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Rotational symmetry breaking on the Rydberg energy spectrum of indirect excitons in diamond
studied by terahertz time-domain spectroscopy
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We investigated the 1S-2P transitions of the indirect excitons in diamond around 70 meV in the high-frequency
terahertz region via time-resolved Lyman spectroscopy. We discovered significant splitting of the 2P levels and
attributed it to the rotational-symmetry-breaking effect owing to the cubic crystal environment. The maximum
energy separation of 14.9 meV reached 18% of the excitonic Rydberg constant—83.5 ± 2.9 meV—which
deviated from the binding energy of the 1S ground state: 93.3 ± 2.0 meV. In addition to the anisotropy of
the valence bands, we found the impact of the rotational symmetry breaking of the conduction band valleys,
which leads to a significant deviation from the case with direct excitons. Detailed knowledge of the ground and
excited states of long-lifetime excitons provides an unprecedented opportunity to develop the study of quantum
many-body physics and quantum chaos.
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I. INTRODUCTION

In semiconductors, photo-excitations above the band gap
create a negatively charged electron in the conduction band
and a positively charged hole in the valence band. The
Coulomb attraction between the electron and hole leads to the
formation of the bound state known as an exciton [1]. Because
of similar energy structure [2], excitons have gained attention
as an analogue of the hydrogen atom in crystals. The hydro-
genlike description has motivated the use of excitonic ground
states toward the realization of Bose-Einstein condensations
[3] and the highly excited (Rydberg) states for the study of
quantum chaos [4]. However, there is an inherent difference
between hydrogen and exciton.

For hydrogen, the Hamiltonian with the Coulomb potential
is invariant under three-dimensional rotations. The Runge-
Lenz vector is conserved owing to the 1/r dependence of the
Coulomb potential at a distance r. Conservation signifies the
existence of the hidden symmetry, called dynamical symmetry
[5], and causes degeneracy in the orbital angular momen-
tum L with symmetry of SO(4) for nonrelativistic hydrogen.
The energy levels and a typical wave function are shown in
Fig. 1(a). We note that, for relativistic hydrogen, the spin-orbit
interaction breaks the dynamical symmetry. The continuous
rotational symmetry of SO(3) leads to energy splitting in L,
keeping the degeneracy in Lz; that is the z component of L.
The energy levels are split with respect to L [6], while the
rotational symmetry is preserved in the absence of external
fields.

For an exciton, both the dynamical and rotational sym-
metries are broken by crystal environments. Here, L and Lz
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are no longer good quantum numbers, giving rise to further
level splits. Hitherto, Coulomb-bound pairs in crystals have
been extensively studied using an acceptor hole or donor
electron, weakly bound to an impurity potential [7]. In the
effective-mass approach, such impurity states are described
by the Hamiltonian for a hole or electron moving with an
effective mass in the Coulomb potential [7]. If the energy
bands determining the effective masses were anisotropic in
the reciprocal space because of the lower symmetry of the
crystal than that of the Coulomb potential, the dynamical and
rotational symmetries of the Hamiltonian are broken. Then the
energy levels and eigenfunctions, called envelope functions,
deviate from those of hydrogen [Fig. 1(b)].

The excitonic states are described by the Hamiltonian
for the Coulomb-bound pair of holes and electrons having
different and anisotropic effective masses. The anisotropy
contributes to the additional symmetry breaking, leading to a
more complicated level splitting shown in Fig. 1(c) than that in
Fig. 1(b). Despite theoretical prediction [8], such a specific but
miniscule deviation expected for excitons in indirect semicon-
ductors has been technically challenging to observe [9,10]. We
note that a deviation of excitonic levels from the relativistic
hydrogen model has been reported in a direct semiconductor
of cuprous oxide owing to the state-of-the-art high-resolution
technique and the relatively large excitonic binding energy
[11]. However, because of the isotropic electron effective
mass, the symmetry breaking in cuprous oxide is inherently
like that in the case of an acceptor hole.

Here, we focused on a wide-gap indirect semiconductor
of diamond for the observation of unprecedented symmetry-
breaking effects on the Rydberg energy spectrum of excitons.
Unlike conventional indirect semiconductors, diamond has an
exceptionally high exciton binding energy Eb of ∼80 meV
[12]. This unique property paves the way to resolve the level
splitting directly using a spectroscopy method because the
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FIG. 1. Contour plots of the wave function of a 2P state and
the energy series for (a) nonrelativistic and relativistic hydrogen, (b)
impurity states, and (c) exciton. The binding energy in the lowest 1S
level Eb does not necessarily coincide with the Rydberg constant Ry.
The splitting in the 2P states is directly observed through the Lyman
transitions, as indicated by arrows.

level splitting varies proportionally to the Rydberg constant
[8]. Hitherto, photoluminescence measurements revealed that
symmetry breaking is crucial in the splitting of excitonic
ground states [13]. However, excitonic excited levels remain
elusive because of their weak photoluminescence intensities
owing to the fast relaxation to the ground states.

Recently, we developed a pump-probe spectroscopy sys-
tem with a broadband terahertz pulse to investigate the 1S-nP
(Lyman) transitions in diamond [14]. Time-resolved Lyman
spectroscopy is a powerful tool for studying excitonic excited
levels [15,16]. The method uses a pump pulse to create exci-
tons and monitors the Lyman transitions with a time-delayed
probe pulse. At the delay time, when excitons are relaxed in
the ground state, we can observe the splitting in the excited 2P
states in the absorption of the probe pulse [Fig. 1(c)]. Using
this system, we successfully observed significant deviations
in 2P levels from the Rydberg series. Based on the effective-
mass approach, we found that level splitting is caused by
the breaking of the continuous rotational symmetry due to
anisotropy in both the valence and conduction bands. This
leads to the observed significant deviation from the case of
direct semiconductors. Furthermore, we determined the val-
ues of the Rydberg constant and binding energy of excitons in
diamond.

The remainder of this paper is structured as follows. We
explain the Hamiltonian and rotational symmetry breaking of
diamond excitons in Sec. II. Section III describes the sam-
ple and experimental setup of the pump-probe spectroscopy
system with a terahertz pulse. In Sec. IV, we present ob-
servations of the four-level splitting of 2P states for indirect
excitons in diamond. We demonstrate the signature of the ro-
tational symmetry breaking and discuss the significant effects

of anisotropy on the valence and conduction bands for level
splitting. Section V concludes this paper.

II. THEORY

Throughout this paper, we use the notations by Koster et al.
[17]. Diamond has a cubic crystal structure with Oh symmetry.
The valence band maximum located at the � point belongs to
the representation of �+

5 of the Oh point group. The valence
band has a threefold degeneracy owing to the P-like orbital
part. Owing to the spin-orbit interaction (Eso), the band splits
into twofold J = 1

2 and fourfold J = 3
2 bands, where J is the

total angular momentum of the hole. We note that Jz = ± 1
2

and ± 3
2 bands show different energy dispersion [18]. Mean-

while, the conduction band, originating from the S-like orbital,
takes the energy minimum at the six equivalent � points,
which belongs to the representation of �1 of the C4v group.
The valence and conduction bands are anisotropic. Here, we
ignore the electron spin because we are concerned with the 2P
levels with negligible exchange interactions [19]. When the
Rydberg constant Ry and Bohr radius are, respectively, taken
as units of energy and length, following Dresselhaus [20], the
effective-mass Hamiltonian for the exciton is described by the
Rydberg Hamiltonian with four perturbative terms [8]:

Hex =
(

p2

h̄2 − 2

r

)
+ Hso + Hsph + Hcubic + HEMA, (1)

where Hso represents the spin-orbit interaction in the valence
band, which gives rise to the splitting with respect to J. Here,
r and p are the relative electron-hole coordinate and mo-
mentum, respectively. The spherical term Hsph gives different
isotropic energy dispersions for Jz = ± 1

2 and ± 3
2 in the J = 3

2
band. The cubic term Hcubic with Oh symmetry and the elec-
tron mass anisotropy term HEMA with D∞h symmetry come
from the anisotropy in the valence and conduction bands, re-
spectively. If Hcubic and HEMA are removed, Hex may maintain
SO(3) symmetry.

The terms Hso, Hsph, Hcubic, and HEMA are described as
follows [8]:

Hso = 2

3
�̄(1 + J · sh),

Hsph = − μ

9h̄2 [P(2) · J (2)],

Hcubic = δ

9h̄2

{ ∑
k=4,−4

[P(2) · J (2)]4
k +

√
70

5
[P(2) · J (2)]4

0

}
,

HEMA = −μ01

(
2

3

)1/2 1

h̄2 P(2)
0 ,

where �̄ = Eso/Ry is the dimensionless spin-orbit split-
ting, sh is the hole spin operator (sh = 1

2 ), and J is the
angular momentum operator of the P-like valence band.
Here, P(2)

q and J (2)
q (q = −2,−1, 0, 1, 2) are the irreducible

components of the second-rank Cartesian tensor opera-
tors Pi j and Ji j , which are defined as Pi j = 3pi pk − δik p2,
Ji j = 3

2 (JiJk + JkJj ) − δikJ2 (i, j = x, y, z). The coefficients
μ, δ, and μ01 represent the interaction strengths of Hsph,
Hcubic, and HEMA, respectively [8]. They are expressed as
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μ = (6γ3 + 4γ2)μex/5m0, δ = (γ3 − γ2)μex/m0, and μ01 =
μex(1/mt − 1/ml )/3, where 1

μex
= 1

3 ( 2
mt

+ 1
ml

) + γ1

m0
, m0 is

free electron mass, γi (i = 1, 2, 3) are the Luttinger param-
eters [21], and mt (ml ) is the transverse (longitudinal) electron
mass, respectively. The matrix form of Hex in Eq. (1) is shown
in Appendices A and B. In addition, the difference in momen-
tum between the valence band maximum and conduction band
minimum is ignored for approximation purposes [22].

III. EXPERIMENTS

We used a 500-μm-thick chemical-vapor-deposition di-
amond (Element Six), with nitrogen (<5 ppb) and boron
(<1 ppb) as unintentionally incorporated dopants. Our experi-
ment is based on near-infrared laser pulses from a Ti:sapphire
amplifier operating at a 1 kHz repetition rate, which delivered
7 mJ pulses with a 35 fs duration. The fundamental pulse
(800 nm wavelength) was split into three beams: one for a
deep ultraviolet (DUV) pump to generate excitons, and two
for the terahertz generation and detection. The DUV pulses
at 267 nm, prepared by third-harmonic generation, homoge-
neously created transient free carriers through the sample at
a density of the order of neh = 1015 cm–3 via a two-photon
absorption process [23]. The excitation condition was the
same as in the previous study [14]. We used a collinear air
plasma method for the generation of a broadband terahertz
pulse (8–110 meV) [14,24]. The terahertz pulse focused on
the sample irradiated with the DUV pulse. The spot diameter
of the terahertz pulse was 140 μm measured using a terahertz
camera (NEC IRV-T0831). The beam size of the excitation
pulse was 1.0 mm. The terahertz pulse transmitted through the
sample with and without the DUV pulse was detected by an air
biased coherent detection [14,25]. We obtained the complex
transmittance change by Fourier transformation of the wave-
form and estimated the photo-induced change in the complex
relative dielectric function δε = δε1 + iδσ1/ε0ω, where δσ1 is
the change in the real part of the optical conductivity and ε0 is
the vacuum permittivity.

IV. RESULTS AND DISCUSSION

A. Observation of the splitting in 2P levels via
Lyman transitions

Figures 2(a) and 2(b) show the photo-induced change of
δε1 and δσ1, respectively, at various delay times for a 13 K
lattice temperature. We observed the Drude response of the
photo-excited free carriers at �t = 10 ps, as is expected from
the excitation condition. The spectral response in the lower-
frequency region is reproduced by the Drude model:

δε1(ω) = −nehe2

ε0m∗
1

(ω2 + γeh
2)

,

δσ1(ω) = nehe2

m∗
γeh

(ω2 + γeh
2)

, (2)

where γeh is the damping constant, and m∗ =
(1/me + 1/mh)–1 = 0.19m0 [18] is the exciton reduced
mass. The best fit [red solid lines in Figs. 2(a) and 2(b)]
yielded neh = 4.0 × 1015 cm–3. At this low carrier density, no
many-particle effects, such as the formation of polyexcitons

FIG. 2. Photo-induced changes in (a) relative dielectric function
and (b) conductivity of diamond at lattice temperature TL = 13 K
after the deep ultraviolet (DUV) pulse excitation. The red solid line
represents the result of Drude fitting. At �t = 2.0 ns, four sharp
peaks labeled P–S are observed (red frame). The photon energy
region 30–55 meV has been omitted due to the strong absorption
of Ge cryostat window.

[26] and electron-hole droplets [27], are expected. We also
observed a broadband at 70 meV in δσ1, attributed to the
Lyman transitions of excitons. Therefore, the transformation
from free carriers to excitons starts at �t = 10 ps. At
�t = 500 ps, we observed a decrease in the Drude response
and an increase in the excitonic response with four sharp
peaks. The peaks show further spectral narrowing at the
maximum delay time �t = 2.0 ns. The cooling of the
e-h equilibrium state toward the lattice temperature is
completed within a subnanosecond timescale [28,29].
Therefore, the carrier temperature should be the same as
the lattice temperature at 13 K with �t = 2.0 ns. We note
that �t = 2.0 ns is considerably shorter than the lifetime of
indirect excitons in diamond [30]. Here, the lowest 1S level
EX1 has an energy separation of 3.5 meV (∼40 K) to the
second lowest 1S level of EX2 (Fig. S1(a) in the Supplemental
Material [31]). Following the Boltzmann distribution at 13 K,
a considerable number of excitons are populated at the lowest
1S level (Fig. S1(b) in the Supplemental Material [31]). Thus,
the four observed peaks are attributed to energy splitting in
the 2P states. Using Fermi’s golden rule, the contribution of
the internal transitions to the conductivity is expressed as
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FIG. 3. (a) Schematic of the energy splitting of the 2P and 1S states, by addition of (ii) spin-orbit interaction, (iii) spherical term, (iv) cubic
term, (v) electron mass-anisotropy, and (vi) exchange interaction. (b) Temperature variation of the photo-induced change in conductivity at
�t = 2.0 ns in the region surrounded by the red frame in Fig. 2(b). For comparison, calculated oscillator strengths of internal transitions from
EXi=1,2,3 to the 2P states labeled A–F are shown by bars.

follows [32]:

δσ1(ω) = 2nexe2ω(i)
ex |〈ψ2P|x̂|ψEX1〉|2

h̄

ω2γex[
ω2 − ω

(i)
ex

2]2 + ω2γ 2
ex

,

(3)

where nex is the exciton density at the lowest 1S level of
EX1, γex is the phenomenological broadening parameter, and
ω(i)

ex is the transition frequency (i = 1–6). Here, ψEX1 and ψ2P

denote the wave functions of the initial 1S and final 2P states
of excitons, respectively, which are calculated as the eigen-
functions of Hex in Eq. (1). In the following, we calculate ω(i)

ex
and the matrix elements in Eq. (1) based on the effective-mass
approach developed by Lipari and Altarelli [8].

B. Signature of the rotational symmetry breaking
of indirect excitons

We now explain the splitting in the 2P states using Eq. (1).
First, we consider Hso, leading to splitting into a doublet
labeled J = 1

2 and 3
2 in Fig. 3(a)(ii). We focus on the J = 3

2
band, which is more important in the Lyman spectra with
transitions keeping J, from the J = 3

2 1S ground state. Includ-
ing L of the envelope function, we define the total angular
momentum F = L + J and label the 2P states with F and its
z component Fz as 2PF

Fz
. For the 2P levels with L = 1, F takes

the values of { 1
2 , 3

2 , 5
2 } for the J = 3

2 band. Because of the
SO(3) symmetry of Hsph, F is conserved, and the 2PF

Fz
states

split into three levels of F = 1
2 , 3

2 , and 5
2 [Fig. 3(a)(iii)]. How-

ever, F is not conserved under the Oh symmetry of Hcubic. This
causes splitting in 2PF=5/2 with respect to the absolute value
of Fz [33] [Fig. 3(a)(iv)]. When we consider HEMA, futher
splitting occurs by the symmetry reduction to D4h, which is
a subgroup of Oh symmetry of the valence band and D∞h

symmetry of the single conduction band valley [Fig. 3(a)(v)].

This interaction also induces significant mixing between the
2PF

Fz
levels. Therefore, we labeled the six levels by the most

significant component of the envelope function. Finally, the
splitting by the exchange interaction for the 2P levels is negli-
gible [19], and we obtained the six 2P levels (A–F) for the
J = 3

2 band [Fig. 3(a)(vi)]. Figure 2(b) shows that the 2P
states with J = 3

2 split into four or more levels, which does
not occur under SO(3) symmetry [Fig. 3(a)(iii)]. Therefore,
we successfully observed the rotational symmetry breaking of
excitons in indirect semiconductors. We performed the same
procedure for the 1S states and the 2P states with the J = 1

2
band labeled 2PF

soFz
[13].

We assign the four peaks in Fig. 2(b) to the Lyman
transitions from EX1 to the 2P states in Fig. 3(a)(vi).
For a quantitative comparison, we calculated the eigenval-
ues and eigenfunctions of Hex [Eq. (1)] by using �Hex =
Hso + Hsph + Hcubic + HEMA as the perturbation term and hy-
drogenic wave functions as nonperturbation bases. For the
unknown parameters of Ry and Eso in Eq. (1), we used
the typical value of the excitonic binding energy 80 meV
[12] and 9.7 meV [33], respectively. Then we obtained the
eigenenergies for 2P states and the squared matrix elements
|〈ψ2P|x̂|ψEX1〉|2 of the transitions from EX1 to the six 2P
levels (A–F) with J = 3

2 and three 2P levels with J = 1
2 using

the solved eigenfunctions. The detailed procedure is shown
in Appendices B and C. We found that the transition from
EX1 to C has the relatively small matrix element, and the en-
ergy separation between D and E was miniscule. In addition,
the transitions to the three 2P levels with J = 1

2 have much
smaller oscillator strengths because the Lyman transitions oc-
cur with keeping J. Therefore, the observed four peaks are
assigned to the transitions from EX1 to A, B, {D, E}, and F.
The transitions to 3P states are not observed because of the
tiny matrix elements (see Supplemental Material [31]).
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C. Significance of valence and conduction band anisotropy
on the level splitting for 2P states

According to our level assignment in the previous sub-
section, the maximum energy separation measured between
the highest and lowest 2P levels with J = 3

2 is 14.9 meV,
comparable with the binding energy of 20 meV in the Rydberg
2P state when Ry = 80 meV is assumed. This result indicates
significant deviations in the 2P states from the Rydberg se-
ries. We evaluated the contribution of each Hsph, Hcubic, and
HEMA to the deviations. The values of 2

n2 μ, 2
n2 δ, and 2

n2 μ01

(n = 2, 3, 4, ...) could be used as index parameters for the
evaluation, which approximately corresponds to the maxi-
mum energy separation for nP states with J = 3

2 in units of
Ry by the respective Hamiltonians (Ref. [8] and Appendix B).
For diamond, the coefficients are obtained as μ = 0.094, δ =
0.205, and μ01 = 0.186, with Luttinger parameters γ1 = 2.67,
γ2 = −0.40, γ3 = 0.68, and the translational and longitudinal
electron effective masses mt = 0.28m0 and ml = 1.56m0 [18].
Because the values of δ and μ01 are comparable with each
other and twice as large as μ, the observed splitting for 2P
states can be primarily attributed to the rotational symmetry
breaking by Hcubic and HEMA. Moreover, based on the pertur-
bation theory, we evaluated the contribution of Hsph, Hcubic,
and HEMA to the 2P levels and found that the maximum energy
separation reduces to 12.6, 6.2, and 7.8 meV, respectively,
after removing either of Hsph, Hcubic, and HEMA from Eq. (1).
The comparable contributions of the valence and conduc-
tion band anisotropies are specific in indirect semiconductors,
leading to a significant deviation compared with the case of
the direct semiconductor of cuprous oxide, where separation
by the cubic term is ∼3 meV, which is obtained using Ry = 87
meV and the parameters in Ref. [11], in the 2P levels. We also
note that peak R is stronger than peak Q in Fig. 2(b). This
situation is opposite to the case for an isotropic conduction
band, where the third highest level 2PF=3/2 has a higher de-
generacy than the second highest level 2PF=1/2 [Fig. 3(a)(iv)],
demonstrating the crucial role of the HEMA term.

D. Determination of the values of Ry and Eb

The assignment of the four peaks helps refining the values
of Ry and Eb. The transition energies for the A and {D, E}
peaks were calculated as Eb–Ry/4–(0.1220 ± 0.0005)Ry and
Eb–Ry/4–(0.0226 ± 0.0035)Ry, respectively, for the given
value of Eso = 9.7 meV [33] (Appendix B). The error comes
from the uncertainty of Eso for the 2P states [33]. Comparison
with the peak positions of P at 62.4 meV and R at 70.7
meV in Fig. 2(b) results in Ry = 83.5 ± 2.9 meV and Eb =
93.3 ± 2.0 meV. Using these values, the photon energies for
the Lyman transitions to the 2P levels h̄ωex = Eb + E2P, and
relative oscillator strengths f 2P

i (∝ ωex|〈ψ2P|x̂|ψEX1〉|2) were
calculated (Table I). The results shown by the green bars in
Fig. 3(b) elucidate the experimental ones, including the other
peaks B and F.

The obtained Eb = 93.3 ± 2.0 meV is consistent with our
recent experimental result [14] and theoretical calculations for
the binding energy for 1S states (Appendix B) from a separate
approach, indicating the validity of the present quantitative
analysis. The excitonic binding energy of diamond has been
considered ∼80 meV [12]. Our result shows that the value

TABLE I. Theoretical calculation results of the transition energy
h̄ωex and relative oscillator strength f 2P

i for excitonic 2P states
with J = 3

2 and J = 1
2 , for the given values of Ry = 83.5 meV,

Eb = 93.3 meV, and Eso = 9.7 meV. The symmetry corresponds to
excitons without considering the spin of electron.

Main component
2P level Symmetry of wave functions h̄ωex (meV) f 2P

i

A �7 2P5/2
±1/2 62.4 1

B �6 2P3/2
±3/2 66.6 0.4

C �6 2P 5/2
∓5/2 68.6 0.1

D �7 2P3/2
±1/2 70.3 1.0

E �7 2P1/2
±1/2 71 0.4

F �6 2P5/2
±3/2 77.2 0.9

�7 2Pso
3/2
±1/2 79.4 0.2

�7 2Pso
1/2
±1/2 83.5 0.07

�6 2Pso
3/2
±3/2 84.5 0.003

of 80 meV should correspond to Ry rather than Eb. Further-
more, the determined Eb gives an indirect bandgap of 5.497 ±
0.002 eV in diamond at 2 K, using the luminescence energy
(5.262 eV) of the ground state excitons (EX1) via a transverse
optical phonon with 141 meV energy [13].

Finally, Fig. 3(b) shows the photo-induced change in con-
ductivity obtained at �t = 2.0 ns at various temperatures
in the region of the red frame indicated in Fig. 2(b). We
observed new peaks and spectral broadening at higher tem-
peratures. The temperature variation comes from the thermal
populations in the higher 1S levels labeled EXi (i = 2, 3) in
Fig. 3(a)(vi). We calculated the thermal population ratios at
each level as a function of temperature (Fig. S1(b) in the
Supplemental Material [31]) and the oscillator strengths of
the transitions from the higher 1S levels to the 2P levels
(Appendix C). By including additional transitions [yellow and
red bars in Fig. 3(b)], we successfully reproduced the photo-
induced change in conductivity at elevated temperatures,
validating our theoretical calculations and level assignments.

V. CONCLUSIONS

We observed significant deviations in the 2P levels of indi-
rect excitons in diamond from the relativistic hydrogen model,
which are attributed to the rotational symmetry breaking of
not only valence band but also conduction band valleys by the
cubic crystal environment. The excellent agreement between
the perturbative calculations facilitated the determination of
the Rydberg constant and binding energy for the ground state.
Indirect excitons have a relatively long lifetime because of
suppressed radiative recombination, beneficial for studying
quantum many-body phases [34]. The detailed properties of
the excitonic ground states are related to the stability of quan-
tum many-body states through scattering processes [3,35].
Meanwhile, the quantitative analysis for the 2P states in this
paper can be extended to states with n � 3. Higher excitonic
states with broken rotational symmetry can exhibit unique
phenomena beyond hydrogen, such as the breaking of all
antiunitary symmetries in external fields [36] and a quantum-
to-classical transition of chaos [4].
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APPENDIX A: MATRIX FORM OF EFFECTIVE-MASS HAMILTONIAN FOR INDIRECT EXCITONS

The matrix elements of Eq. (1), where the bases were considered in the order of {|J = 3
2 , Jz = 3

2 〉,
|J = 3

2 , Jz = 1
2 〉, |J = 3

2 , Jz = − 1
2 〉, |J = 3

2 , Jz = − 3
2 〉, |J = 1

2 , Jz = 1
2 〉, |J = 1

2 , Jz = − 1
2 〉}, are expressed as [22]

Hex = H0 + �H,

where H0 = PI (I: identity matrix) and

�H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

K + Q L M 0 i√
2
L −i

√
2M

L∗ K − Q 0 M −i
√

2Q i
√

3/2L
M∗ 0 K − Q −L −i

√
3/2L∗ −i

√
2Q

0 M∗ −L∗ K + Q −i
√

2M∗ − i√
2
L∗

− i√
2
L∗ i

√
2Q i

√
3/2L i

√
2M K + Eso 0

i
√

2M∗ −i
√

3/2L∗ i
√

2Q i√
2
L 0 K + Eso

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here,

P = p2

2μex
− e2

4πεrε0r
, K = p2

x + p2
y − 2p2

z

2μex
μ01, Q = p2

x + p2
y − 2p2

z

2μex

(5μ − 6δ)

10
,

L = −i
(px − ipy)pz

2μex

2
√

3(5μ + 4δ)

10
, M =

√
3

p2
x − p2

y

2μex

(5μ − 6δ)

10
− i

px py

2μex

2
√

3(5μ + 4δ)

10
,

where Eso = �̄Ry, and εr and ε0 are the relative permittivity of diamond and the vacuum permittivity, respectively. Parameters
of μex, μ, δ, and μ01 are defined in Sec. II of the main text. Component K is obtained from the mass anisotropy effect in the
conduction band. Here, L, M, and Q are acquired from hole dispersion. Further, �H includes the spin-orbit interactions, spherical
term, cubic term, and electron mass anisotropy [Eq. (1)] and is treated as a perturbation term.

APPENDIX B: BINDING ENERGIES OF EXCITONIC 2P AND 1S STATES

To solve the Schrödinger equations corresponding to the Hamiltonian equation [Eq. (1)] by the perturbation approach, we
define the eigenwave functions for the exciton states following the L-S coupling scheme used for atomic systems. We use the F
and Fz representations, where F = L + J is the sum of the angular momentum L of the envelope function, and the pseudo-angular
momentum J corresponds to the valence band. We consider the excitonic 2P states with L = 1. The wave functions can be
expanded as [8]

|ψex(
r)〉 =
∑

i

f2P(r)|L = 1, J, Fi, Fzi〉|e〉,

where f2P(r) represents the radial function of the Rydberg 2P state. The electron spin |e〉 corresponds to the up or down spins.
Because the exchange interaction is negligible for the 2P states, the energy levels are degenerate for the up and down spins. Thus,
we omit |e〉 in the following and rewrite f2P(r)|L = 1, J = 3

2 , F, Fz〉 as 2PF
Fz

. When we consider the 2P states originating from the

heavy and light valence bands (J = 3
2 ), there are 12 eigen functions 2P1/2

±1/2, 2P3/2
±1/2, 2P5/2

±1/2, 2P3/2
±3/2, 2P5/2

±3/2, and 2P5/2
∓5/2. These

are classified into two groups: {2P1/2
±1/2, 2P3/2

±1/2, 2P5/2
±1/2} with symmetry �7 and {2P3/2

±3/2, 2P5/2
±3/2, 2P5/2

∓5/2} with symmetry �6.

Concerning the 2P states generated from the split-off band (J = 1
2 ), the six eigenfunctions are represented as 2Pso

3/2
±1/2, 2Pso

1/2
±1/2,

and 2Pso
3/2
±3/2, which have the symmetries �7, �7, and �6, respectively. We calculated the matrix elements of the Hamiltonian,

where the unperturbed bases were ordered as 2P1/2
±1/2, 2P3/2

±1/2, 2P5/2
±1/2, 2Pso

3/2
±1/2, 2Pso

1/2
±1/2, 2P3/2

±3/2, 2P5/2
±3/2, 2P5/2

∓5/2, and 2Pso
3/2
±3/2.

205201-6



ROTATIONAL SYMMETRY BREAKING ON THE RYDBERG … PHYSICAL REVIEW B 104, 205201 (2021)

Consequently,

�H2P =
∫ (

2PF
Fz

)∗
�H

(
2PF

Fz

)
d
r

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ

4 ∓ μ01

10
√

5
3μ01

10
√

5
−i μ

3 ∓i μ

6
√

2

∓ μ01

10
√

5
− 1

5

(
μ − 2

5 μ01
) ± 3

50 (2δ + μ01) ∓i μ

12
√

5
i μ

3
√

10
3μ01

10
√

5
± 3

50 (2δ +μ01) − 1
20

(−μ + 12
5 δ + 8

5 μ01
) −i δ

5
√

5
±i 2

√
2δ

5
√

5

+i μ

3 ±i μ

12
√

5
+i δ

5
√

5
�̄ − μ01

10 − μ01

5
√

2

±i μ

6
√

2
−i μ

3
√

10
∓i 2

√
2δ

5
√

5
− μ01

5
√

2
�̄

− 1
5

(
μ+ 2

5 μ01
) ∓

√
6

50 (δ − 3μ01) ∓
√

30
50 δ ∓i μ

4
√

5

∓
√

6
50 (δ − 3μ01) − 1

100 (−5μ+ 2μ01 − 18δ) − 3
√

5δ
50 +i

√
30δ
50

∓
√

30
50 δ − 3

√
5

50 δ − 1
100 (−5μ− 10μ01 + 6δ) +i

√
6δ

10

±i μ

4
√

5
−i

√
30δ
50 −i

√
6δ

10 �̄ + μ01

10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in units of Ry. For given values of γ1 = 2.67, γ2 = −0.40, γ3 = 0.68, mt = 0.28 m0, and ml = 1.56 m0 [18], the coefficients are
calculated as μ = 0.094, δ = 0.205, and μ01 = 0.186, which are comparable with those in silicon, where the mass anisotropy
effect can be treated as a perturbation [8].

The maximum energy separations for the nP states with J = 3
2 by the spherical, cubic, and electron mass anisotropy terms,

respectively, are obtained by calculating the eigenvalues of �HnP = ∫ (nPF
Fz

)∗ �H (nPF
Fz

) d
r. When the spin-orbit interaction is
considerably larger than the excitonic binding energy (�̄ = Eso/Ry → ∞), as in many semiconductors, the matrix elements of
the Hamiltonian, where the unperturbed bases are taken in the order of 2P1/2

±1/2, 2P3/2
±1/2, 2P5/2

±1/2, 2P3/2
±3/2, 2P5/2

±3/2, and 2P5/2
∓5/2, is

described as

δHnP = 4

n2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ

4 ∓ μ01

10
√

5
3μ01

10
√

5

∓ μ01

10
√

5
− 1

5

(
μ − 2

5 μ01
) ± 3

50 (2δ + μ01)
3μ01

10
√

5
± 3

50 (2δ +μ01) − 1
20

(−μ + 12
5 δ + 8

5 μ01
)

− 1
5

(
μ + 2

5 μ01
) ∓

√
6

50 (δ − 3μ01) ∓
√

50
50 δ

∓
√

6
50 (δ − 3μ01) − 1

100 (−5μ + 2μ01 − 18δ) − 3
√

5
50 δ

∓
√

30
50 δ − 3

√
5

50 δ − 1
100 (−5μ − 10μ01 + 6δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The maximum energy separation by each Hsph, Hcubic,
and HEMA for nP states with J = 3

2 is 9
20μ 4

n2 (= 0.45μ 4
n2 ),

(15+3
√

5)
50 δ 4

n2 (= 0.43δ 4
n2 ), and 3

10μ01
4
n2 (= 0.3μ01

4
n2 ), respec-

TABLE II. Theoretical calculation results of the binding energy
E2P and squared matrix element for excitonic 2P states with J = 3

2
and J = 1

2 , for the given values of Ry = 80 meV and Eso = 9.7 meV.
The symmetry corresponds to excitons without considering the spin
of electron.

Main component Squared matrix
2P level Symmetry of wave functions E2P (meV) element

A �7 2P5/2
±1/2 −29.7 1

B �6 2P3/2
±3/2 −25.7 0.4

C �6 2P 5/2
∓5/2 −23.8 0.1

D �7 2P3/2
±1/2 −21.9 0.9

E �7 2P1/2
±1/2 −21.3 0.3

F �6 2P5/2
±3/2 −15.6 0.8

�7 2Pso
3/2
±1/2 −13.5 0.2

�7 2Pso
1/2
±1/2 −9.6 0.06

�6 2Pso
3/2
±3/2 −8.6 0.003

tively, which can be written approximately as 2
n2 μ, 2

n2 δ, and
2
n2 μ01 in units of Ry.

Next, we consider all terms of Hso, Hsph, Hcubic, and HEMA.
By setting Eso = 9.7 meV, we calculated the eigenenergy E2P

of the six 2P levels (A–F) based on the second-order degen-
erate perturbation theory. In the analysis, we included the
coupling of hydrogenlike and continuum states with n � 2
[8,22]. We considered the uncertainty of the value of Eso

between 8.6 and 10.8 meV [34] for the 2P states, and the
energies were defined as the averages of the two boundary
results. Table II lists the resultant E2P for the typical value of
the excitonic binding energy of Ry = 80 meV. Table I shows
the photon energies of Lyman transitions for the given value
of Ry = 83.5 meV determined from energy positions of peaks
P and R in Fig. 2(b).

TABLE III. Calculation results of the binding energy for ex-
citonic 1S states. The symmetry corresponds to excitons without
considering the spin of electron.

Symmetry 1S level Binding energy (meV)

�7 1S3/2
±3/2 91.2

�6 1S3/2
±1/2 94.6
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TABLE IV. Calculation results of the relative oscillator strength of the transition from EX2 and EX3 to excitonic nine 2P states, for the
given values of Ry = 83.5 meV, Eb = 93.3 meV, and Eso = 9.7 meV.

Main component of wave Oscillator strength of the transition from EX2 Oscillator strength of the transition from EX3

2P level functions (relative unit) (relative unit)

A 2P5/2
±1/2 0.51 0.28

B 2P3/2
±3/2 0.85 0.60

C 2P 5/2
∓5/2 0.91 0.68

D 2P3/2
±1/2 0.61 0.36

E 2P1/2
±1/2 0.79 0.56

F 2P5/2
±3/2 0.74 0.47

2Pso
3/2
±1/2 0.12 0.07

2Pso
1/2
±1/2 0.04 0.02

2Pso
3/2
±3/2 0.11 0.08

The 1S state splits into two levels with �6 and �7 symme-
try. The energy shifts are described as [8]

�E1S =
[

4

25
(24δ2+25μ2)+16

5
μ01

2±16

5
μ01(10μ − 12δ)

]

× S1(0) + 4

25
(24δ2 + 25μ2)S1(�),

where S1(x) = ∑∞
n=3

|In|2
x+1−1/n2 + ∫∞

0
|Ik |2

x+1−1/k2 dk, In =
∫∞

0 Rn2(r)(r + r2)e−rdr, and Rnl (r) represent the normalized
hydrogenic radial wave functions. The (+) and (−) signs
within the brackets apply to the �6 and �7 states, respectively.
Table III lists the binding energies calculated assuming
γ1 = 2.67, γ2 = −0.40, γ3 = 0.68, Eso = 9.7 meV [33], and
Ry = 83.5 meV [37]. The theoretically calculated value of
Eb, 94.6 meV, is consistent with the experimentally estimated
value of 93.3 meV ± 2.0 meV within the error.

APPENDIX C: OSCILLATOR STRENGTHS OF THE
TRANSITIONS FROM 1S TO 2P STATES

Previously in Ref. [13], the Hamiltonian �H1S for the
excitonic 1S states was derived to calculate |ψEX1〉. Here,

the calculation was performed under simplified conditions
that the masses of the valence and conduction bands ex-
hibit no anisotropy, the split-off and other valence bands are
not mixed, and the effective masses for valence bands are
all the same. Here, EX1 consists of doublet �5 and nonde-
generate �4 states. The wave functions for the �5 and �4

states, which diagonalize �H1S with this simplified condition,
are { 1

2 (φ8
−1/2 ↑ + √

3φ8
−3/2 ↓), 1

2 (
√

3φ8
3/2 ↑ + φ8

1/2 ↓)}, and
1√
2
(φ8

−3/2 ↑ − φ8
+3/2 ↓), respectively. We calculated squared

matrix elements |〈ψ2P|x̂|ψEX1〉|2 of the internal transitions to
the 2P states (A–F) from EX1, for the values of Ry = 83.5 and
80 meV. Tables I and II present the results.

We also calculated the squared matrix elements of
|〈ψ2P|x̂|ψEX2,3〉|2 and the relative oscillator strengths
of the transitions from EX2 and EX3 to the 2P states.
The wave functions are approximately described as
{φ8

1/2 ↑, φ8
−1/2 ↓, 1√

2
(φ8

−3/2 ↑ + φ8
+3/2 ↓)} for EX2 and

{ 1
2 (

√
3φ8

−1/2 ↑ − φ8
−3/2 ↓) and 1

2 (−φ8
3/2 ↑ +√

3 φ8
1/2 ↓)} for

EX3 [13]. Table IV lists the calculated values of the relative
oscillator strengths for Eso = 9.7 meV and Ry = 83.5 meV.
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