, we find
the minimum energy by considering a range of values for δkF

and minimizing the energy for each δkF by varying kcutoff .
The energies per particle are shown in Fig. 2 for both

ν = 1/2 and ν = 5/2 as a function of δkF . This illustrates
the most notable finding of our work: at ν = 5/2, the energy
minimum for SLL occurs at δkF ≈ 1.2, indicating the presence
of CF pairing. In contrast, the minimum energy at ν = 1/2 is
obtained for kcutoff = kF , i.e., for the CFFS, which is consis-
tent with an absence of pairing. However, we note that due to
the discreteness of the momentum lattice, our work does not
rule out, strictly speaking, a very weak pairing at ν = 1/2.

To ascertain how the CF BCS wave function compares with
the MR wave function, we compute the overlap of the CF
BCS wave function with the MR wave function for different
values of the variational parameter δkF for N = 12, 16 parti-
cles. The overlaps are shown in Fig. 3, which also displays
the overlap of the CF-BCS state with the CFFS. [The overlaps
are calculated for wave functions within the same Haldane
pseudomomentum sector (K1, K2).] The overlaps between dif-
ferent trial wave functions, as shown in Fig. 3, are obtained

using the Monte Carlo algorithm. In the CF-BCS wave func-
tion, the momentum cutoff kcutoff is chosen, for each value of
δkF , so as to minimize the energy in the second LL. When
δkF → 0, the overlap between the CF BCS wave function and
CFFS is 1, as expected. The CF BCS wave function has the
highest overlap of ∼0.94 (∼0.88) with the MR state for δkF ≈
0.7 (Fig. 4) for N = 12 (N = 16) particles. We also obtain
the overlap of the CF-BCS state with the exact LLL, SLL
and MR state as shown in Fig. 4. The method used to obtain

FIG. 2. The Coulomb energy per particle for (a) ν = 1/2, (b) ν =
5/2 as a function of the parameter δkF for different system sizes.
For each value of δkF , minimum energy is obtained by varying the
momentum cutoff. The energies are quoted in units of e2/ε�; for ν =
5/2, the energies are plotted relative to the CFFS energy. At ν = 1/2
the CFFS has the lowest energy for all δkF (for ν = 1/2, the error
bars have been omitted, which are on the order of 0.00001).
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FIG. 3. The overlaps between the CF-BCS wave function, MR
wave function, and the CFFS wave function as a function of δkF for
systems with N = 12 (upper panel) and N = 16 (lower panel). For
each value of δkF , kcutoff in 
BCS is chosen so as to minimize the
energy in the second LL.

the overlaps with the exact states is outlined in Appendix F.
The overlap of the CF BCS state with the exact LLL state
decreases as δkF increases. The CF BCS state has the highest
overlap with the SLL ground state at around δkF ≈ 1.3, which
is close to the lowest energy state in SLL. We find that the
lowest energy CF BCS wave function (MR wave function) has
an overlap 0.73 (0.64) with the SLL Coulomb ground state.

Evidence of the pairing is seen in the pair correlation func-
tion plotted in Fig. 5, where a short distance bump develops
with increasing δkF . For comparison, we also show the pair
correlation function for the MR wave function. The pair corre-
lation function of the BCS wave function is in best agreement
with the pair correlation function of the MR wave function
for δkF ≈ 0.5–1.0, which is also near the optimal value of
δkF . Both of these results suggest that, for the 5/2 state, the
CF-BCS wave function is close to the MR wave function for
certain parameters. We mention here, for completeness, that
the MR and our CF-BCS wave functions have the same pair-
ing form. For long-distance correlation, which corresponds to
the small k limit, the gk in Eq. (40) is of the form 1

kx+iky
, which

transforms into the form 1
z in the real space, which is the same

as in the MR state [65].

FIG. 4. Comparisons with the exact ground state for N = 12
particles. |
BCS〉, |
LLL

Ex 〉, |
SLL
Ex 〉, |
MR

Ex 〉 refer to the CF-BCS wave
function, the exact LLL ground state, the exact SLL ground state
and the MR state, respectively. For each value of δkF , kcutoff in

BCS is chosen so as to minimize the energy in the second LL.
The overlaps of the CF-BCS wave function with |
LLL

Ex 〉, |
SLL
Ex 〉

and |
MR
Ex 〉 are shown as a function of δkF for a 12 particle sys-

tem. The purple line marks the overlap between MR state and SLL
state: |〈
MR

Ex |
SLL
Ex 〉| = 0.64358. The maximum overlap between CF-

BCS and SLL ground state is reached around δkF ≈ 1.3, with a
value 0.73203. For reference, we have |〈
LLL

Ex |
SLL
Ex 〉| = 0.34365

and |〈
LLL
Ex |
MR

Ex 〉| = 0.60022. The method for calculating the above
overlaps has been outlined in Appendix F.

Within the BCS theory, the physical gap is related to the
condensation energy as

E (δkF → 0) − E (δmin) = ρ(EF )
�̃2

2
(43)

FIG. 5. Plot of g(r), the pair correlation function of the CF-BCS
wave function, for the 12 particle system. The kcutoff is determined
by minimizing the energy in second LL. The distance r is measured
in units of the magnetic length �. The pair-correlation functions for
different δkF have been shifted vertically for clarity; for each curve,
we have g(r = 0) = 0. The pair correlation function for the MR wave
function is shown by the dashed black curve.
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where δmin is the value of δkF that minimizes the energy, and
�̃ is the physical gap, and ρ(EF ) is the density of states at the
Fermi energy. The gap evaluated in this fashion is given by

�̃

e2/ε�
∼
√

0.1
EF

e2/ε�
(44)

for the systems we have studied. Unfortunately, we are not
able to obtain this gap numerically, because we do not have a
good estimate for the CF Fermi energy at ν = 5/2. It is also
unclear to what extent Eq. (43) above, which applies to weakly
interacting electrons, is valid for composite fermions.

V. SPIN-SINGLET PAIRING

The BCS paired wave function considered so far is for
spin-polarized composite fermions. Theoretical calculations
indicate that, in the limit of vanishing Zeeman energy, the
ground state at ν = 1/2 is a spin-singlet CFFS [66,67]. Thus,
it is worth asking whether an instability into a spin-singlet
pairing occurs in the limit of vanishing Zeeman energy. The
g-factor can be made to vanish in GaAs quantum wells by
application of hydrostatic pressure [68]; alternatively, one can
consider multivalley systems where the valley index plays the
role of spin [69–71].

Following the analogy of spinless fermions, we construct a
spin-singlet BCS-paired CF wave function. The starting point
is the spin-singlet BCS wave function of electrons

|
BCS〉 =
∏

k

(uk + vkc†
k↑c†

−k↓)|0〉. (45)

After projecting this state to a sector with 2N electrons, the
real-space wave function (without normalization) can be writ-
ten as [72]



singlet
BCS (r1, r2, .., r2N ) = Pf

[
0 M↑↓

−M↑↓T 0

]
, (46)

where [M↑↓]i j = ∑
k gkeik.(ri↑−r j↓ ) is a symmetric matrix un-

der exchange of indices. For the singlet wave function with
s-wave pairing, we have

gk =
εk −

√
ε2

k + �2

�
, (47)

where � is a real number and has dimensions of energy (not
to be confused with � for the spin-polarized case). Using the
property for a N × N-dimensional matrix A,

Pf

[
0 A

−AT 0

]
= (−1)N (N−1)/2Det[A], (48)

it can be shown that the above wave function can be written
as [72,73]



singlet
BCS (r1, r2, .., r2N ) = Det

[∑
k

gkeik.(ri↑−r j↓ )

]
, (49)

where i = 1, 2, ..., N and j = N + 1, ..., 2N represent the in-
dices for spin-up and spin-down electrons, respectively. The
above form of the wave function is convenient for numerical
calculations. The composite-fermionized wave function for

FIG. 6. The energy per particle for the spin-singlet CF-BCS
wave function at ν = 1/2 as a function of δkF . The cutoff is chosen to
minimize the energy in lowest LL. The spin-singlet CFFS is seen to
have the lowest energy, indicating an absence of pairing instability.
The energies are plotted relative to the CFFS energy in units of e2/ε�.

the singlet CF-BCS state is given by



singlet
1
2

= PLLLDet

[∑
k

gkeik.(ri↑−r j↓ )

]

L

1/2. (50)

It can be projected into the LLL in the same fashion as the
p-wave paired state.

The LLL energy plot in Fig. 6 indicates that for all values of
δkF , the minimum energy state is obtained at for kcutoff = kF ,
which corresponds to the spin-singlet CFFS. There is thus no
indication of any spin-singlet pairing instability.

VI. HALL VISCOSITY OF PAIRED BCS WAVE FUNCTION

One of the topological quantities of a fractional quan-
tum Hall state is its Hall viscosity ηA [74]. As proposed in
Ref. [75], ηA is related to the orbital spin [76], or the “shift”
S = N/ν − Nφ in the spherical geometry, as

ηA = S h̄

4
ρ. (51)

Here ρ is the 2D density. Hall viscosity serves to distin-
guish different topological states that have the same Hall
conductance. Equation (51) has been derived for the Laughlin
state, Pfaffian state, and Jain states by various approaches
[57,75,77–81]. It has also been numerically confirmed for the
Laughlin and Pfaffian states in Ref. [78] and for the Jain states
in Refs. [57,63].

The Hall viscosity is computed through the Berry curvature
in the τ space, which captures the adiabatic change of gapped
state with the shear deformation of the torus,

ηA = − h̄τ 2
2

V
Fτ1,τ2 , (52)

where V is the total area and Fτ1,τ2 is the berry curvature in τ

space. The berry curvature is defined as

Fτ1,τ2 = −2Im
〈
∂


∂τ1

∣∣∣ ∂


∂τ2

〉
. (53)

We have calculated the Hall viscosity ηA of the CF-BCS
state employing Eq. (52), which we evaluate using the Monte
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FIG. 7. The Hall viscosity of the JK projected CF-BCS wave
function for different values of δkF as a function of 1/N . The Hall
viscosity for the unprojected CF-BCS wave function is also shown
for δkF = 0.5. The kcutoff for each δkF corresponds to minimum en-
ergy in the SLL. The magenta points for δkF = 0.0001 essentially
correspond to the CFFS.

Carlo method. The evaluation of the Pfaffian for large system
sizes was accomplished following the method described in
Ref. [82]. Our results are shown in Fig. 7. In the limit δkF → 0,
which is the CF-Fermi sea, we obtain the same Hall viscosity
as that reported in Ref. [46]. When δkF increases, the Hall
viscosity changes. As shown in Fig. 7, the Hall viscosity
shows strong finite size fluctuations, but in the thermodynamic
limit, it is consistent with 3h̄

4 ρ, the Hall viscosity of the MR
state. It is noted that this value is expected for any nonzero
value of the gap parameter δkF .

A caveat is in order here. As discussed in Appendix C, the
JK projected CF-BCS wave function does not satisfy modular
covariance, in contrast to the “direct” projected CF-BCS wave
function. However, as shown in Fig. 10 in Appendix C, the
energy of the JK-projected wave function is close to that of
the “direct” projected wave function for N = 4 particles for
different values of the modular parameter τ . We expect that
the JK-projected BCS wave function gives at least a good first
approximation to the Hall viscosity. We also obtained the Hall
viscosity for the unprojected CF-BCS wave function, which is
modular covariant. As shown in Fig. 7, the Hall viscosities of
the JK projected and the unprojected CF-BCS wave function
are consistent with that of the MR state in the thermodynamic
limit. Although the values of the Hall viscosity for the JK
projected and the unprojected CF-BCS wave functions are

different for finite systems, the variational tendencies with
respect to the system size are similar.

VII. CONCLUSIONS

We have constructed a p-wave paired BCS wave function
for composite fermions on the torus with two variational
parameters. We have shown how the JK projection can be
modified to satisfy the periodic boundary conditions. Our CF-
BCS wave function enables us to calculate energy, overlap,
pair correlation, and Hall viscosity for fairly large system
sizes. We find a pairing instability for ν = 5

2 but not for
ν = 1

2 . Furthermore, we find that the parameters that produce
minimum energy at ν = 5/2 also maximize the overlap with
the exact Coulomb ground state. These results overall support
the notion of CF pairing mechanism at ν = 5/2.

We note that our study does not include the effect of LL
mixing, and thus is not capable of distinguishing between the
MR Pfaffian and the anti-Pfaffian wave functions. Our results
also suggest absence of s-wave spin-singlet pairing of com-
posite fermions at ν = 1

2 in the limit of zero Zeeman energy.
As a future direction, it would be interesting to investigate
pairing of composite fermions in other contexts [33,83–89].
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APPENDIX A: BOUNDARY CONDITIONS

In this Appendix, we show that the wave function in
Eq. (36) satisfies the correct periodic boundary conditions.

For the wave function with 2N particles, the Pfaffian of the
matrix M will have terms like M12M34...Mpj ..., product of N
different elements of M. Each index in the subscript occurs
only once, and there can be permutations in the ordering of
indices. The translation of a single matrix element along the τ

direction gives us, for p �= i, j:

Tp(Lτ )Mi j =
(∑

k

gke− �2

2 k(k+2k̄)e
i
2 (zi−z j )(k+k̄)eiπ (

2(zi+i2k�2−zp )
L −τ )eiπ (

2(z j −i2k�2−zp )

L −τ )
∏

r

r �= i, j

ϑ

[ 1
2
1
2

](
zi + i2k�2 − zr

L

∣∣∣∣∣τ
)

×
∏

m
m �= i, j

ϑ

[ 1
2
1
2

](
z j − i2k�2 − zm

L

∣∣∣∣∣τ
){

ϑ

[ 1
2
1
2

](
zi + i2k�2 − z j

L

∣∣∣∣∣τ
)}2)

= ei2π
(zi+z j )

L e−i
4πzp

L e−i2πτ Mi j (A1)
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and for p = i or p = j, we get

Tp(Lτ )Mpj = Tp(Lτ )

(∑
k

gke− �2

2 k(k+2k̄)e
i
2 (zp−z j )(k+k̄)

∏
r

r �= p, j

ϑ

[ 1
2
1
2

](
zp + i2k�2 − zr

L

∣∣∣∣∣τ
)

×
∏

m
m �= p, j

ϑ

[ 1
2
1
2

](
z j − i2k�2 − zm

L

∣∣∣∣∣τ
){

ϑ

[ 1
2
1
2

](
zp + i2k�2 − z j

L

∣∣∣∣∣τ
)}2)

=
∑

k

gke− �2

2 k(k+2k̄)e
i
2 (zp−z j )(k+k̄)e

i
2 Lτ (k+k̄)e−i(2N−2)π (

2(zp+i2k�2 )
L +τ )ei2π

∑′
a za
L e−i2π (

2(zp+i2k�2−z j )

L +τ )

×
∏

r
r �= p, j

ϑ

[ 1
2
1
2

](
zp + i2k�2 − zr

L

∣∣∣∣∣τ
) ∏

m
m �= p, j

ϑ

[ 1
2
1
2

](
z j − i2k�2 − zm

L

∣∣∣∣∣τ
){

ϑ

[ 1
2
1
2

](
zp + i2k�2 − z j

L

∣∣∣∣∣τ
)}2

=
∑

k

gke− l2

2 k(k+2k̄)e
i
2 (zp−z j )(k+k̄)e

i
2 Lτ (k+k̄)e−i2Nπ (

2zp
L + i4kl2

L +τ )ei2π
∑′

a za
L ei2π (

2z j
L )

×
∏

r
r �= p, j

ϑ

[ 1
2
1
2

](
zp + i2kl2 − zr

L

∣∣∣∣∣τ
) ∏

m
m �= p, j

ϑ

[ 1
2
1
2

](
z j − i2kl2 − zm

L

∣∣∣∣∣τ
){

ϑ

[ 1
2
1
2

](
zp + i2kl2 − z j

L

∣∣∣∣∣τ
)}2

= eiφτ e−i
4Nπzp

L e−i2Nπτ ei2π
∑′

a za
L ei2π (

2z j
L )Mpj, (A2)

where
∑′

a = ∑
a �=p, j . Combining the above two results, we obtain

Tp(Lτ )M12M34...Mpj ... = [{
ei2π

(z1+z2 )
L e−i

4πzp
L e−i2πτ

}{
ei2π

(z3+z4 )
L e−i

4πzp
L e−i2πτ

}
...

× {
e−i

4Nπzp
L e−i2Nπτ ei2π

∑′
a za
L ei2π (

2z j
L )}...]M12M34...Mpj ...

= eiφτ ei4π
∑′

a za
L e−i(N−1)4π

zp
L e−i

4Nπzp
L e−i2Nπτ e−i2(N−1)πτ ei2π (

2z j
L )M12M34...Mpj ...

= eiφτ ei4π Z
L e−i

8Nπzp
L e−i4Nπτ ei2πτ M12M34...Mpj ...

These equations imply that the phase factor from each term in the expansion of the Pfaffian is independent of permutation the
indices. The CM part satisfies the relation

Tp(Lτ )

{
ϑ

[
φL

1
4π

+ Nφ−2
4

− φL
τ

2π
+ N − 1

](
2Z

L

∣∣∣∣∣2τ

)}
= eiφL

τ e−i2πτ e−i 4πZ
L

{
ϑ

[
φL

1
4π

+ Nφ−2
4

− φL
τ

2π
+ N − 1

](
2Z

L

∣∣∣∣∣2τ

)}
. (A3)

Putting this all together, we finally have

Tp(Lτ )

{
ϑ

[
φL

1
4π

+ Nφ−2
4

− φL
τ

2π
+ N − 1

](
2Z

L

∣∣∣∣∣2τ

)}
Pf(Mi j ) = ei(φτ −Nφπ (

2zp
L +τ ))

{
ϑ

[
φL

1
4π

+ Nφ−2
4

− φL
τ

2π
+ N − 1

](
2Z

L

∣∣∣∣∣2τ

)}
Pf(Mi j ), (A4)

which is exactly what the periodic boundary condition requires. In the other direction, the periodic boundary condition is satisfied
in a similar way.

APPENDIX B: INTERACTION ENERGY

On a torus, the interaction is periodic, i.e.,

V (r + mL + nLτ ) = V (r), (B1)

where m and n are integers. The periodic form for the
Coulomb interaction on torus is given by

VC (r) = 1

L2Im(τ )

∑
q

2π

q
eiq·r, (B2)

q =
(

2πm

L
,−2πτ1m

Lτ2
+ 2πn

Lτ2

)
, (B3)

where 2π/q is the Fourier transformed form of the 1/r
term. For our energy calculations, we have used a rectangular
torus.

To calculate the SLL energies, we need the Fourier trans-
form of Veff in Eq. (41). The first term is treated as above.
The Fourier transforms of the other two terms in the effective
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interaction are∫
e−αr2

e−iq·rd2r =
(

π

α

)
e

−q2

4α , (B4)∫
r2e−αr2

e−iq·rd2r =
(

π

2α2

)
e

−q2

4α

(
2 − q2

2α

)
. (B5)

The effective interaction can thus be written as

Veff = 1

L2Im(τ )

∑
q

V (q)eiq·r, (B6)

with

V (q) = 2π

q
+ a1

(
π

α1

)
e

−q2

4α1 + a2

(
π

2α2
2

)
e

−q2

4α2

(
2 − q2

2α2

)
.

In the above form, we have not included the interaction of
a particle in the principal region with its periodic images. The
self-interaction energy for the LLL in a rectangular torus (i.e.,
for the Coulomb interaction) is given by [39,90]

W = − e2

ε
√

L2|τ |

{
2 −

′∑
mn

ϕ− 1
2
[π (|τ |m2 + |τ |−1n2)]

}
,

ϕn =
∫ ∞

1
dte−zt t n. (B7)

The prime on the summation indicates that the term m =
0, n = 0 is excluded. The final expression for the energy per
particle can be written as

E = W + 1

N

∑
i< j

V (ri − r j ). (B8)

The LLL energy can be obtained by plugging Eq. (B2) into
the above equation. In the LLL, q = 0 term in the sum-
mation in Eq. (B2) is excluded since it gets canceled by
the electron-background and background-background inter-
actions. A cutoff of |m|, |n| � 20 in Eq. (B2) is sufficient to
obtain the energy [49].

For the SLL, we do not have an explicit expression for
the self-interaction energy. However, this does not pose any
difficulty since we are interested in the change of the energy
rather than its absolute value. For a given system size with the
same boundary conditions, the self-interaction does not vary
with δkF .

APPENDIX C: MODULAR COVARIANCE OF THE CF-BCS
WAVE FUNCTION

As mentioned in the main text, the geometry of torus is
parameterized by the modular parameter τ . The correspon-
dence between τ and the geometry is not one-to-one, and any
physical observables should not depend on the parametriza-
tion. Under the modular transformation group formed by T :
τ → τ + 1, S : τ → −1/τ and any combination of these two
transformations [42], the mixing of a degenerate set of wave
functions is expected to be closed. The CM projected states
transform under the modular transformation as follows:

PM
 ≡ 
M → P′
M
 ≡

∑
M ′

KMM ′
M ′
, (C1)

where PM is the projection operator into the CM momentum
sector M. The matrix K is a unitary matrix, which acts on a
vector with the CM projected wave functions as its entries.
The wave functions {
M} are closed under modular trans-
formation and the expectation value of any operator remains
invariant. The wave functions that satisfy this property are said
to be modular covariant [57,63,64].

In this Appendix, we show the CF-BCS wave function
Eq. (31) is modular covariant both before LLL projection and
after “direct” LLL projection.

Let us begin by carefully defining the modular transforma-
tion for the CF Fermi sea and the CF-BCS wave functions
that involve plane waves. For this purpose, we define the
coordinates as z = L(x̃ + τ ỹ), where x̃ and ỹ are the reduced
coordinates along L and Lτ directions, respectively. For φ1 =
φτ = 0, k can be represented as

k(m,n) = m

(
2π

L

)
+ i

2π

L

( n

τ2
− mτ1

τ2

)
, (C2)

where m, n are integers. For T transformation, both the phys-
ical coordinates ri and wave vector k j are invariant under
modular transformation, and hence the Pfaffian part is also
invariant. The S transformation requires some care. Under S
transformation, even though the lattice remains invariant, the
coordinates and other parameters transform as

z → z′ = |τ |
τ

z; L → L|τ |; φ1 → φτ ; φτ → −φ1. (C3)

A direct evaluation of k j using Eq. (C2) gives

k(m,n) → k′
(m,n) = i

|τ |
τ

(
L

Nφ

)
(m + nτ ). (C4)

However, this transformation produces an essentially different
Fermi sea as shown in Fig. 8. The transformation that pre-
serves the Fermi sea under the S transformation is

k → k′ = |τ |
τ

k. (C5)

Eqs. (C3) and (C5) define the S transformation.
We first demonstrate modular covariance for the “unpro-

jected” CF-BCS-paired wave function in Eq. (31). This wave
function is made up of two parts, the Pfaffian of paired plane
waves and the Laughlin wave function. Simultaneous change
of z and k ensures that eik·(ri−r j ) remains invariant. However, gk

is just multiplied by an overall phase |τ |
τ

. Hence, the Pfaffian
part remains invariant. It was shown in Reference [64] that the
Laughlin wave function is modular covariant. Therefore, the
unprojected CF-BCS-paired wave function is modular covari-
ant.

It is also straightforward to see the direct LLL projected
wave function is modular covariant. The direct LLL projection
operator can be written as PLLL = �∞

n=1(1 − a†a
n ), in which a†

and a are the ladder operators. Since a†a is modular invariant,
PLLL commutes with the modular transformation (up to gauge
transformation) [64]. This proof does not extend to the JK
projected CF-BCS wave function.

Numerical verification of modular covariance can be per-
formed by testing Eq. (C1). Refs. [57,64] have shown that, for
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FIG. 8. The left panel shows the Fermi sea for six particles at τ = 0.5i. The new Fermi sea under the transformations prescribed by Eq. (C4)
[Eq. (C5)] is shown in the middle (right) panel. The Fermi seas of the left panel and the right panel have the same shapes under a rotation by
90 degrees, while the Fermi sea of the middle panel has a different shape.

a modular covariant wave function, Eq. (C1) is satisfied with

K = 1

2

[
1 1
1 −1

]
. (C6)

This K matrix can be obtained by noticing that the right-
hand side and left-hand side of Eq. (C1) are eigenstates of
tCM(Lτ/Nφ ) and tCM(L/Nφ ), respectively. Thereby, one can
do a basis transformation from one to the other to derive the
matrix elements. We have confirmed numerically that the ratio
of the wave functions on right-hand-side and the left-hand-
side of Eq. (C1) with the above K remains a constant for
different real-space configurations, for both the unprojected
and the direct projected CF-BCS wave functions; this numeri-
cally confirms their equality modulo an overall normalization
factor, and thus proves that these wave functions are mod-
ular covariant. Alternatively, one can directly calculate the

normalized overlap matrix UMM ′ = 〈S
M |
M ′ 〉, where 
M

refers to the wave function at CM momentum M and S
M

refers to the wave function after transformation. If the wave
function is modular covariant, then the overlap matrix should
be unitary. We have found that the overlap matrix satisfies
the relation U †U = I (within statistical error) for both the
unprojected and the direct projected CF-BCS wave functions
(we have tested this for systems with up to 12 and 4 parti-
cles for the unprojected and direct projected wave functions,
respectively).

The modular covariance of the modified JK projection
for Jain states and CFFS was proven in Ref. [64]. How-
ever, numerical tests show that the modified JK projected
CF-BCS-paired wave function is not modular covariant: the
JK projected wave function remains covariant under the T
transformation but not for the S transformation. In Fig. 9, we
show that the Hall viscosity calculated for wave functions for
values of τ related by T transformation are same. However,
the Hall viscosity calculated for τ related by S transformation
are not equal, which is evident from the asymmetry about

ln(τ2) = 0 line in the plot. The kcutoff is chosen by minimizing
the energy in SLL for τ = i.

Fortunately, even though the JK projected wave function is,
strictly speaking, not modular covariant, it produces energies
very close to that of the direct projected wave function, which
is modular covariant. This is demonstrated in Fig. 10, which
shows the LLL energy for the JK-projected wave functions
related by the S transformation. This suggests that modular
transformation preserves, to a good approximation, for the
absolute value of the JK-projected wave function, and justifies
the use of the JK-projected CF-BCS wave function in our
variational study. We note here that the difference between
the energies of the JK-projected and the direct projected BCS
wave functions, which is less than 0.001 per particle, is much
smaller than the energy gain as a function of δkF , which is on
the order of 0.008 per particle for δkF ∼ 1.0.

FIG. 9. Hall viscosity ηA, quoted in units of h̄ρ/4, for the JK
projected CF-BCS wave function for different values of τ . The T
transformation τ → τ + 1 relates the red and the blue points at
a given τ2, whereas the S transformation τ → −1/τ relates ln τ2

to − ln τ2. Clearly, the JK wave function is covariant under the T
transformation, but not under the S transformation. The calculations
are performed for a system with 12 particles with δkF = 0.5.
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FIG. 10. Plot of the Coulomb energy per particle in the LLL
(in units of e2/ε�) for the direct projected and the JK projected
CF-BCS wave functions for different values of τ related by S
transformation. The blue and the red points represent the energies
of the direct projected and JK projected CF-BCS wave functions,
respectively. While the direct projected wave function is modular
covariant, the JK projected wave function is not. Nonetheless, the
energies of these wave functions are almost identical. Furthermore,
the energies are also symmetric, within numerical error, with respect
to the line ln(τ2) = 0, which is consistent with covariance under the
S transformation. The energies do not include the self interaction
energy. The calculations are performed for a system with 4 particles
for δkF = 0.5 in the full Brillouin zone.

APPENDIX D: HALDANE PSEUDO-MOMENTUM SECTOR
OF THE CF-BCS WAVE FUNCTION

The Haldane pseudomomentum K = (K1, K2) is defined
by

t̃ j (Li/N )
 = e−i2π
Ki
N 
 i = 1, 2. (D1)

In this Appendix, we define L1 = L, L2 = Lτ and φ2 = φτ .
The relative magnetic translation operator is given by

t̃ j (Li/N ) =
N∏

k=1

t j (Li/N )tk (−Li/N )

= t j (Li )tCM(−Li/N ), (D2)

where t j is the translation acting on the jth particle and
tCM(a) = ∏N

j=1 t j (a).
We begin with the CFFS wave function 
CFFS

1/2 =
PLLLDet[eikn·rm ]
L

1/2, where 
L
1/2 is the bosonic Laughlin

wave function at 1/2. The pseudomomentum can be directly
derived as

t̃ j

CFFS
1/2 = t j (Li )tCM(−Li/N )
CFFS

1/2

= eiφi tCM(−Li/N )
CFFS
1/2

= eiφi−i2π

∑
j k j,i
N −iφL

i 
CFFS
1/2

≡ e−i2π
Ki
N 
CFFS

1/2 , (D3)

where φi is the total boundary phase and φL
i is the phase for

the Laughlin part. Thereby, the total pseudomomentum is

Ki =
∑

j

k j,i − φi − φL
i

2π
N. (D4)

This result is true for arbitrary CFFS. For the CFFSs we have
considered in the main text, we have chosen φi = π , φL

i = 0,
and

∑
j k j,i = 0 since the origin is at the center and the shape

is symmetric. Therefore, we have Ki = N/2 mod N . The
same value is obtained if we shift the Fermi sea such that the
origin lies on a lattice point, because then φi = φL

i = 0 and∑
j k j,i = N/2. We note that the value obtained from Eq. (D4)

is an integer, because the periodic boundary conditions require
k j,i = αi + n j,i, where αi is the same for all particles (π in
our case) and n j are integers. Applying t j (Li ) on the whole
wave function gives the identity 2παi + φL

i = φi. Therefore,
Eq. (D4) is equivalent to Ki = ∑

j n j,i.
We can obtain the pseudomomentum of the CF-BCS wave

function in Eq. (31) analogously. We have e−i2π

∑
j k j,i
N = 1,

because tCM acting on Pf(
∑

kn
gkn eikn·(ri−r j ) ) gives identity.

This follows because
∑

j k j = 0 for BCS since both k and −k
are occupied. This imposes an extra condition which is αi =
−∑

j n j,i/N . The pseudomomentum thus is Ki = −φi−φL
i

2π
N =∑

j n j,i.

APPENDIX E: A BRIEF REVIEW OF LATTICE
MONTE CARLO

The lattice Monte Carlo approach used in this paper was
originally proposed by Wang et al. [55]. Here we provide a
review of this approach giving further details with a slightly
different logical organization. For notational facility, we only
derive the result for single particle operator

∑
i O(ri ). The

generalization to a two-body operator
∑

i< j O(ri − r j ) is
straightforward. We use x to represent (r1, r2, . . . rN ) and omit
the subscript i in O(ri ) for simplicity.

The object to calculate is

〈
1|O(r)|
2〉√〈
1|
1〉〈
2|
2〉
=
∫

d2x
∗
1 (x)O(r)
2(x)√〈
1|
1〉〈
2|
2〉

(E1)

in a periodic geometry. The aim is to replace the continu-
ous integral by a summation on discrete lattice points xi =
(miL1 + niL2)/Nφ :

〈
1|O(r)|
2〉√〈
1|
1〉〈
2|
2〉
=
∑′

x 
∗
1 (x)OLat (r)
2(x)√∑′
x |
1|2

∑′
x |
1|2

. (E2)

The central result is to derive OLat (r) given any O(r) when

1 and 
2 are confined in the nth LL. Note that we have
written the normalization factor explicitly, because Monte
Carlo automatically includes the normalization factors, which
are different for continuous space and discrete space.

For later reference, we list the Fourier transformations for
both continuous and discrete spaces:

O(r) = 1

2πNφ

∑
q

O(q)eiq·r, (E3)

O(q) =
∫

d2rO(r)e−iq·r, (E4)

OLat (r) = 1

2πNφ

′∑
q

OLat (q)eiq·r, (E5)

OLat (q) = 2π

Nφ

′∑
x

OLat (r)e−iq·r. (E6)

205303-14



BARDEEN-COOPER-SCHRIEFFER PAIRING OF … PHYSICAL REVIEW B 104, 205303 (2021)

Here
∑′

q refers to summation within the first BZ,
∑

q to
summation over the whole q space, and

∑′
x to summation over

lattice points in the principal region of torus.
Let us first derive a useful relation [Eq. (E7)] based on the

above equations:∫
d2x
∗

1 (x)eiq·r
2(x) = fn(q)〈
1|eiq·R|
2〉,

2πNφ
∗
1 (x)
2(x) =

∑
q

e−iq·r fn(q)〈
1|eiq·R|
2〉,

2πNφ
∗
1 (x)
2(x) =

′∑
q

[ fn(q)]Nφ
e−iq·r〈
1|eiq·R|
2〉,

2π

Nφ

′∑
r


∗
1 (x)
2(x)eiq·r = [ fn(q)]Nφ

〈
1|eiq·R|
2〉. (E7)

In the first line we used eiq·r = fn(q)eiq·R for the nth LL, in

which fn(q) = e− |q|2
4 Ln( |q|2

2 ) is the form factor [Ln(x) is the
Laguerre polynomial]. In the third line, we used eiq·R j = t j (iq)
and the periodicity of |
2〉 and e−iq·r when q = Nφq′ and
r is on a lattice point. Here, [ fn(ql,m)]Nφ

= ∑
q′

j,k
fn(ql,m +

Nφq′
j,k )ei(−kφ1+ jφτ ) × (−1)lk−m j+Nφ jk is called the compaciti-

fied form factor. Line four comes from the Fourier transform
on lattice points. Equation (E7) enables us to evaluate eiq·R on
discrete lattice points.

Note that in the above derivation we actually consider only
one space coordinate, which is r, while treating those ri �= r
as parameters. To get the full inner product on the right hand
side, we need to do integration over all space coordinates. Let
us consider 
(r1, r2 . . . rN ) = ψ1(r1)ψ2(r2) . . . ψN (rN ), i.e., a
product state. Taking q = 0 in Eq. (E7), we find

2π

Nφ

′∑
r1

ψ∗
1 (r1)ψ2(r1) = [ fn(0)]Nφ

〈ψ1|ψ2〉. (E8)

For the full inner product of two N-particle states, the final
form should be (note that on the left hand side it is now

∑′
x):

(
2π

Nφ

)N ′∑
x


∗
1 (x)
2(x)eiq·r

= [ fn(q)]Nφ
[ fn(0)]N−1

Nφ
〈
1|eiq·R|
2〉. (E9)

A general many-particle wave function can be expanded as
a summation over product states, so the above derivation still
holds.

For a general one-body operator O(r):

〈
1|O(r)|
2〉 = 1

2πNφ

∑
q

O(q)〈
1|eiq·r|
2〉

= 1

2πNφ

∑
q

O(q) fn(q)〈
1|eiq·R|
2〉

= 1

2πNφ

′∑
q

OGC (q)〈
1|eiq·R|
2〉

=
′∑
x


∗
1 (x)
2(x)

(
2π

Nφ

)N

[ fn(q)]−1
Nφ

× [ fn(0)]−(N−1)
Nφ

1

2πNφ

′∑
q

OGC (q)eiq·r.

(E10)

In the third line we used the periodicity and OGC (q) =∑
q′ O(q + Nφq′) fn(q + Nφq′). In the fourth line we used

Eq. (E9). For the special case O(r) = 1, Eq. (E10) becomes

〈
1|
2〉 =
′∑
x


∗
1 (x)
2(x)

(
2π

Nφ

)N

[ fn(0)]−N
Nφ

. (E11)

Finally, plugging Eqs. (E10) and (E11) into Eq. (E2), we get

OLat (r) = 1

2πNφ

′∑
q

[ fn(0)]Nφ

[ fn(q)]Nφ

OGC (q)eiq·r. (E12)

An analogous treatment for a two-body operator OLat(ri − r j )
produces

OLat (ri − r j ) = 1

2πNφ

′∑
q

( [ fn(0)]Nφ

[ fn(q)]Nφ

)2

OGC (q)eiq·(ri−r j )

(E13)
and OGC (q) = ∑

q′ O(q + Nφq′) f 2
n (q + Nφq′) for a two-body

operator.
Equation (E13) corresponds to Eq. (17) in Ref. [55].

APPENDIX F: OVERLAPS WITH THE EXACT
GROUND STATE

The exact ground states are calculated using the DiagHam
package. They are written in the Fock space with basis
|k1, k2, .., kN 〉, where ki = 0, ..., Nφ − 1 represents the occu-
pied orbital number. For fermions, the kis are arranged in
ascending order, i.e., ki < k j for i < j. The single particle
orbitals in the LLL can be written as [57]

ψ (z, z̄) = N e
z2−|z|2

4�2 f (k)
0 (z, z̄), (F1)

where

f (k)
0 (z, z̄) = ϑ

[ k
Nφ

+ φ1

2πNφ

− φτ

2π

](
Nφz

L

∣∣∣∣∣Nφz

)
. (F2)

k = 0, ..., Nφ − 1 represents the momentum of the state under
the translation by t (L/Nφ ). The normalization with respect to
the physical coordinates can be written as N = 1/

√
�L

√
π .

Obviously, the basis |k1, k2, .., kN 〉 are eigenstates of the
center-of-mass magnetic translation tCM(L/Nφ ).

The relative magnetic translation operator is defined as

t̃i(a) = ti(a)
N∏

j=1

t j (−a/N ). (F3)

The basis |k1, k2, .., kN 〉 are automatically eigenstates of t̃i(L)
[here we only consider ν = 1/2, for which GCD(N, Nφ ) = N]
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as we choose the primary axis along the x direction:

t̃i(L)|k1, k2, .., kN 〉 = ei 2π
N

∑N
i=1 ki |k1, k2, .., kN 〉, (F4)

where the total momentum is defined as
∑N

i=1 ki(mod N). The
momentum sector kx for the state can be obtained from the
relation:

e−i kx Lx
N = ei2π

∑N
i=1 ki/N . (F5)

However, the basis |k1, k2, .., kN 〉 are not eigenstates of the
magnetic translation in the other direction t̃i(Lτ )

t̃i(Lτ )|k1, k2, .., kN 〉 = |k1 + 2, .., kN + 2〉. (F6)

After applying t̃i(Lτ ) operator Z times, we go over Z dif-
ferent basis states |k1 + 2s, k2 + 2s, .., kN + 2s〉 with s =
0, 1, · · · Z − 1 and finally get back to the original state, be-
cause the momentum is defined mod Nφ . The eigenstates of
t̃i(Lτ ) are obtained by taking superposition of these states
[91],

|kx, ky(n)〉 =
Z−1∑
s=0

ei 2πn
N s|k1 + 2s, k2 + 2s, .., kN + 2s〉, (F7)

where n ∈ [0, ..., N − 1] is an integer which determines ky,

t̃i(Lτ )|kx, ky〉 = ei2πn/N |kx, ky〉 = e−i
kyLy

N |kx, ky〉. (F8)

The momentum sectors are specified by the eigenvalues of
tCM(L/Nφ ), t̃i(L), and t̃i(Lτ ).

Suppose the dimension of the momentum sector that our
trial state belongs to is D. We name the basis states as |φm〉,
which are eigenstates of tCM(L/Nφ ), t̃i(L), and t̃i(Lτ ). To cal-
culate the overlap of the trial states with the exact states, we
need to decompose the trial wave function [92],

|
trial〉 =
D∑

m=1

cm|φm〉. (F9)

This is done by choosing D′ sets of real-space configurations
r (α)

1 , r (α)
2 , · · · r (α)

N where α = 1, 2, · · · D′ and solve the linear
equations,


trial
[
r (α)

i

] =
D∑

m=1

cmφm
[
r (α)

i

]
α = 1, 2, · · · D′. (F10)

The system of linear equations are solved using least
square method, in which one minimizes

∑D′
α=1 |
trial[r

(α)
i ] −∑D

m=1 cmφm[r (α)
i ]|2 to find cm. We used the linear algebra

package in Scipy to solve the system of equations. The system
of equations in Eq. (F10) can be ill conditioned for certain sets
of configurations and the solution can be unstable for such
system; i.e., a small variation in the values of 
trial[ri] can lead
to huge differences in the values of the solution cm’s. For our
calculation, we use an over-determined system of equations,
i.e., we consider more equations than the number of coeffi-
cients (i.e., D′ > D). This is done to ensure the numerical
stability of the solution [93]. Further, to improve the condi-
tioning of the matrix φm[r (α)

i ], we used particle configurations
obtained after Monte Carlo thermalization.
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