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Three-dimensional topological plasmons in Weyl semimetals
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Our systematic studies on the topological aspects of plasmons of Weyl semimetals in the presence of a
magnetic field have uncovered two types of three-dimensional (3D) topological plasmons: the bulk plasmons and
the Fermi-arc plasmons over opposite surfaces. As a consequence of the bulk-boundary correspondence, there
are unidirectional surface/edge plasmons whose directions and dispersions can be controlled by the external
field. These chiral surface plasmons possess momentum-location lock and strong confinement of electromagnetic
(EM) fields. The anomalous Hall conductivity brings about abundant anisotropic plasmon dispersions, from
linear to parabolic or even hyperbolic bands. In addition, a semiclassical picture of electron motion is proposed
to show the formation of Weyl orbits and the consequent effect on plasmons. Our work thus provides instructive
insights into the electron dynamics and collective excitations of Weyl semimetals and suggests it is a good seed
for 3D topological plasmonics.

DOI: 10.1103/PhysRevB.104.205141

I. INTRODUCTION

In recent years there have been extensive studies on the
electronic and optical properties of graphene and topological
Dirac/Weyl semimetals [1–13]. The topological Dirac and
Weyl semimetals are both three-dimensional (3D) analogs of
graphene with linear low energy excitations, which behave
like Dirac and Weyl fermions in quantum field theory. The
topological band structure of Weyl semimetals (with broken
time-reversal symmetry and/or broken inversion symmetry)
leads to the magnetic monopoles in momentum space and
topologically protected Fermi arcs on surfaces [14–16]. In ad-
dition to the theoretical predictions [17–19], there have been
several experiments proposed for realizing Weyl semimetals
in real materials [20–23]. The Weyl nodes in the bulk and
the Fermi arcs on the surface have been observed in TaAs
[20–23].

Nontrivial physics of Weyl semimetals comes from the
linear dispersion of 3D systems and topological band struc-
ture. The linear dispersion leads to strong nonlinear optical
response [24,25] and electronic transport [26]. Many inter-
esting physics effects spring up as a consequence of band
topology, such as chiral magnetic effect, axion electrodynam-
ics, nonlinear Hall effect, and chiral anomaly related unusual
magnetotransport [27–38]. Because of the Berry flux between
Weyl nodes, Weyl semimetal owns a 3D anomalous Hall ef-
fect and the intrinsic Hall conductivity is proportional to the
distance between Weyl nodes [39,40]. Importantly, the Fermi
arcs and chiral zeroth Landau levels (LLs) will form closed
Weyl orbits [41–43], giving rise to a unique 3D quantum
Hall effect [44,45]. Whereas the relationship between Weyl
orbits and the Berry curvature of Fermi arcs is not known,
nor is the velocity of the electron tunneling between surfaces.
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Furthermore, what is the impact of Weyl orbits on the collec-
tive excitations? Our studies in this work make a step in the
research on these interesting topics.

Weyl semimetal can serve as a potential optical material
with electromagnetic response described by a topological
Chern-Simon term. Many aspects of the optical properties
of Weyl semimetals, in particular plasmons (the collective
excitations of Weyl electrons), have been studied extensively
[46–70]. The plasmon hybridization induced short-range sur-
face plasmons and long-range surface plasmons in thin-film
Weyl semimetals have been addressed in [48]. Plasmons in
Weyl semimetals TaAs/NbAs and MoTe2 have been investi-
gated by electron energy loss spectroscopy (EELS) [50,51],
which is consistent with optical measurements [52–54]. The
coupling effects of surface plasmons/Fermi arc plasmons in
Weyl semimetals have been explored in [56], where it has
been found that coupling increases the lifetime of the sur-
face plasmon mode. It has been pointed out that the plasmon
modes in Weyl semimetals are anisotropic and expected to
have an experimental signature [57]. The frequency of the
bulk Weyl plasmons depends on the position of Fermi sur-
face and is related to the chiral anomaly [58,59]. Due to
the effective magnetic field in momentum space, the surface
Weyl plasmons are similar to magnetoplasmons in ordinary
metals [60,61]. The Fermi-arc plasmons are chiral and own a
linear dispersion, which implies the Fermi-arc electron liquid
is a unique one lying in between the one-dimensional (1D)
and two-dimensional (2D) electron liquids [62–64]. In the
presence of a magnetic field, plasmons in Weyl semimetals
earn more interesting optical properties, such as chiral electric
separation, coupling-induced transparency, and nonclassical
density response [65–67]. However, there is no discussion
about nontrivial topology of Weyl plasmons, nor influence of
the “wormhole” tunneling on the plasmon property.

In this work we investigate the magnetoplasmonics in Weyl
semimetals, focusing on magnetic-field tunable topological
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properties. We point out that the bulk Weyl magnetoplasmons
and the Fermi-arc magnetoplasmons over opposite surfaces
are both 3D topological plasmons. Consistent with the non-
trivial topology of the bulk (surface) states, there are novel
unidirectional surface (edge) plasmons whose direction and
dispersion can be controlled by the external field. These
chiral surface plasmons own momentum-location lock and
are mixed with the bulk LL plasmons. The anomalous Hall
conductivity could influence the magnetoplasmon dispersion
greatly, resulting in linear (gapless), parabolic, or even hy-
perbolic (gapped) bands. Strong confinement of the EM field
associated with the Fermi-arc plasmons can be achieved. We
also propose a semiclassical picture of the formation of Weyl
orbits, connecting the opposite Fermi-arc plasmons into a
whole one. Our work thus sheds some new light on the elec-
tron dynamics and collective excitations of Weyl semimetals
and proposes potential applications of Weyl semimetals in 3D
chiral and topological plasmonics.

II. MODEL OF WEYL SEMIMETALS

To illustrate the properties of plasmons in the presence of a
uniform magnetic field B = (0, B, 0), we start from a minimal
model of Weyl semimetals [71]:

H = A(kxσx + kyσy) + M(b2 − k2)σz + D1k2
y + D2k2

‖ , (1)

which breaks the time-reversal symmetry and hosts a pair of
Weyl nodes at (0, 0,±b). k = (kx, ky, kz ) and k2

‖ = k2
x + k2

z .
The effective model for the Fermi arc at the top (τ = 1) or
bottom (τ = −1) surface reads [44]:

hτ = τvkx + (D2 − D1)k2
‖ + D1b2, (2)

where v = A
√

M2 − D2
1/M. The anisotropic parameters D1

and D2 make the Fermi arc a two-dimension (2D) dispersion.
The Fermi level lying at the Weyl nodes is EF = D2b2. At the
top surface, the Fermi-arc electrons (kx > 0) have a positive
velocity (∂hτ /∂kx) propagating along the x direction; oppo-
sitely, the electron velocity is negative at the bottom surface
(kx < 0).

The Weyl semimetal may have a large anomalous Hall
conductivity [72,73]. For any kz ∈ (−b, b), there is a well
defined Chern number Ckz = sgn(M ) [39] in the conduction
band which is related to the existence of the Fermi arcs. As
a result, the anomalous Hall conductivity is proportional to
the distance between Weyl nodes: σH = σyx = sgn(M ) e2

2πh 2b
[39,40]. With an applied magnetic field, the bulk conduc-
tivity σ̂ and the surface conductivity σs will take changes
accordingly (see Appendix A for details). In this paper we
focus on the topological plasmons in type-I Weyl semimetals.
Type-II Weyl semimetals have a different structure of Fermi
surface and different anomalous Hall conductivity than those
of type-I Weyl semimetals, which have important impact on
the topological plasmons (see next section).

III. CHIRAL SURFACE PLASMONS

Below we will give a detailed investigation of the surface
plasmons in Weyl semimetals, and we shall focus on the
undoped case. We start from the electrodynamic equations of

the Weyl electrons. We assume the thickness of the slab L
is very large and the electric potential near the top surface
(y = 0) takes the form as φ(x, y < 0, z) = φ0ekyei(qzz+qxx−ωt )

(discussions about plasmons on the right and front surfaces
can be seen in Appendixes C and D). Accordingly, the electric
field E = −∇φ, the charge density ρ, and the current density
j hold the same form. From the Poisson equation ∇2φ =
−ρ/ε0ε�(−y), the charge conservation equation ∂ρ

∂t + ∇ ·
j = 0, and the microscopic Ohm’s law j = σ̂E, we obtain
the bulk relationship (see Appendix B 1):

ε0ε(q2 − k2) = ηk(qz + iηqx )σH

iω(1 − η2)
, (3)

where q = √
q2

x + q2
z and η = ωc/ω with a cyclotron fre-

quency ωc. ε0 is the permittivity of vacuum, and ε = 13 is
the static dielectric constant of the medium [52]. Instead of
the topological Chern-Simon term modifying the Maxwell’s
equations, the information of the topology of Weyl electrons
here is completely described by the anomalous Hall conduc-
tivity σH .

At the top surface, the boundary condition gives the con-
stitutive relation which determines the Fermi-arc plasmon
dispersions:

ε0(q + εk) = qxσH

ω
+ q2

z σ
s
zz + q2

xσ
s
xx + iqzqxη(σ s

zz − σ s
xx )

iω(1 − η2)
,

(4)

where σ s
j j is the surface conductivity which can be calculated

by the Hamiltonian Eq. (2) of the surface states or by defining
from the bulk conductivity as σ s = σbulkL [44]. Theoretical
derivation suggests that σ s

j j = αε0σ̃
s
j j ≈ αε0

iD j

ω−vqx
where α =

e2/hε0 and Dj is the Drude weight in the AC conductivity (see
Appendixes B 3 and B 4).

For the intrinsic case ωc = 0, if σH → 0 and ω � vqx, one
obtains the traditional 2D plasmon whose frequency is propor-
tional to

√
q: ω = √

αD0q/2εeff, where Dz = Dx = D0, εeff =
(1 + ε)/2. In general, Eq. (4) indicates anisotropic Fermi-arc
plasmons in accordance with the anisotropy in the Fermi-arc
dispersion. For the z direction, ω = √

αDzqz/2εeff; for the x
direction, in the low frequency range ω 	 ασ̃H where σ̃H =
σH/αε0, one can get a linear plasmon ω = (v − Dx/σ̃H )qx,
which is consistent with the result utilizing 3D dielectric
function [64]. The anisotropic plasmon dispersion results in
different EM responses for external fields with different polar-
ization. Unlike the case with polarization along z direction, the
plasmonic modes with qz = 0 cannot be excited directly due
to v/h̄ < c, just as the usual surface plasmon at the interface
between metal and vacuum.

When the external magnetic field is applied, a gap will
be opened in the plasmon dispersion [74,75]. If σH → 0,
ω � vqx, one can get the traditional 2D magnetoplasmon

ω =
√

αD0q
2εeff

+ ω2
c . If σ̃H � ω/α and qx = 0, the constitutive

relations suggest that Re[k] 	 qz. In the long wave limit qz →
0, Eq. (4) gives a novel gapped mode ω = √

αDz|qz| + ω2
c ,

which differs from the traditional magnetoplasmon.
In the x direction, the magnetic field and the anomalous

Hall conductivity bring about abundant plasmon dispersions.
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FIG. 1. (a) Dispersion of Weyl surface plasmons on the top
and bottom surfaces. Dx = 0.05 eV, qz = 0, h̄ωc = 5 meV, v =
0.5 eV nm, σ̃H = 0.6. The dashed lines denote the dispersions of
ω = ±(v − Dx/σ̃H )qx and ω = ωc. (b) Schematic diagrams of the
propagation of the surface plasmons and the corresponding bulk
topology. See Appendixes C and D for discussions about plasmons
on the right and front surfaces.

In the long wave limit qx → 0 we have

ω = (v − Dx/βσ̃H )qx, (5)

as plotted in Fig. 1(a). When ωc = 0, it turns back into the
intrinsic mode with β = 1. While in the limit ωc → +∞ we
have β → +∞ and ω = vqx (see Appendix C 5). It is also a
gapless linear magnetoplasmon. Because ω � 0, one obtains
qx � 0 implying that it propagates unidirectionally only along
the positive x direction. These properties are significantly
different from the traditional surface magnetoplasmons which
are gapped. In the next section we will show that it is a surface
counterpart of the topological bulk plasmon.

When ω � ωc, from Eq. (3) we have k ≈ 0. If σ̃H � ω/α,
from Eq. (4) one can get that (qz = 0)(

1 − ω2
c

ω2

)(
1 − ω

vqx

)
= Dx

vσ̃H
, (6)

which gives an unusual plasmon with a hyperbolic band. Let
the right side be zero (Dx = 0), we get the equations of two
asymptotes ω1 = vqx and ω2 = ωc. In the limit ω/ωc → +∞,
Eq. (6) gives the intrinsic dispersion that ω = (v − Dx/σ̃H )qx.
The exact solution is plotted in Fig. 1(a). From the dispersion
relationship one can obtain qx � ωc

v
(1 + √

2Dx/vσ̃H ) ≡ q̄ for
the branch ω � ωc. Then in the real space there is a confine-
ment of the EM field associated with the Fermi-arc plasmon.
The maximum confinement length 1/q̄ can be tuned by the
external magnetic field. This is quite different from the case
in intrinsic plasmons or traditional magnetoplasmons. This
peculiar dispersion and confinement of EM field are (par-
tially) due to the anomalous Hall current that connects the
bulk and surface degrees of freedom (see Appendix B 2).
These plasmons with different dispersions could be observed
in experiment. Some features of plasmons, such as anisotropic
dispersion and dispersion proportional to

√
q (for intrinsic

case) in topological materials, have been explored in recent
studies [57,76,77].

It is worth noting that in Fig. 1(a) the plasmon momentum
qx is locked with its surface location. This is a result due to
the particular way of electron transitions in Fermi arcs. For
the top Fermi arc, the electrons with dispersion hτ=1 ≈ vkx

can only absorb the photons whose momentum is positive;
but for the bottom surface, the photons’ momentum must be
negative. Here we would like to note that the inclusion of

scattering from defects/impurities in real materials leads to
finite lifetime of plasmons. Yet, the basic physical picture re-
mains unchanged (see Appendix B 8 for detailed calculations
and discussions). In the next section we will show that it is
also a result from the nontrivial bulk topology.

IV. TOPOLOGICAL BULK PLASMONS

Below we will point out that the Weyl semimetal can host
a 3D topological plasmon with the help of the magnetic field,
and the unidirectional surface plasmons can be classified ac-
cording to the topology of the bulk.

We come from the set that φ(r) = φ0ei(qxx+qyy+qzz−ωt )

and ρ(r) = ρ0ei(qxx+qyy+qzz−ωt ). The electrodynamic equations
give the constitutive relation that

ε0εq2 = ωcqyσH (qz + iηqx )

ω2 − ω2
c

. (7)

Here q =
√

q2
x + q2

y + q2
z . Near the cyclotron frequency ωc

where η → 1 we have

ω =
√

ωcqyσH (qz + iqx )

ε0εq2
+ ω2

c . (8)

Because the Fermi level is on the Weyl nodes, we have σii =
iD0
ω

≈ 0 which has little effect on the plasmon frequency.
From the microscopic Ohm’s law we have j = −iσ̂qφ,

then the unit vector of the current density is

je = 1

N

⎛
⎜⎝

iD0qxω−qyσH ω2−D0qzωc

ω2−ω2
c

qxσH + iD0qy/ω
iD0qzω+D0qxωc+iqyσH ωωc

ω2−ω2
c

⎞
⎟⎠, (9)

where N is the normalization coefficient. The functional form
of the current density is universal and independent on the
details of the plasmon dispersion. The Berry curvature of the
plasmon is defined by [75,78]

�(q) = −i∇q × 〈 je|∇q| je〉. (10)

The Chern number of a plane in the reciprocal space reads
as a integral that Cαβ (qγ ) = 1

2π

∫
dSαβ · �(qα, qβ, qγ ). When

ωc = 0 or σH = 0 or D0 = 0, we have �(q) = 0. It is a trivial
phase. But when D0σHωc �= 0 and D0 → 0, �(q) is diverging
near q = 0. As a result, there emerges nonzero Chern numbers
Czx = −1(Cxy = 1) for a fixed qy = q0(qz = q0) where q0 is
an arbitrary nonzero real number. When there is a section of
the body, the corresponding topologically protected surface
states emerge. Just as shown in Fig. 1(b), one could clearly
see that the nontrivial geometric phase of the bulk plasmon is
in consistent with the one-way propagation of the surface plas-
mons. On the other hand, Cyz is always zero and accordingly
there are no unidirectional plasmons on the z (y) direction of
the top (front) surface, seen in Fig. 6 in Appendix D.

V. SEMICLASSICAL PICTURE FOR WEYL ORBITS

Before further discussions, let us turn our attention to the
electron transport for a moment. In the presence of a uniform
moderate magnetic field B = (0, B, 0), we use a semiclassical
formulism with the effect of Berry phase taken into account
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[79]. Also for typical Weyl semimetals, the Zeeman splitting
is small for moderate magnetic field [23]. In our case it is in
the order of sub-meV (one order of magnitude smaller than
the typical energy scale considered in this paper), thus it could
be neglected. The equations of motion for an electron wave
packet in the Fermi arcs are

ṙ = ∂Ek

h̄∂k
− k̇ × �arc(k), (11)

h̄k̇ = −eṙ × B, (12)

where �arc(k) = (�yz,�zx,�xy) is the pseudovector of the
Fermi-arc Berry curvature. Different from the traditional 2D
electron gas, the electrons in Fermi arcs not only float on the
surface, but also penetrate deep into the interior, forming a
special 3D charge distribution. By replacing ky with −i∂y,
we calculate the Fermi-arc Berry curvature �arc(k) and find
that �zx = 0, �xy(λkz, λ

′kx ) = �xy(kz, kx ), �yz(λkz, λ
′kx ) =

λλ′�yz(kz, kx ) where λ, λ′ = ±1 (see Appendix E). Combin-
ing Eqs. (11) and (12), one can see that the Fermi-arc electrons
earn an anomalous velocity component perpendicular to the
surface:

v⊥ = eB

h̄
(vz�xy + vx�yz ). (13)

In Fig. 2(b) we plot the variation curves of �yz and �xy

along the top-surface Fermi arc. It indicates that near the Weyl
nodes, the Berry curvature earns a sharp peak. So the electrons
near Weyl nodes suffer the biggest impact and gain largest
tunneling velocity, which is one order of magnitude bigger
than the intrinsic speed. Suppose the magnetic field intensity
B is 1 T, the relaxation time of electrons is 1 ps, the tunneling
distance can reach 1 μm, which could even be enhanced
linearly by B. Such a long mean free path can allow electrons
to tunnel between the opposite surfaces without scattering
[44,45].

As vz(λkz, λ
′kx ) = λvz(kz, kx ) and vx(λkz, λ

′kx ) =
λ′vx(kz, kx ), the anomalous velocity obeys v⊥(λkz, λ

′kx ) =
λv⊥(kz, kx ). Thus, the electron earns opposite motions near
different Weyl nodes, resulting a complete cyclotron motion
through the Weyl semimetal, as shown in Fig. 2(a). From
a quantum view, these Weyl orbits are composed of Fermi
arcs on the surface and chiral zeroth LLs in the bulk [41–43].
They are unique 3D electron states connecting the opposite
surfaces. When the density of electrons in the orbits is
fluctuated by external field, there will be corresponding
collective excitations mixing the surface plasmons and the
chiral bulk plasmons [66,67].

VI. TOPOLOGICAL FERMI-ARC PLASMONS

As a result of the formation of Weyl orbits, the Fermi-
arc plasmons over opposite surfaces can make up a unique
3D topological plasmon. We first focus our attention on the
top surface where y = 0 and qx > 0. From the microscopic
Ohm’s law we have js = −iσsqφ|0− , then the unit vector of
the surface current density is

js
e = 1

Ns

(
γ qz − iηqx

qx + iγ ηqz

)
, (14)

FIG. 2. (a) A schematic diagram of the Weyl orbits in a slab
of Weyl semimetal with thickness L. (b) Variation curves of the
Berry curvature �xy and �yz along the top-surface Fermi arc for
kz, kx > 0. The right inset shows the corresponding anomalous ve-
locity perpendicular to the surface. v0 = √

v2
z + v2

x . A = 0.5 eV nm,
M = 5 eV nm2, D1 = 2 eV nm2, D2 = 3 eV nm2, b = 0.3 nm−1,
L = 100 nm, B = 1 T.

where Ns = √
(1 + η2)(q2

x + γ 2q2
z ) is the normalization co-

efficient and γ = σ s
zz

σ s
xx

= Dz

Dx
. The functional form of Eq. (14)

is universal and not dependent on the details of the plasmon
dispersion. We define the pseudospin of the current density as
s = 〈 js

e|σs| js
e〉:

sy = − sin θ, sz = cos θ cos φ, sx = cos θ sin φ, (15)

where tan θ/2 = η, tan φ/2 = γ qz/qx. Because η ∈ [0, 1],
γ qz/qx ∈ (−∞,+∞), one can see that θ changes from zero
to π/2 and φ from −π to π . When ωc = 0, sy = 0, Eq. (15)
describes a circle in the sz-sx plane and there is no curvature in
it. But when ωc > 0, sy < 0, the pseudospin s will distribute
on a semisphere exhibiting a curved pseudospin texture. As a
result, there emerges a nonzero geometric phase in the Fermi-
arc plasmons.

The electrodynamic equations can be transformed into an
equivalent Hamiltonian eigenvalue problem ω js = H js where
(see Appendix B 7)

H = σs

i[(ε + 1)ε0q − σH qx/ω]

(
q2

z qzqx

qxqz q2
x

)
. (16)

One can find that the eigenvector of the Hamiltonian is exactly
Eq. (14). When σH = 0, Eq. (16) describes the traditional
2DEG magnetoplasmon problem [75,78]. When qx > 0 for
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FIG. 3. Diagrammatic top view of the direction and position of
the unidirectional edge plasmons with different magnetic fields. The
circles with arrows denote the cyclotron motion of the Fermi-arc
electrons.

the top surface, straightforward derivation implies the Chern
number Ctop of the hyperbolic band is 1

2 (see Appendix B 6).
Likewise, for the bottom we have Cbott = 1

2 . Therefore, there
is a nontrivial 3D topological hyperbolic plasmon with Chern
number C = 1 over the opposite Fermi arcs.

VII. UNIDIRECTIONAL EDGE PLASMONS

Now we come to consider the edge states of the topological
Fermi-arc plasmons. Near the left edge as plotted in Fig. 3(a),
we assume that the electric potential of the edge plasmons
takes a form as φ(z, x) = φ0e−kzz+iqxx where kz > 0, z > 0.
Compared with the surface plasmons where φ ∝ eiqzz+iqxx, the
edge plasmon can be described with Eq. (14) by replacing
qz with ikz. From the boundary condition jedge

z |0+ = 0, we
obtain kz = ηqx

γ
. Because η, γ > 0, one can find that qx > 0

and so the edge plasmon is unidirectional propagating along
the positive x axis. On the contrary, for the right edge the edge
plasmon goes along the negative direction.

When the external magnetic field is along the negative
direction of the y axis, as plotted in Fig. 3(b), the cyclotron
motion of the Fermi-arc electrons will turn around and η

becomes negative. Accordingly, the top edge plasmon would
propagate along the right boundary and the bottom along the
left. Therefore, the direction and position of the unidirectional
edge plasmons can be adjusted by the external magnetic field,
which is one distinguished feature of magnetoplasmons differ-
ent from that of the usual plasmons considered in [48,56,57].

In the low frequency range ω 	 ασ̃H , combining Eqs. (14)
and (16), one can get the frequency of the edge plasmons:

ωedge =
(

v − Dx

σ̃H

)
qx, (17)

which implies a gapless linear edge mode independent of the
external magnetic field.

VIII. CONCLUSION

In summary, we have systematically investigated the prop-
erties of bulk, surface, and edge plasmons in Weyl semimetals
in the presence of a magnetic field. It is found that unidirec-
tional plasmons with different properties exist on different
surfaces, which is consistent with the nontrivial topology
of the 3D bulk plasmons. These novel plasmons possess
momentum-location lock and are mixed with the bulk LL
plasmons. The anomalous Hall conductivity can greatly
change the magnetoplasmon dispersion and gives rise to lin-
ear, parabolic, or even hyperbolic bands, measurable by EELS
[50,57]. Strong confinement of the EM field associated with
Fermi-arc plasmons has been found. With the help of a semi-
classical picture for the formation of the Weyl orbits, we point
out that the Fermi-arc plasmons at opposite surfaces can make
up another unique 3D topological plasmon. Furthermore,
there is a gapless unidirectional edge plasmon protected by the
topology whose direction and position can be controlled by
an external field. Our work thus uncovers topological features
of Weyl plasmons, which may have important applications in
photoelectric devices based on chiral/topological plasmonics.
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APPENDIX A: THE EFFECT OF MAGNETIC FIELD ON
THE CONDUCTIVITY

In the presence of a uniform magnetic field B = (0, B, 0),
the equation of motion for an electron reads

∂ j
∂t

= e2n

m
E + ωcey × j, (A1)⎛

⎝ 1 0 −iη
0 1 0
iη 0 1

⎞
⎠ j = σ̂E, (A2)

where e > 0, η = ωc/ω with a cyclotron frequency ωc =
eB/m from the perpendicular magnetic field and σ̂ = i e2n

mω
is

the well-known 3D conductivity. In the case of Weyl semimet-
als, the conductivity is a matrix and Eq. (A2) becomes

⎛
⎝ 1 0 −iη

0 1 0
iη 0 1

⎞
⎠ j =

⎛
⎝σxx −σH 0

σH σyy 0
0 0 σzz

⎞
⎠E, (A3)

where σH = e2

2πh 2b is the anomalous Hall conductivity. Then

j =

⎛
⎜⎝

σxx
1−η2

−σH
1−η2

iσzzη

1−η2

σH σyy 0
−iσxxη

1−η2
iσH η

1−η2
σzz

1−η2

⎞
⎟⎠E. (A4)
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For the surface we have(
js
z

js
x

)
=

(
σ s

zz

1−η2
−iσ s

xxη

1−η2

iσ s
zzη

1−η2
σ s

xx
1−η2

)(
Ez|0−

Ex|0−

)
. (A5)

APPENDIX B: PLASMONS ON THE TOP SURFACE

1. The wave vector perpendicular to the surface

For the top surface at y = 0, when y > 0, we assume
the electric potential takes the form as φ(x, y > 0, z) =
φ0e−κyei(qzz+qxx−ωt ). From the Poisson equation ∇2φ = 0, one
can get

κ = q =
√

q2
z + q2

x . (B1)

When y < 0 we assume that φ(x, y < 0, z) =
φ0ekyei(qzz+qxx−ωt ), ρ(x, y < 0, z) = ρ0ekyei(qzz+qxx−ωt ). Then
the Poisson equation ∇2φ = −ρ/ε0ε gives that

ρ0 = ε0ε(q2 − k2)φ0. (B2)

Because the Fermi level is on the Weyl nodes, we assume
that σxx = σyy = σzz = 0. From the charge conservation we
get

ρ0 = ηk(qz + iηqx )σH

iω(1 − η2)
φ0. (B3)

From Eqs. (B2) and (B3) one can get Eq. (3) in the main
text and

k = −ξ + sgn(ω − ωc)
√

ξ 2 + [2ε0εω(1 − η2)q]2

2ε0εω(1 − η2)
, (B4)

where ξ = (−iηqz + η2qx )σH .

2. The surface density contribution from bulk/surface carriers

We assume that the surface density contribution from bulk
carriers takes the form as ρs,M (z, x) = ρM

0 ei(qzz+qxx−ωt ), then

∂ρs,M

∂t
= ey · j|0− , (B5)

ρM
0 = qxσH

ω
φ0. (B6)

On the other hand, the surface density contribution from sur-
face carriers takes the form as ρs,F (z, x) = ρF

0 ei(qzz+qxx−ωt ),
then

∂ρs,F

∂t
+ ∇s · js = 0, (B7)

ρF
0 = q2

z σ
s
zz + q2

xσ
s
xx + iqzqxη

(
σ s

zz − σ s
xx

)
iω(1 − η2)

φ0. (B8)

3. The constitutive relation for the surface plasmon

At the top surface, the boundary condition reads

ε0Ey|0+ − εε0Ey|0− = ρs,M + ρs,F , (B9)

q + εk = α

ω

[
qxσ̃H + q2

z σ̃
s
zz + q2

x σ̃
s
xx + iqzqxη(σ̃ s

zz − σ̃ s
xx )

i(1 − η2)

]
,

(B10)

where α = e2

hε0
, σ̃ s

ii = σ s
ii/αε0, σ̃H = b/π . If σ̃ s

zz = iDz

ω−vqx
,

σ̃ s
xx = iDx

ω−vqx
(see in Appendix B 4), then Eq. (B10) becomes

q + εk = α

ω

[
qxσ̃H + q2

z Dz + q2
x Dx + iqzqxη(Dz − Dx )

(1 − η2)(ω − vqx )

]
.

(B11)

4. Approximate expressions of the Fermi-arc conductivity

We start from the effective model for the Fermi arc at the
top (τ = 1) or bottom (τ = −1) surface [Eq. (2) in the main
text]:

hτ = τvkx + (D2 − D1)
(
k2

z + k2
x

) + D1b2 ≈ τvkx. (B12)

The velocity operators are given by

h̄Vx = ∂hτ

∂kx
= τv + 2(D2 − D1)kx ≈ τv, (B13)

h̄Vz = ∂hτ

∂kz
= 2(D2 − D1)kz. (B14)

Because they are real numbers, not matrices, we have (q → 0)

〈�τ |h̄Vx|�τ ′ 〉 = δττ ′ h̄Vx, (B15)

〈�τ |h̄Vz|�τ ′ 〉 = δττ ′ h̄Vz. (B16)

So the Fermi-arc conductivity reads

σ τ
i j = e2

h

i

2π

∫
d2k

(h̄Vi )(h̄Vj )( f τ
k − f τ

k+q)

(h̄ω + E τ
k − E τ

k+q)(E τ
k+q − E τ

k )
. (B17)

Because E τ
k+q − E τ

k ≈ τvqx, we have (q → 0)

σ τ
i j ≈ αε0

iDi j

h̄ω − τvqx
, (B18)

where Di j = 1
2π

∫
d2k(h̄Vi )(h̄Vj )

−df τ
k

dE τ
k

.

5. Dispersion behavior in the long wave limit

When qz = 0 and qx → 0, from Eq. (3) in the main text
and Eq. (B11) we have

εk = α

ω

qxσ̃Hη2

η2 − 1
(B19)

and

εk = α

ω

[
qxσ̃H + q2

x Dx

(1 − η2)(ω − vqx )

]
. (B20)

Then

qxσ̃Hη2

η2 − 1
= qxσ̃H + q2

x Dx

(1 − η2)(ω − vqx )
, (B21)

ω = (v − Dx/σ̃H )qx. (B22)

While in the strong magnetic field limit ωc → +∞, from
Eq. (3) in the main text and Eq. (B11) we have

εk = εq2
x

k
+ αqxσ̃H

ω
(B23)

205141-6



THREE-DIMENSIONAL TOPOLOGICAL PLASMONS IN … PHYSICAL REVIEW B 104, 205141 (2021)

and

qx + εk = α

ω

[
qxσ̃H + q2

x Dx

η2(vqx − ω)

]
. (B24)

Then

qx + εq2
x

k
+ αqxσ̃H

ω
= α

ω

[
qxσ̃H + q2

x Dx

η2(vqx − ω)

]
, (B25)

1 + εqx

k
= α

ω

qxDx

η2(vqx − ω)
. (B26)

In the long wave limit qx → 0 one gets

1 = α

ω

qxDx

η2(vqx − ω)
. (B27)

Because qx/η
2 → 0, in order to make the equation satisfied

one has (vqx − ω) → 0. Thus

ω = vqx. (B28)

6. Topological plasmon in a hyperbolic band

From Eq. (A5) we have(
js
z

js
x

)
=

(
σ s

zz

1−η2
−iσ s

xxη

1−η2

iσ s
zzη

1−η2
σ s

xx
1−η2

)(−iqz

−iqx

)
φ|0− . (B29)

Then the unit vector of the current is

js
e = 1√

ω2+ω2
c

ω2 (q2
x + γ 2q2

z )

(
γ qz − i ωc

ω
qx

qx + iγ ωc
ω

qz

)
, (B30)

where γ = σ s
zz

σ s
xx

= Dz

Dx
≈ 0.

The Berry curvature is defined by � = −i∇q × 〈 js
e|∇q| js

e〉,
and direct derivation shows that

� =
(

0,
2γωc(ω2 − ω2

c )(qz∂zω + qx∂xω)

(q2
x + γ 2q2

z )(ω2 + ω2
c )2

, 0

)
. (B31)

Because ∂zω ≈ 0, we make

�y = 2γωc(ω2 − ω2
c )qxdxω

(q2
x + γ 2q2

z )(ω2 + ω2
c )2

, (B32)

which does not change the topology of the band. Then

1

2π

∫ +∞

−∞
�ydqz = qx

|qx|
ωc(ω2 − ω2

c )dxω

(ω2 + ω2
c )2

. (B33)

The Chern number is C = 1
2π

∫
� · dSq which can be de-

composed into two parts that C = C↑ + C↓ where C↑ is for the
upper half-band ω↑ ∈ [ωm,+∞] and C↓ is for the lower half-
band ω↓ ∈ [ωc, ωm]. For the lower half-band ω↓, we choose
dSq = −dqzdqx possessing an opposite direction to the upper
half. When qx > 0, we have

C↑ =
∫ +∞

ωm

ωc(ω2
↑ − ω2

c )

(ω2
↑ + ω2

c )2
dω↑ (B34)

and

C↓ = −
∫ ωc

ωm

ωc(ω2
↑ − ω2

c )

(ω2
↑ + ω2

c )2
dω↑. (B35)

Thus

Ctop =
∫ +∞

ωc

ωc(ω2 − ω2
c )

(ω2 + ω2
c )2

dω = 1

2
. (B36)

When qx < 0, we also have Cbott = 1
2 . Thus Ctot = 1.

7. Equivalent Hermitian eigenvalue problem

From Eq. (B5) we have

ρs,M = iσH Ex|0−

ω
. (B37)

From Eq. (B7) we have

−iωρs,F + iqz js
z + iqx js

x = 0, (B38)

ρs,F = qz js
z + qx js

x

ω
. (B39)

So the surface density is

ρs = qz js
z + qx js

x

ω
+ iσH Ex|0−

ω
. (B40)

The components of electric field satisfy

Ey|0−

Ez|0−
= k

iqz
≈ q

iqz
, (B41)

Ey|0− = q

iqz
Ez|0− , (B42)

and

Ey|0+ = −q

iqz
Ez|0− , (B43)

Ex|0− = qx

qz
Ez|0− . (B44)

From Eq. (B9) we have

ε0
−q

iqz
Ez|0− − εε0

q

iqz
Ez|0− = qz js

z + qx js
x

ω
+ iσH

ω

qx

qz
Ez|0− ,

(B45)

Ez|0− = q2
z js

z + qzqx js
x

i[(ε + 1)ε0ωq − σH qx]
. (B46)

Then

Ex|0− = qx

qz
Ez|0− = qzqx js

z + q2
x js

x

i[(ε + 1)ε0ωq − σH qx]
. (B47)

Thus(
Ez|0−

Ex|0−

)
= 1

i[(ε + 1)ε0ωq − σH qx]

(
q2

z qzqx

qzqx q2
x

)(
js
z

js
x

)
.

(B48)

Combining Eq. (A5) one can obtain

ω

(
js
z

js
x

)
= H

(
js
z

js
x

)
, (B49)

where

H = 1

i[(ε+1)ε0q − σH qx/ω]

(
σ s

zz

1−η2
−iσ s

xxη

1−η2

iσ s
zzη

1−η2
σ s

xx
1−η2

)(
q2

z qzqx

qzqx q2
x

)
.

(B50)
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FIG. 4. The influence of relaxation time from scattering. ητ =
0.658 meV. The other parameters are the same as Fig. 1(a) in the
main text.

8. The influence of relaxation time from scattering

When considering the effects of defects and impuri-
ties in realistic systems, a relaxation time term is added
to the conductivity [62]. Here we choose σ̃ s

zz = iDz

ω+iητ −vqx
,

σ̃ s
xx = iDx

ω+iητ −vqx
, where ητ = h̄/τ = 0.658 meV and τ = 1

ps. As a result, the wave vector k and the frequency ω

of the plasmons obtain a imaginary part, and the plasmon
lifetime becomes finite by damping. Under the conditions
abs[Re(k)] > abs[Im(k)] and abs[Re(ω)] > abs[Im(ω)], one
may have a well-defined (long-lived) plasmon. The energy
scale related to scattering ητ is in the order of sub-meV, which
is one order of magnitude smaller than the typical energy scale
of plasmons. Thus, one can expect that the basic physical
picture remains unchanged.

Perturbative calculation shows that the dispersion
relationship in the z direction (with qx = 0) has the form ω =√

αDz|qz| + ω2
c (1 − iδ), with δ = ηταDz|qz|/2(αDz|qz| +

ω2
c )3/2. It is estimated that δ < 0.033 (for ωc = 5 meV).

The scattering leads to minor correction to the dispersion
relation with finite lifetime of plasmon. We display the
dispersion relationship in the x direction (with qz = 0) in
Fig. 4 with the constraints abs[Re(k)] > abs[Im(k)] and
abs[Re(ω)] > abs[Im(ω)]. From Fig. 4 we can see that the
linear branch and the hyperbolic branch keep the shape
stable, except for a small split of the the latter. The plasmon
modes between the gap are not plotted because their lifetimes
are short by damping. For the frequencies ω far from ωc,
which contribute the most to the Berry curvature of the band,
the influence of relaxation time is even smaller. Thus the
scattering from defects/impurities leads to finite lifetime of
plasmons, and the dispersion relations of the plasmons are
robust against scattering effect.

APPENDIX C: PLASMONS ON THE RIGHT SURFACE

When considering the right surface, we assume the
electric potential near the surface (x = 0) takes the form

as φ(x > 0, y, z) = φ0e−κxei(qyy+qzz−ωt ), φ(x < 0, y, z) =
φ0ekxei(qyy+qzz−ωt ). Accordingly, Eq. (3) in the main text
becomes

ε0ε(q2 − k2) = ηqy(qz + ηk)σH

(1 − η2)ω
. (C1)

Like in the top case, there is also topological Fermi arc on the
right surface. The boundary condition gives the constitutive
relation of the surface plasmons that

q + εk = α

ω

[−qyσ̃H

1 − η2
+ q2

y Dy + q2
z Dz/(1 − η2)

ω + vqy

]
. (C2)

Hence the magnetic field has different influence on the arc
electrons in different directions. This is because the vertical
magnetic field is parallel to the right surface.

1. On the y direction

When qz = 0, Eq. (C2) becomes

|qy| + εk = α

ω

[−qyσ̃H

1 − η2
+ q2

y Dy

ω + vqy

]
. (C3)

Numerical calculation suggests that qy < 0, so the surface
plasmon propagates along the negative y direction. This is a
result of the negative sign in −qyσ̃H/(1 − η2) in Eq. (C3). In
the long wave limit qy → 0 and ω → 0, Eqs. (C1) and (C3)
become

k = −qy
εω

ασ̃H
→ 0 (C4)

and

ω = 3

√
−qyDyω2

c

σ̃H
, (C5)

proposing a gapless surface plasmon with a novel dispersion
ω ∝ 3

√
qy as plotted in Fig. 5.

In the limit that ω = ωc − τ where τ → 0+, we have η →
1. Equations (C4) and (C5) change into

k = −qy
εωc(η2 − 1)

ασ̃H
→ 0 (C6)

and

ω = −vqy, (C7)

which gives a linear surface mode.
In the limit that ω = ωc + τ where τ → 0+, Eq. (C6) be-

comes

k = −qy
ασ̃H

εωc(1 − η2)
→ +∞. (C8)

From Eq. (C1) we have

εk = α

ω

qyσ̃Hη2

η2 − 1
. (C9)

From Eq. (C3) we have

εk = α

ω

[
qyσ̃H

η2 − 1
+ q2

y Dy

ω + vqy

]
. (C10)
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FIG. 5. Dispersion of Weyl surface plasmons on the left and
right surfaces. Dx = 0.05 eV, qz = 0, h̄ωc = 5 meV, v = 0.5 eV nm,
σ̃H = 0.6. The dashed lines denote the dispersions that ω = ±(v −
Dx/σ̃H )qx and ω = ωc.

Then

qyσ̃Hη2

η2 − 1
= qyσ̃H

η2 − 1
+ q2

y Dy

ω + vqy
, (C11)

ω = −(v − Dy/σ̃H )qy. (C12)

Thus there is a gap in the wave vector near ω ≈ ωc:

�qy = ωc

v − Dy/σ̃H
− ωc

v
. (C13)

2. On the z direction

When qy = 0, from Eq. (C1) we have k = |qz|, then
Eq. (C2) becomes

(1 + ε)ω2 = α
Dz|qz|
1 − η2

, (C14)

ω =
√

ω2
c + αDz|qz|

1 + ε
, (C15)

which is a traditional magnetoplasmon dispersion and it can
travel in both directions. This plasmon origins from electronic
oscillations of the surface Fermi arcs.

When Dz = 0, qy → 0 but qy �= 0, we seek for solutions
near ω ≈ ωc (η ≈ 1). From Eq. (C1) we have

ε(q2
z − k2)ω = αηqy(qz + ηk)σ̃H

1 − η2
. (C16)

From Eq. (C2) we have

(|qz| + εk)ω = αqyσ̃H

η2 − 1
. (C17)

Then

ε(k2 − q2
z )

|qz| + εk
= qz + k, (C18)

qz = −k < 0. (C19)

So there is a surface plasmon propagating along the negative
z direction and ω ≈ ωc. This is a robust result of the product
factor (qz + ηk) in Eq. (C1). Furthermore, when Dz → 0 with
a large qy > 0, this unidirectional plasmon can still exist,
which cannot be excited from the surface Fermi arcs requiring
qy < 0. Thus it origins from the topology of the bulk plasmon
where Czx = −1.

APPENDIX D: PLASMONS ON THE FRONT SURFACE

Now we turn to the front surface and assume the electric
potential near the surface (z = 0) takes the form as φ(x, y, z >

0) = φ0e−κzei(qxx+qyy−ωt ), φ(x, y, z < 0) = φ0ekzei(qxx+qyy−ωt ).
Accordingly, Eq. (3) in the main text becomes

ε0ε(q2 − k2) = iηqy(ηqx − k)σH

(1 − η2)ω
. (D1)

Because there is no electron states on the x-y surface, the
constitutive relation of the surface plasmons is constituted
only of the anomalous Hall conductivity:

(q + εk)ω(1 − η2) = αiηqyσ̃H . (D2)

When qy = 0, Eq. (D1) reads k = |qx| and Eq. (D2) gives

|qx|(1 + ε)ω(1 − ω2
c/ω

2) = 0, (D3)

ω = ωc. (D4)

This surface plasmon is completely induced by the magnetic
field, very different from the traditional magnetoplasmons
which vanish in the insulated phase.

From Eqs. (D1) and (D2) one can get

ε(q2 − k2)

q + εk
= ηqx − k. (D5)

When qy → 0, from Eq. (D1) we have k = qx and then
Eq. (D3) becomes

0 = |qx|(sgn(qx ) − 1). (D6)

Thus qx > 0 and the surface plasmon propagates along the
positive x direction. This is a robust result of the product factor
(ηqx − k) in Eq. (D1).

When qx = 0, from Eq. (D5) we have

ε(q2
y − k2) = −k(|qy| + εk), (D7)

k = −ε|qy| < 0, (D8)

which conflicts with the original assumption. So there is no
surface plasmon propagating along the y direction. This is also
consistent with the topology of the bulk plasmons, as plotted
in Fig. 6.

APPENDIX E: THE BERRY CURVATURE IN FERMI ARCS
AT ZERO MAGNETIC FIELD

As Eq. (1) in the main text shows, the 3D model of Weyl
semimetal is

H = A(kxσx + kyσy) + M(b2 − k2)σz + D1k2
y + D2k2

‖ , (E1)

where k2
‖ = k2

x + k2
z . The model hosts two Weyl nodes at

(0, 0,±b) having energy Enodes = D2b2.
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FIG. 6. Schematic diagrams of the propagation of the surface
plasmons and the corresponding bulk topology.

The velocity operators are

h̄Vx = ∂H

∂kx
= 2(D2 − Mσz )kx + Aσx, (E2)

h̄Vy = ∂H

∂ky
= 2(D1 − Mσz )ky + Aσy, (E3)

h̄Vz = ∂H

∂kz
= 2(D2 − Mσz )kz. (E4)

We assume the wave functions take the form that

�i(y) =
∞∑

m=1

(
Ci,1m

Ci,2m

)
ϕm(y), � j (y) =

∞∑
n=1

(
Cj,1n

Cj,2n

)
ϕn(y),

(E5)

where ϕm(y) =
√

2
L sin[ mπ

L (y + L/2)] satisfying∫ L/2
−L/2 ϕm(y)ϕn(y)dy = δmn. i and j are band indexes. Ci,1m

and Ci,2m are the superposition coefficients. By replacing ky

with −i∂y, from Eqs. (E2)–(E5) we obtain that

〈�i(y)|h̄Vx|� j (y)〉 =
∑

n

C∗
i,1nCj,1n2kx(D2 − M )

+ C∗
i,2nCj,2n2kx(D2 + M )

+ (C∗
i,1nCj,2n + C∗

i,2nCj,1n)A. (E6)

FIG. 7. (a) Variation curves of the Berry curvature �xy and �yz

along the Fermi arcs. (b) The influence of D2 on the Berry curvature
�yz when D1 = 0. D2 = 1.0, 0.5, and 0.2 eV nm2, respectively.

When m �= n we have

〈�i(y)|h̄Vy|� j (y)〉
= i

∑
mn

[C∗
i,1mCj,1n(D1 − M )

+ C∗
i,2mCj,2n(D1 + M )]

4mn[(−1)m+n − 1]

L(m2 − n2)
, (E7)

else

〈�i(y)|h̄Vy|� j (y)〉 = i
∑

n

(C∗
i,2nCj,1n − C∗

i,1nCj,2n)A, (E8)

〈�i(y)|h̄Vz|� j (y)〉 =
∑

n

C∗
i,1nCj,1n2kz(D2 − M )

+ C∗
i,2nCj,2n2kz(D2 + M ). (E9)

Then one can get

〈�i(y)|h̄Vx|� j (y)〉 = 〈� j (y)|h̄Vx|�i(y)〉∗, (E10)

〈�i(y)|h̄Vy|� j (y)〉 = 〈� j (y)|h̄Vy|�i(y)〉∗, (E11)

〈�i(y)|h̄Vz|� j (y)〉 = 〈� j (y)|h̄Vz|�i(y)〉∗. (E12)

Because the Hamiltonian is a real symmetric matrix, Ci,1m,
Ci,2m, Cj,1n, and Cj,2n are all reals. Then

〈�i(y)|h̄Vx|� j (y)〉 = 〈� j (y)|h̄Vx|�i(y)〉, (E13)

〈�i(y)|h̄Vy|� j (y)〉 = −〈� j (y)|h̄Vy|�i(y)〉, (E14)

〈�i(y)|h̄Vz|� j (y)〉 = 〈� j (y)|h̄Vz|�i(y)〉. (E15)

The Fermi arc Berry curvature reads

�arc
αβ = −2

∑
i �=arc

Im〈�arc|h̄Vα|�i〉〈�i|h̄Vβ |�arc〉
(Earc − Ei )2

. (E16)

So �arc
zx = 0, �arc

xy , and �arc
yz are plotted as below (see Fig.

7) and we get �xy(λkz, λ
′kx ) = �xy(kz, kx ), �yz(λkz, λ

′kx ) =
λλ′�yz(kz, kx ) where λ, λ′ = ±1.
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