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A quantum many-body system with a conserved electric charge can have a DC resistivity that is either exactly
zero (implying it supports dissipationless current) or nonzero. Exactly zero resistivity is related to conservation
laws that prevent the current from degrading. In this paper, we carefully examine the situations in which such a
circumstance can occur. We find that exactly zero resistivity requires either continuous translation symmetry or
an internal symmetry that has a certain kind of “mixed anomaly” with the electric charge. (The symmetry could
be a generalized global symmetry associated with the emergence of unbreakable loop or higher dimensional
excitations). However, even if one of these is satisfied, we show that there is still a mechanism to get nonzero
resistivity, through critical fluctuations that drive the susceptibility of the conserved quantity to infinity; we
call this mechanism “critical drag.” Critical drag is thus a mechanism for resistivity that, unlike conventional
mechanisms, is unrelated to broken symmetries. We furthermore argue that an emergent symmetry that has
the appropriate mixed anomaly with electric charge is in fact an inevitable consequence of compressibility in
systems with lattice translation symmetry. Critical drag, therefore, seems to be the only way (other than through
irrelevant perturbations breaking the emergent symmetry that disappear at the renormalization group fixed point)
to get nonzero resistivity in such systems. Finally, we present a very simple and concrete model—the “quantum
Lifshitz model”—that illustrates the critical drag mechanism as well as the other considerations of the paper.
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I. INTRODUCTION

This paper is concerned with the issue of electrical re-
sistivity in a system with a conserved charge. In systems
described by Landau Fermi liquid theory, resistivity must arise
from quasiparticle scattering, due to impurities, umklapp, or
electron-phonon interactions. In this paper, however, we want
to make general statements that will hold even beyond Fermi
liquid theory.

The opposite of nonzero resistivity is dissipationless cur-
rent. In a system without resistivity, the current can flow
freely without degrading, even in the absence of an electric
field; that is, there exists an equilibrium state of the system
with nonzero expectation value of the current. On the face of
it, such a situation is precisely the one that is ruled out by
Bloch’s theorem [1], which states that the expectation value
of the current is zero in thermal equilibrium. A modern and
very general argument for Bloch’s theorem has been given
in Ref. [2] in the continuum and Ref. [3] for lattice models.
Nevertheless, it is well known that are systems that exhibit
dissipationless current, most famously superfluids, but also an
electron gas with an exact continuous translation symmetry.

In general, a powerful way to think about resistivity, or lack
thereof, is in terms of the symmetries of the system, or equiv-
alently the conserved quantities. The correct way to interpret
Bloch’s theorem, as we will review here, is that it shows that
there will be no dissipationless current, provided that there
is no conserved quantity that inhibits the current from relax-
ing. For example, in an electron gas with exact continuous

translation symmetry, there is such a conserved quantity,
namely, the momentum. More subtly, the dissipationless cur-
rent in a superfluid is protected by a conserved vorticity.
Indeed, the idea that nonzero resistivity should be traced back
to the absence of conserved quantities that can protect the
current has been long been prevalent [4–6], though here we
reinterpret this result by phrasing it in terms of a specific
loophole in Bloch’s theorem. This is certainly the origin of
nonzero resistivity in familiar examples such as Fermi liquid
theory, where the resistivity is caused by scattering processes
that do not respect momentum conservation.

By contrast, in a recent paper, we proposed [7] a mech-
anism by which nonzero resistivity can occur even when
a conserved quantity is present that would a priori permit
a circumvention of Bloch’s theorem. The resistivity instead
arises from critical fluctuations. (If time reversal and inversion
symmetry are present, the operator that is critically fluctuating
must be odd under these symmetries). We will refer to this
phenomenon as critical drag. Critical drag represents a totally
different mechanism for resistivity compared with the usual
mechanism of breaking the symmetries that would protect the
current.

In this work, we will give a more general and self-
contained discussion of the concept of critical drag. We will
also exhibit a solvable field theory that exhibits critical drag.
This field theory—known as the quantum Lifshitz model
(QLM)—describes the phase transition between an ordinary
superfluid phase and a different superfluid phase associated
with bose condensation at nonzero momentum. The QLM has
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been studied extensively in a number of different theoretical
contexts [8–11]. Recently it was proposed [12] to describe
the re-entrant superconductivity observed in twisted trilayer
graphene. The gapless excitations of the QLM fixed point are
described by a free field theory. This enables explicit calcu-
lation of many of its physical properties. Here we will see
that it provides a concrete illustration of many of the general
considerations of this and our previous papers.

A. Critical drag versus broken symmetries
as mechanisms for resistivity

A further point that we wish to explore in this work
is under which circumstances critical drag is necessary to
obtain nonzero resistivity, as opposed to the more familiar
mechanism of simply breaking those symmetries that would
otherwise protect the current. First one needs to consider
under which circumstances a conserved quantity can prevent
the current from relaxing. Conventionally [13,14] this is ex-
pressed in terms of a cross-susceptibility (often referred to as
an “overlap”) between the current and the conserved quantity;
in this paper, we will point out that this cross-susceptibility in
fact precisely reflects a so-called “mixed ’t Hooft anomaly”
[15,16] between the electric charge U(1) symmetry and the
symmetry generated by the conserved quantity. One conse-
quence of this is that microscopic internal symmetries can
never prevent the current from relaxing; a symmetry that does
protect the current must either be a spatial symmetry such as
translation symmetry, or else it must be an emergent symmetry
not present at the microscopic scale.

Another consequence of the anomaly perspective is that
we can make contact with the theory of compressibility de-
veloped in Ref. [17]. A system is called “compressible” if the
microscopic electric charge density can be continuously tuned
(possibly with other parameters of the Hamiltonian tuned
simultaneously) without qualitatively changing the resulting
low-energy physics. We will give general arguments (though
not a completely rigorous proof) suggesting that a system with
microscopic lattice translation symmetry is compressible if
and only if it has an emergent symmetry that has a certain
kind of mixed ’t Hooft anomaly with the electric charge U(1).
Given the discussion of the previous paragraph, this seems
to suggest that, in the absence of critical drag, a clean com-
pressible system always supports dissipationless current, at
least in an emergent sense; more precisely, since the precise
meaning of an an “emergent symmetry” is that it is an exact
symmetry of the RG fixed-point theory that controls the low-
temperature behavior, it follows that this fixed-point theory
must have exactly zero resistivity. (For a real system at finite
temperature, there can be irrelevant terms that would not be
present in the fixed-point theory, and these can restore nonzero
resistivity). This is indeed what occurs in familiar examples
of compressible systems without critical drag such as Fermi
liquid metals and superfluids.

However, as pointed out in Ref. [7], these considerations
present a conundrum if one seeks to explain the T -linear
resistivity seen in many non-Fermi liquid metals; in many
such materials, from looking at how the conductivity scales
as a function of frequency and temperature, one can reach
the conclusion that the resistivity must be nonzero even in the

fixed-point theory. It therefore follows that critical drag must
be present in the fixed-point theory controlling these metals.
This was basically the argument made in Ref. [7]; in this
paper, we state the argument in a more general and systematic
way.

B. Generalities on emergent symmetries
and an illustrative solvable model

Beyond the general considerations of resistivity and critical
drag discussed above, we will also discuss the QLM men-
tioned above as an interesting addendum to the general theory
of compressible systems that we introduced in Ref. [7]. In that
paper, we studied in a very general way constraints on the
low-energy physics of compressible quantum phases/phase
transitions in systems with a global U(1) and (lattice) trans-
lation symmetries. The global U(1) symmetry corresponds to
conservation of particle number in the microscopic system.
In general, the renormalization group infrared (IR) fixed point
that controls the low-energy physics may have a different sym-
metry than the microscopic symmetry GUV. Further GUV will
embed into as the emergent symmetry of the IR fixed point
as an internal symmetry. Let the emergent internal symmetry
of the IR theory be denoted GIR. In a compressible state, our
previous work showed that GIR is severely constrained.

In general, the emergent symmetry GIR may include both
ordinary 0-form symmetries, as well as what are known
as “higher-form symmetries”[18]. In the condensed matter
context, these higher form symmetries are typically asso-
ciated with the emergence of fractionalized excitations and
associated deconfined gauge fields. In our earlier work we
restricted attention to situations where GIR included either
a finite higher-form symmetry, or was simply an ordinary
0-form symmetry group. This class includes almost all the
known examples of compressible quantum matter. In that
case, we proved that the 0-form symmetry included in GIR

is necessarily not a compact finite-dimensional Lie group.
(The classic example of a compressible state of matter that
does not spontaneously break GUV is a Landau Fermi liquid.
This has an infinite dimensional internal symmetry associated
with conservation of Landau quasiparticles at each point of
the Fermi surface). The question of whether a ground state
that does not spontaneously break GUV could have a GIR that
includes a continuous higher-form symmetry was left open,
as was the question of what the ‘filling’ constraints on such a
state would be.

In this paper, we provide a very simple example of a com-
pressible ground state of bosons that does not spontaneously
break any microscopic symmetries and has an emergent con-
tinuous 1-form symmetry. The most familiar ground state of
bosons at finite density is a superfluid state which sponta-
neously breaks the global U(1) symmetry. The low-energy
theory of a superfluid may be formulated in terms of an ac-
tion for the phase of the condensing boson. This theory has
an emergent continuous 1-form symmetry [denoted U(1)1]
associated with the conservation of the winding number of
the phase around a closed loop in real space. This 1-form
symmetry is explicitly broken by gapped vortex excitations of
the superfluid. However, the superfluid spontaneously breaks
the global U(1) symmetry, and hence is not a suitable answer
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to the question of whether such continuous 1-form symmetries
can emerge in ground states that do not spontaneously break
GUV.

Instead, the state we describe appears at the quantum Lif-
shitz critical point between the familiar superfluid ground
state where the bosons condense at zero momentum, and a dif-
ferent superfluid state where the bosons condense at nonzero
momentum. At this quantum Lifshitz critical point, the Bose
condensation is suppressed so that GUV is preserved. However
the vortices in the boson phase are nevertheless gapped finite
energy excitations. The theory thus has an emergent contin-
uous U(1)1 1-form symmetry. Furthermore this critical point
is compressible; the boson density can be tuned continuously
along the phase boundary. Despite this, the zero temperature
transport is that of an insulator. Thus we have a rare example
of a compressible insulator at T = 0. The suppression of the
conductivity at the fixed point theory can be understood as
coming from the critical drag mechanism. We also discuss
how these results are modified by nonzero temperature.

Reference [19] discussed a class of compressible states
of interacting bosons at a nonzero density in spatial di-
mension d > 1, dubbed “Bose-Luttinger liquids.” These
Bose-Luttinger Liquids have a low-energy description in
terms of gapless phase fluctuations living at a surface in
momentum space. They also preserve the full microscopic
symmetry GUV (including in particular the microscopic global
U(1) associated with particle number conservation). Vortices
in the boson phase are gapped excitations, and the low-energy
phase-only theory has an emergent higher form symmetry.
This was suggested to be a a one-form symmetry in Ref. [19]
but we will show here that there is actually an emergent
continuous two-form symmetry. The full set of emergent sym-
metries have a mixed anomaly with a structure that leads to a
metal with zero resistivity.

C. Outline

The outline of the remainder of the paper is as follows.
In Sec. II, we discuss the connection between conserved
quantities and violations of Bloch’s theorem. We show that
conserved quantities lead to a loophole in Bloch’s theorem
provided that a certain nontrivial transformation property of
the conserved quantity under large gauge transformations is
satisfied. We argue that a microscopic internal symmetry can
never satisfy such a nontrivial transformation property. In fact,
for internal symmetries this transformation property precisely
reflects a so-called “mixed ’t Hooft anomaly” between the
symmetry generated by conserved quantity and the electric
charge U(1). Such an anomaly can, however, occur if the
symmetry is emergent. In Secs. III and IV, we give discuss
emergent symmetries that appear in familiar examples, such
as Luttinger liquids, Fermi liquids, and superfluids, and have
the requisite mixed ’t Hooft anomaly to lead to a loophole in
Bloch’s theorem.

In Sec. V, we consider the general relations between the
property of having a mixed ’t Hooft anomaly that leads to a
loophole in Bloch’s theorem (which we call fluxibility), and
compressibility (ability of the system to have a continuously
tunable charge filling). We give arguments suggesting that in
fact fluxibility and compressibility are equivalent in systems

with a microscopic lattice translation symmetry. This implies
that the only way to get nonzero resistivity in compressible
systems (other than through irrelevant terms that break the
emergent symmetry) is through the mechanism of critical
drag. We describe this mechanism in Sec. VI.

In Sec. VII, we consider the QLM as a solvable example
of the general considerations of this paper, and in particular
as a prototypical example of critical drag. We derive various
physical properties of the QLM and relate them to the general
considerations.

Finally, in Sec. VIII, we conclude and discuss future
directions. Several appendices contain additional details.
In particular the Bose-Luttinger Liquids are discussed in
Appendix F.

II. CONSERVATION LAWS AND DISSIPATIONLESS
CURRENT: A LOOPHOLE IN BLOCH’S THEOREM

In this section, we expound on the connections between
conservation laws and dissipationless current. Suppose we
have some system in which the only conserved quantities are
the total energy and the total charge Q̂ of a global U(1) sym-
metry. For ease of exposition, throughout this paper we refer
to Q̂ as the “electric charge,” and its corresponding current
the “electric current.” This should not be taken to imply that
particles charged under Q̂ necessarily are charged under the
actual electromagnetic field of the universe.

Then we know that the thermal equilibrium state of the
system will be described by the grand canonical ensemble

ρ = 1

Z exp(−β[Ĥ − μQ̂]), (1)

where β is the inverse temperature and μ is the chemical
potential. Bloch’s theorem amounts to the statement that the
expectation value of the current in a state of the form Eq. (1)
is zero.

However, the situation is modified if in addition, we also
have another conserved quantity �̂ that commutes with Q̂.
Then the thermal equilibrium state of the system is instead
described by a generalized Gibbs ensemble

ρ = 1

Z exp(−β[Ĥ − μQ̂ − η�̂]), (2)

where we have introduced the additional thermodynamic pa-
rameter η. The crucial point is that a state of the form Eq. (2)
does not need to have zero expectation value of the electric
current, under certain circumstances that we will spell out.
In such circumstances, the electric current is prevented from
relaxing due to its overlap with the conserved quantity �̂.

In order to show this, let us review the proof of Bloch’s
theorem in Refs. [2,3] and show how it can fail in the presence
of the additional conserved quantity �̂. For simplicity, we first
consider a one-dimensional system.

The grand canonical ensemble state Eq. (1) has the
property that

〈V †K̂V 〉 � 〈K̂〉, (3)

for any unitary V , where 〈·〉 denotes expectation values with
respect to ρ, and where we have defined

K̂ = Ĥ − μQ̂. (4)
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This is a special case of the general statement that the state ρ

minimizes the grand potential

� = 〈K̂〉 − T S(ρ), (5)

where T = β−1 and S(ρ) = −Tr(ρ ln ρ) is the von Neumann
entropy. We obtain Eq. (3) by noting that V ρV † has the same
von Neumann entropy as ρ itself.

Now we define the gauge transformation operator Uλ

according to

Uλ = exp

(
−i

∫
λ(x)n̂(x)dx

)
, (6)

where n̂(x) is the local electric charge density, such that Q̂ =∫
n̂(x)dx. The main technical result required to prove Bloch’s

theorem is that, if λ(x) is slowly varying, then

UλĤU †
λ = Ĥ +

∫
[∂xλ(x)] ĵ(x)dx + · · · , (7)

where ĵ(x) is the operator measuring the electric current at
the point x, and the terms contained in the “· · · ” involve
higher powers of ∂xλ and/or higher derivatives. If we take
the expectation value of the right-hand side (not including the
higher-order terms), we obtain

〈Ĥ〉 + 2π jwλ, (8)

where w = 1
2π

∫
∂xλ(x)dx is the winding number of λ (assum-

ing periodic boundary conditions), and j := 〈 ĵ(x)〉 (which
must be independent of x). The precise statement proven in
Ref. [3] is that if we consider the system with periodic bound-
ary conditions, on a ring of length L, and take λ(x) = ±2πx/L
(giving wλ = ±1), then

〈UλHU †
λ 〉 = 〈Ĥ〉 ± 2π j + O

(
1

L

)
. (9)

Combining with Eq. (3) (and noting that UλQ̂U −1
λ = Q̂), we

then conclude that

| j| = O

(
1

L

)
, (10)

and so j goes to zero in the thermodynamic limit L → ∞,
which is Bloch’s theorem.

Now we are in a position to identify what goes wrong if we
try to apply this argument to the generalized Gibbs ensemble
Eq. (2). First we should define

K̂ = Ĥ − μQ̂ − η�̂ (11)

instead of Eq. (4). Then the argument proceeds more or
less as before, except that it is not necessarily the case that
Uλ�̂U −1

λ = �̂. Let us suppose that

〈Uλ�̂U −1
λ 〉 = 〈�̂〉 +

∫
〈
̂(x)〉∂xλ(x)dx + · · · (12)

for some local operators 
̂(x), and where the condition on the
terms in the “· · · ” is that they should contribute at most O( 1

L )
once we set λ(x) = ±2πx/L and take expectation values. The
reason why Eq. (12) only involves ∂xλ and not λ itself is
that if λ(x) = λ is independent of x, then Uλ = eiλQ̂, and by
assumption Q̂ commutes with �̂.

Then, repeating the above argument, we find instead of
Eq. (10) that

| j − η
| = O

(
1

L

)
, (13)

where


 = 1

L

∫
〈
̂(x)〉dx. (14)

Thus, in the thermodynamic limit, we have

j = η
 (15)

rather than zero. Thus we have found a loophole in Bloch’s
theorem, in the presence of additional conserved quantities.

Let us further discuss the significance of the condition

 �= 0 that is required in order to have dissipationless electric
current. First we want to show that if �̂ is the generator of an
internal symmetry at the lattice scale, then one would expect
that 
 = 0. To see this, note that in this case, one would expect
the symmetry to be “on-site,” in the sense that one can write

�̂ =
∑

i

γ̂ (i), (16)

where the sum is over lattice sites i, and the operator γ̂ (i) acts
only on the degrees of freedom on site i. Similarly the electric
charge (which we assume always generates a microscopic
symmetry) can be written as

Q̂ =
∑

i

q̂(i), (17)

where q̂(i) is the electric charge on site i. Since, by assumption,
�̂ commutes with Q̂, it follows that [γ̂ (i), q̂(i)] = 0 on each site
i. Defining a gauge transformation operator at the lattice scale
according to

Uλ = exp

(
−i

∑
i

λiq̂
(i)

)
, (18)

we then immediately find that Uλ�̂U −1
λ = �̂, which means

that 
̂(x) = 0 in Eq. (12).
On the other hand, in general it is possible to have 
 �= 0

if �̂ cannot be represented in the on-site form Eq. (16). One
possibility is that �̂ represents momentum (not lattice mo-
mentum) P̂, i.e., it is the generator of a continuous translation
symmetry. Then the generalized Gibbs ensemble Eq. (2) takes
the form

ρ = 1

Z exp
(−β[Ĥ − μQ̂ − vP̂]

)
, (19)

where the parameter v, as we shall see shortly, can be inter-
preted as the overall drift velocity of the system. One can then
show that

UλP̂U †
λ = P̂ +

∫
n̂(x)∂xλ(x) + · · · , (20)

where n̂(x) is the electric charge density of the system. Thus
the operator 
̂(x) in Eq. (12) is n̂(x), and from Eq. (15), we
find that in the thermodynamic limit, the electric current is
given by

j = nv, (21)
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where n = 〈n̂(x)〉 (which is independent of x given the con-
tinuous translation symmetry) is the expectation value for the
electric charge density of the system.

Thus we have reproduced a well-known fact: systems with
momentum conservation, and nonzero electric charge density,
generally can carry dissipationless electric current. On the
other hand, in condensed matter physics, we are generally
interested in systems on the lattice that do not have such a con-
servation law. Note that conservation of lattice momentum (as
opposed to continuous momentum) is not sufficient on its own
to obtain dissipationless electric current, as current can de-
grade by umklapp scattering. Therefore, in this work, we will
not be too interested in dissipationless current protected by
momentum conservation. Instead, in the following sections,
we will instead consider dissipationless current protected by
an emergent symmetry that is internal but nevertheless cannot
be written in the form Eq. (16).

III. EMERGENT SYMMETRIES AND ANOMALIES IN 1D

Let us suppose that �̂ generates an emergent symmetry that
is a symmetry of the effective theory governing the dynamics
of the system at long length scales, but not of the original mi-
croscopic Hamiltonian. In general such symmetries cannot be
written in the form Eq. (16), and therefore have the potential
to protect dissipationless electric current.

In fact, for internal symmetries, Uλ�̂U −1
λ �= �̂, which is the

condition required to protect dissipationless electric current as
we saw above, is a signature of something called a “ ’t Hooft
anomaly” [15,16], which is a common property of emergent
symmetries. A symmetry is said to have a ’t Hooft anomaly
if the conserved quantity corresponding to the symmetry be-
comes nonconserved in the presence of a background gauge
field. In the present case, we are considering mixed anomalies
between the symmetry �̂ and the electric charge Q̂, so a mixed
anomaly will occur when �̂ is nonconserved in response to
an applied electromagnetic field (i.e., a background gauge
field for the symmetry generated by Q̂), as described by the
“anomaly equation,” which is an operator equation

∂t n̂� (x, t ) + ∂x ĵ� (x, t ) = m

2π
E (x, t ), (22)

where n̂� is the local density of �̂ charge, ĵ� is the current of �̂

charge, E (x, t ) is the electric field at a given time and position,
and the constant m is the anomaly coefficient. Here time
dependence corresponds to Heisenberg evolution of operators.

In particular, one can show (see Appendix C) that this ’t
Hooft anomaly implies that the local densities n̂(x) and n̂� (x)
(of Q̂ and �̂ charges, respectively) fail to commute; instead
they have a nontrivial commutator

[n̂(x), n̂� (x′)] = − im

2π
δ′(x − x′), (23)

where δ′ is the derivative of the Dirac delta function. From
Eq. (23), one can derive Eq. (12) with 
̂(x) = m/(2π ). So in
the thermodynamic limit, the current is given by

j = m

2π
η, (24)

where η is the thermodynamic variable conjugate to M̂.

A. Example: Luttinger liquid in 1D

As an example, consider a Luttinger liquid in 1D. A well-
known fact about such a system is that, in the low-energy
effective theory, there are separately conserved left- and right-
moving charges Q̂L and Q̂R. Another way to say this is that
in addition to the total electric charge Q̂ = Q̂L + Q̂R, there is
another conserved quantity, the axial charge Q̂A = Q̂L − Q̂R.

The axial charge has a mixed anomaly with the total elec-
tric charge. Indeed, if one applies an electric field E , one
can show that the continuity equation for the axial charge is
violated by a term E/π on the right-hand side. Comparing
with Eq. (22), we see that there is a mixed anomaly with
coefficient m = 2. Therefore, by the general discussion above,
the low-energy effective theory of a Luttinger liquid can carry
dissipationless electric current. A related connection between
the chiral anomaly and dissipationless current was also noted
for chiral Luttinger liquids (such as those occurring at the
boundary of a quantum hall system) in Ref. [20], where the
electric charge itself has an anomaly.

Of course, in the real microscopic system, at any nonzero
temperature, one expects the current to be degraded due to
umklapp scattering; however for incommensurate filling, such
scattering is irrelevant in the RG sense and hence not present
in the RG fixed point theory. (This is an example of a case
where interactions that are “irrelevant” in the RG sense are
still important for determining the leading low-temperature
scaling of physical quantities such as the current decay rate.
Such interactions are generally referred to as “dangerously
irrelevant.”)

IV. EMERGENT SYMMETRIES AND ANOMALIES IN 2D:
1-FORM AND LOOP GROUP SYMMETRIES

In this section, we discuss generalizations of the consider-
ations of Sec. III to two spatial dimensions. The same basic
principles will apply: the condition for dissipationless electric
current is that there should be an emergent symmetry that
has a mixed anomaly with the electric charge. However, the
precise details of the symmetry and anomaly will be different.
There are two main classes of symmetries we will want to
consider: 1-form symmetries and loop-group symmetries. The
anomaly structure was previously discussed in Ref. [21] for 1-
form symmetries and in Ref. [17] for loop-group symmetries.
Let us also mention that the emergent symmetry group for the
Bose-Luttinger liquid of Ref. [19] is more exotic than the ones
considered here but also gives rise to dissipationless current;
we discuss the details in Appendix F.

A. 1-form symmetries

The concept of a 1-form symmetry originated in Ref. [18].
For the case of continuous 1-form symmetries (which we
will mostly be concerned with in the present paper), they can
most straightforwardly be introduced as a special kind of local
conservation law. Recall that local conservation of (0-form)
charge amounts to the statement that there exists a space-time
vector Jμ such that the continuity equation is satisfied:

∂μJμ = 0. (25)
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(Here and below we use the implicit index summation conven-
tion). The time component n = J0 is interpreted as the charge
density, and Eq. (25) implies that the integral

Q =
∫

n(x)dd x (26)

over a space without boundary is independent of time, i.e., it
is conserved.

Now we define local conservation of 1-form charge to be
the statement that there exists an antisymmetric tensor J μν

such that

∂μJ μν = 0. (27)

We define the “charge density” ui = J 0i (which is a spatial
vector). If we now let � be a closed (d − 1)-dimensional sur-
face in d-dimensional space, then we can define the associated
charge Q� by the surface integral

Q� =
∫

�

u · d�, (28)

where d� is the infinitesimal vector normal to the surface.
Equation (27) implies that Q� is conserved. Note, however,
that Eq. (27) also implies that Q� is identically zero for
any surface � with an interior. On topologically nontrivial
manifolds such a torus, it is possible to have closed surfaces
without an interior, for which Q� can be a nontrivial quan-
tity. [Note, however, that the local charge conservation Eq.
(27) is still a nontrivial constraint without needing to worry
about about the global topology of space, hence why 1-form
symmetries have nontrivial consequences for the local physics
regardless of the boundary conditions].

A well-known example of a system with a 1-form
symmetry is electromagnetism in 3 spatial dimensions (with-
out magnetic monopoles), for which one defines J μν =
εμνλσ Fλσ , where Fλσ is the field-strength tensor; Eq. (27) then
follows from Maxwell’s equations. In this case, the 1-form
charge density is the magnetic field, and the charge Q� is the
magnetic flux through the surface �.

However, another example that will be more relevant for
the current paper is a superfluid in two spatial dimensions. In
this case, we can define

J μν = 1

2π
εμνλ∂λθ, (29)

where θ is the superfluid phase field. Below the superfluid
transition temperature, there are no vortices in the system,
so (∂μ∂ν − ∂ν∂μ)θ = 0, which immediately implies Eq. (27).
The charge Q� associated with a closed one-dimensional
surface � (that is, a closed loop) is the winding number of the
superfluid phase over the loop. More generally a superfluid in
d spatial dimensions will have a (d − 1)-form symmetry.

1-form symmetries in 2D can also give rise to a loophole
in Bloch’s theorem in a similar way to what we saw above for
0-form symmetries in 1D. Firstly, we note that the analog for
1-form symmetries of the generalized Gibbs ensemble Eq. (2)
above is

ρ = 1

Z exp

(
−β

[
Ĥ − μQ̂ −

∫
ηi(x)ûi(x)dd x

])
, (30)

where ηi is a closed 1-form, i.e., a vector field on space
such that ∂iη j − ∂ jηi = 0. One can justify this ensemble using
the maximum entropy principle of statistical mechanics: the
state Eq. (30) maximizes the von Neumann entropy subject to
the constraints that the expectation values of Ĥ , the electric
charge Q̂, and the 1-form charge Q̂� on any closed loop � are
held fixed. We show this in Appendix A.

A mixed ’t Hooft anomaly between the electric charge
and the 1-form symmetry means that firstly, the local charge
conservation of 1-form charge is violated in the presence of
an electromagnetic field Fμν (i.e., a background gauge field
for the electric charge):

∂μJ μν = m

4π
ενλσ Fλσ , (31)

where, if the 1-form charge is quantized to be an integer (as it
is in the examples discussed above), the anomaly coefficient m
is quantized to be an integer. From this one can show, similarly
to the 1-D case above, that the local densities fail to commute:

[n̂(x), ûi(x′)] = −i
m

2π
εi j∂x j δ

2(x − x′). (32)

In turn this implies that

UλQηU −1
λ = Qη + m

2π

∫
εi jηi(x)∂ jλ(x)d2x, (33)

where we defined

Qη =
∫

ηi(x)ui(x)d2x, (34)

Uλ = exp

(
−i

∫
λ(x)n̂(x)d2x

)
. (35)

We can also straightforwardly generalize the above results to
(d − 1)-form symmetries in d spatial dimensions, in which
case û becomes a rank (d − 1) antisymmetric contravariant
tensor, and η becomes a closed (d − 1)-form.

In general space dimension d , if we repeat the argument for
Bloch’s theorem (see Appendix B), one therefore concludes
that the electric current flowing through any closed (d − 1)-
dimensional surface � satisfies

I� :=
∫

�

j(x) · d� = m

2π

∫
�

η + O(�� ), (36)

where �� is a geometrical factor with units of (length)d−2

and
∫
�

η denotes the integral of the differential form η over
�. Unlike in the 1D case, the O(�� ) term (as in the argument
for Bloch’s theorem in higher dimensions in the absence of
anomalies [3]) does not necessarily go to zero in the thermo-
dynamic limit, however its contribution to the average current
density I�/|�| [where |�| is the (d − 1)-dimensional area of
�] does go to zero as long as all the dimensions of the system
go to infinity; see Ref. [3] and Appendix B for details.

Another way to write Eq. (36), in the case d = 2, is that the
electric current density satisfies

ji(x) ∼= m

2π
εi jη j (x) + · · · , (37)

where we have introduced the notation that the “∼=” sign
indicates that equality need hold only when the current density
is integrated over any closed (d − 1)-dimensional surface to
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find the current flowing through the surface (thus, we are ex-
plicitly ignoring circulating contributions to the local current
density, that do not contribute to the current flowing through
any closed surface). The “· · · ” refers to the corrections that
give rise to the O(�� ) term in Eq. (36).

Thus we have shown that the existence of a (d − 1)-form
symmetry that has a mixed anomaly with the electric charge
ensures a loophole to Bloch’s theorem in d spatial dimensions.

1. Example: 2D superfluid

A simple example of the above is a superfluid in 2D. As in
Eq. (29) above, we define the 1-form current density as

J μν = 1

2π
εμνλ(∂λθ − Aλ), (38)

where here we have taken into account the possibility of a
background gauge field Aλ for the electric U(1) 0-form sym-
metry and written the current in the form Eq. (38) to ensure
that it is gauge-invariant. Then we immediately find that, in
the absence of vortices,

∂μJ μν = 1

4π
ενλσ Fλσ , (39)

where Fλσ = ∂λAσ − ∂σ Aλ is the electromagnetic field
strength tensor. This agrees with the anomaly equation
Eq. (31) with m = 1.

Thus the conservation of 1-form charge in a superfluid
leads to dissipationless electric current according to the gen-
eral mechanism described above. The current-carrying state is
seen to be an equilibrium state of the system, once we take
into account the conservation law for 1-form charge.

B. Loop group symmetries

A loop group is a kind of infinite-dimensional Lie group.
Specifically, for the case of the loop group LU(1), the ele-
ments of the group are smooth maps from the circle into U(1).
We can formally write these elements as

exp

(
−i

∫
f (θ )N̂ (θ )dθ

)
, (40)

where θ is some coordinate that parameterizes the circle, f (θ )
is some U(1)-valued function on the circle, and N̂ (θ ) can
be thought of as the generators of the symmetry. [Though
strictly speaking, N̂ (θ ) has meaning only when integrated over
θ against a smooth function f (θ ); thus, we can think of it as an
operator-valued distribution.] Here we use the notation N̂ (θ )
instead of the n̂(θ ) of Ref. [17], since in this paper we have
elsewhere reserved lower case n̂ for a local density at a point x
in space, while N̂ is integrated over all space. The loop group
LU(1) is the emergent symmetry group of a Fermi liquid in
2D, and probably many non-Fermi liquid metals as well [17].

We will assume that the electric charge U(1) symmetry is
a subgroup of LU(1); that is, the total electric charge can be
identified as

Q̂ =
∫

N̂ (θ )dθ. (41)

Furthermore, the microscopic translation symmetries act in
the low-energy theory as

Ti = exp

(
−i

∫
ki(θ )N̂ (θ )dθ

)
(42)

where i ranges over x, y; this defines the Fermi surface ki(θ )
in momentum space. The generalized Gibbs ensemble taking
into account the loop-group symmetry takes the form

ρ = 1

Z exp

(
−i

[
Ĥ −

∫
μ(θ )N̂ (θ )dθ

])
, (43)

where μ(θ ) are thermodynamic variables.
The ’t Hooft anomalies of an LU(1) symmetry were dis-

cussed in Ref. [17]; we review the details in Appendix D. Here
we just state that, upon applying the general Bloch’s theorem
argument, one finds the electric current density is given by

ji = m

(2π )2

∫
εi j[∂θk j (θ )]μ(θ )dθ, (44)

where the integer m is the anomaly coefficient.
One can verify in particular that, if we set m = 1, this

agrees with the usual formula for current in a Fermi liquid.
To show this we need to find the relation between μ(θ ) and
n(θ ) := 〈n̂(θ, x)〉 in a Fermi liquid, where n̂(θ, x) is the local
density whose integral over x gives N̂ (θ ). We do this by
invoking the fact that

δn(θ ) = 1

(2π )2
|∂θk(θ )|δkF (θ ), (45)

where δkF (θ ) is the perturbation to the Fermi surface com-
pared with the equilibrium state of the system that has μ(θ )
independent of θ . We impose the requirement that the per-
turbed Fermi surface must retain the property that creating
a quasiparticle exactly at the new Fermi surface leaves the
expectation value of Ĥ − ∫

μ(θ )N̂ (θ )dθ invariant. Now, the
energy cost of creating a quasiparticle at the Fermi surface is

EF (θ ) +
∫

V (θ, θ ′)n(θ ′)dθ ′, (46)

where EF (θ ) is the single-particle energy at the Fermi surface,
and V (θ, θ ′) are the Landau interactions at the Fermi surface.
Hence, what we want to impose is that

δEF (θ ) − δμ(θ ) +
∫

V (θ, θ ′)δn(θ ′)dθ ′ = 0. (47)

Now using δEF (θ ) = vF (θ )δkF (θ ), where vF (θ ) is the single-
particle Fermi velocity, and recalling that the current in the
unperturbed state is zero, by combining Eq. (44) (with m = 1)
and Eq. (47), we find that

ji =
∫

vF (θ )δn(θ )ŵ(θ )dθ +
∫

V (θ, θ ′)δn(θ ′)w(θ )dθdθ ′,

(48)
where we defined the vector w(θ ) by its components

wi(θ ) = εi j∂θk j (θ ), (49)

which points normal to the Fermi surface, and the correspond-
ing unit vector ŵ(θ ) = w(θ )/|w(θ )|. Eq. (48) is indeed the
standard formula for the current in a Fermi liquid.
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V. RELATION WITH COMPRESSIBILITY

As we have seen above, the condition for dissipationless
electric current (in the absence of a microscopic continuous
translation symmetry) in the low-energy effective theory is
that there should be an emergent continuous symmetry (pos-
sibly a higher-form symmetry) that has a particular kind of
mixed anomaly with the electric charge U(1). In general, we
say that a system is fluxible if its emergent symmetry and
anomaly structure is such as to lead to a loophole in Bloch’s
theorem along the lines discussed above.

Another context where emergent symmetry and their
mixed anomalies with the electric charge U(1) are important
is in the filling framework developed in Ref. [17]. As shown
in Ref. [17], for a system with microscopic lattice translation
symmetry and electric charge conservation symmetry, the av-
erage electric charge per unit cell ν, referred to as the “filling,”
can be computed modulo 1 if one knows the emergent sym-
metry of the low-energy theory of the system, its anomaly, and
the way the microscopic translations embed into the emergent
symmetry. We call the system compressible if it is possible,
by varying the way that the microscopic symmetries embed
into the emergent symmetry group1 to continuously tune the
filling ν. Thus we here consider “compressibility” to be a
property of the low-energy theory. In terms of the microscopic
Hamiltonian, it would mean that it is possible to tune the
filling (possibly tuning parameters of the Hamiltonian simul-
taneously) and still have the emergent physics described by
the same low-energy theory.

At this point, we wish to formulate the following
conjecture.

Conjecture 1. A system with microscopic lattice transla-
tion symmetry and electric charge conservation is compress-
ible if and only if it is fluxible.

We emphasize that this conjecture is distinct from the result
proved in Ref. [17], that the emergent symmetry group of a
compressible system cannot be a compact finite-dimensional
Lie group in spatial dimension d � 2. By contrast to that
result, our conjecture is postulated to hold also in d = 1 and
for systems with emergent higher-form symmetries.

As evidence for this conjecture, note that for all of the
emergent symmetries considered in Secs. III and IV, the
system is fluxible if and only if the anomaly coefficient is
nonzero. Moreover, all of these examples were previously
considered in Ref. [17] as examples of systems that are
compressible (except when the anomaly coefficient is zero).
Meanwhile, an example of a system that is not fluxible would
be one in which the emergent symmetry group is just U(1),
or more generally Gfinite × U(1), where Gfinite is a finite group
(or even a finite 2-group, that can include both 0-form and
1-form symmetries), since it is only additional continuous
symmetries that can modify the thermodynamic ensemble
from the standard grand canonical ensemble Eq. (1). However,
in the framework of Ref. [17] one can show that the filling

1In principle, one could also imagine tuning the filling by tuning
the anomaly instead. However, generally one expects anomalies. at
least in the sense we use the term here, to be discrete, so that this
would not be possible; at any rate, this is what we assume here.

would then have to be a rational number. Thus, in this case,
the system is neither compressible nor fluxible.

As further evidence for the conjecture, in Appendix E we
prove it in spatial dimension d = 1 using the filling frame-
work of Ref. [17], subject to some mild technical assumptions.
This result actually provides strong evidence for the con-
jecture in higher dimensions, since one should be able to
treat higher dimensional systems by compactifying all of the
dimensions except one and considering them as quasi-one-
dimensional.

VI. SUPPRESSING THE CONDUCTIVITY THROUGH
“CRITICAL DRAG”

Assuming the conjecture of the previous section holds, it
would suggest that compressible systems with lattice trans-
lation symmetry and electric charge conservation always can
carry dissipationless electric current, at least in the IR fixed-
point theory. In turn, this would suggest that the DC resistivity
of the IR fixed-point theory should be exactly zero. As we
previously discussed in Ref. [7], this presents a conundrum
in particular for describing “strange metals” that occur in
cuprates and heavy-fermion systems, since experimental evi-
dence suggests that if they are controlled by an IR fixed-point
theory, then this theory must have have nonzero DC resistivity.
Reference [7] discussed a possible loophole through a mech-
anism involving quantum criticality. In this section, we will
review the mechanism proposed in Ref. [7] in a more general
context. It is this mechanism that we will refer to in the present
paper as “critical drag”.

To illustrate the mechanism, let us consider, as in Sec. III, a
system with an additional conserved quantity �̂ as well as the
electric charge Q̂. At time t = −∞, it is in the grand canonical
ensemble Eq. (1). Now consider how the system responds to
an electric field impulse

E (t ) = Eδ(t ), (50)

which we will treat in linear response theory. Then the electric
current of the system at the system at time t defines the real-
time conductivity σ (t ):

j(t ) = σ (t )E . (51)

If limt→∞ σ (t ) := W/π �= 0, then in frequency space this
corresponds to a delta function in σ (ω) at ω = 0,

σ (ω) = Wδ(ω) + · · · , (52)

and in particular we have that the DC conductivity σ (ω = 0)
is infinite.

Why would we have W �= 0? We can imagine that at late
times the system thermalizes to a generalized Gibbs ensemble.
But since the electric field can violate conservation of �̂ while
it is applied (i.e., at t = 0)—in fact, as described previously
this is precisely one signature of a mixed ’t Hooft anomaly
between �̂ and Q̂—it may be that this ensemble has η �= 0,
which would imply that it carries nonzero electric current
according to Eq. (24).

More precisely, one can show from the anomaly equation
Eq. (22) that the change in expectation value of the density n̂�
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due to the electric field impulse Eq. (50) is

δ〈n̂�〉 = m

2π
E, (53)

where m is the anomaly coefficient. On the other hand, we
know that

δ〈n̂�〉 = χ��δη, (54)

where we have defined the susceptibility

χ�� = d

dη
〈n̂�〉η

∣∣∣∣
η=0

, (55)

where 〈·〉 denotes expectation values taken with respect to the
generalized Gibbs ensemble, and we have ignored the pos-
sibilities of nonzero cross-susceptibilities between �̂ and the
electric charge Q̂ or the energy E ; for example, if time reversal
symmetry is present it forces these cross-susceptibilities to be
zero.2 (In any case, the main conclusions still hold if one in-
cludes the cross-susceptibilities; see Supplementary Material
of Ref. [7] for the precise arguments). Hence we find that

δη = m

2π

E
χ��

, (56)

Combining with Eq. (24), we find that

W = m2

4π

1

χ��

. (57)

The system is “fluxible” and “compressible” in the sense of
Sec. V if the anomaly coefficient m �= 0. Nevertheless, there is
still a way to suppress the infinite conductivity, since it could
be that the susceptibility χ�� diverges. Indeed, one frequently
expects divergent susceptibilities in systems exhibiting critical
behavior. This therefore is the mechanism by which criticality
can lead to nonzero DC resistivity in the IR fixed point theory,
even in compressible systems.

One can derive similar formulas to Eq. (57) in the case of
loop-group or 1-form symmetries in 2D. The loop group case
was discussed extensively in Ref. [7] and we will not consider
it further here. For 1-form symmetries, we find (again assum-
ing time-reversal symmetry, although similarly to before the
main conclusions will still hold for the more general case) that
the conductivity tensor takes the form

σ (ω)i j = W i jδ(ω) + · · · (58)

with

W i j = m2

4π
εikε jl (χ−1)kl , (59)

where m is the anomaly coefficient, and we defined the sus-
ceptibility tensor

χ i j = ∂

∂ηi
〈û j〉	η

∣∣∣∣
	η=0

, (60)

2Specifically, �̂ must be time-reversal odd if a nonzero anomaly
coefficient m is to be consistent with time-reversal symmetry, as can
be seen from Eq. (23), for example.

where the expectation value is computed with respect to the
generalized Gibbs ensemble Eq. (30), with 	η(x) = 	η inde-
pendently of x. Thus, to get suppression of the infinite DC
conductivity with m nonzero (the fluxible and compressible
case), we would require that χ−1 = 0, corresponding to di-
vergence of the susceptibility matrix χ .

VII. AN INTERESTING SOLVABLE MODEL: THE
QUANTUM LIFSHITZ CRITICAL POINT OF BOSONS

A. Introducing the model

The very general considerations above are nicely illustrated
by a simple model that we now describe. A superfluid phase
of bosons admits gapless Goldstone excitations which are
conveniently described in terms of a real scalar field φ which
describes the phase of the boson. In the usual superfluid phase
where the bosons condense at zero momentum, the Euclidean
phase action takes the familiar form:

Ss f =
∫

dτd2x
κ

2
(∂τφ)2 + ρs

2
( 	∇φ)2 + . . . (61)

Here, κ is the bulk compressibility of the superfluid and ρs

is the phase stiffness. The ellipses represent higher deriva-
tive and/or nonlinear terms. The transition to a condensate
at nonzero momentum occurs when the phase stiffness ρs

changes sign. The critical point itself corresponds to ρs = 0. It
is important then to keep higher derivative terms. The critical
action thus reads

S =
∫

dτd2x
κ

2
(∂τφ)2 + K

2
(∇2φ)2 + u( 	∇φ)4 + . . . (62)

This is known as the quantum Lifshitz model (QLM) and
has been studied in detail in the literature. A possible re-
alization in cold atoms was proposed in Ref. [11], and in
twisted trilayer graphene in Ref. [12]. The quadratic part of
the action describes a scale invariant theory with dynamical
critical exponent z = 2. Interestingly, this quadratic theory has
a fixed line parameterized by K throughout which the boson
field b ∼ eiφ has power-law correlations. We have retained a
nonlinear term that is marginal by power counting along the
fixed line. It is marginally irrelevant for u > 0.

The QLM also appears as the critical theory describ-
ing phase transitions between valence bond solid phases of
2d quantum magnets [9,10]. In that context, there is no
microscopic global U(1) symmetry corresponding to the con-
servation of the boson number conjugate to the phase. Then
terms that involve cos(nφ) for some integer n are allowed in
the action; these terms are (ir)relevant depending on the value
of K . In contrast, when the QLM arises at the critical point
of a boson system with a microscopic global U(1) symmetry,
such cos(nφ) terms are explicitly forbidden, and we have a
stable fixed line for any value of K .

The QLM transition in the superfluid can occur at any
value of the microscopic density. As we will see shortly
correspondingly the QLM theory has a finite compressibility.
Nevertheless, unlike a superfluid, it does not spontaneously
break the global U(1) symmetry of the microscopic boson
system.

The action in Eq. (62) has continuum translation and ro-
tational invariance. It can be realized in a microscopic model
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with continuum translation and rotational symmetries. A use-
ful example described in Ref. [11] is a model of Rashba
spin-orbit coupled bosons. Alternately we can consider the
same model with bosons sitting at the sites of a triangular
lattice with 6-fold C6 rotational symmetry. This discrete C6

symmetry is sufficient to allow only3 the terms explicitly
included in the action in Eq. (62). Higher order derivative
terms will break the continuous rotational symmetry to C6 but
they are irrelevant at low energies.

In thinking about this model, we must recognize that—as
in the superfluid—the effective theory of the QLM does not
include any vortex excitations. This is because the effective
theory describes the physics at energy scales below the vortex
gap. However, if we put the system on a torus, there can still
be nontrivial winding number of the phase field along the
noncontractible cycles. This amounts to saying that the 1-form
symmetry U(1)1 that emerges in the superfluid (as previously
discussed in Sec. IV A) is still present in the QLM. Moreover,
this 1-form symmetry and the electric charge U(1) will have a
mixed anomaly for the same reasons we previously described
in the superfluid case.

As in a superfluid, the microscopic translation symmetry in
the QLM is realized in a trivial way on the field φ; it simply
goes to itself. Nevertheless, in the superfluid and in the QLM,
there is still a sense in which the microscopic translation
symmetry is nontrivial with respect to objects in the theory.
Specifically, although the theory does not intrinsically contain
vortices, we can reintroduce them as extrinsic defects. As
can be understood from invoking a charge-vortex duality, for
example, the vortices see the background microscopic electric
charge density as an effective magnetic field. Therefore the
microscopic translation symmetry acts projectively on these
defects. Formally this corresponds to a nontrivial interplay
between the microscopic translation symmetry and the emer-
gent 1-form symmetry (this is an example of “symmetry
fractionalization”). One can moreover argue that due to the
mixed anomaly between the electric charge U(1) symmetry
and the 1-form symmetry, such a projective action of micro-
scopic translation symmetry on the vortices implies that the
microscopic filling ν is nonzero. (Specifically, the physical
content of the argument is that the mixed anomaly amounts
to the statement that a 2π magnetic flux binds a vortex, and
therefore is acted upon projectively by the microscopic trans-
lation symmetry. The projective action of translations on a 2π

magnetic flux determines the filling according to the general
perspective of Ref. [17]). This is the analog of Luttinger’s
theorem in the context of superfluids and QLM.

The projective action of translations on the vortices, and
hence the filling, can be continuously tuned, hence the su-
perfluid and QLM are compressible states. They are also
“fluxible” states in the sense of Sec. V, for the reasons de-
scribed in Sec. IV A, in line with the general conjecture of
Sec. V that fluxibility and compressibility are equivalent. For
superfluids this lines up with the well-known fact that a su-
perfluid has infinite conductivity. Below, we will describe the

3In contrast on the square lattice other terms of the same order are
allowed and generically the transition is driven weakly first order.
See Refs. [9,10].

electrical transport properties of the QLM critical point, and
we will find that the fixed point theory itself will have zero
conductivity despite the fluxibility. This will be explained as
a concrete and simple realization of the critical drag mech-
anism. However, (dangerously) irrelevant perturbations will
render the conductivity nonzero at nonzero temperatures.

B. Physical properties

We have already mentioned that the QLM is compressible
according to the definition used in this paper. An alternative
definition of compressibility is simply that the thermodynamic
compressibility dn/dμ is nonzero. We can easily verify that
the QLM is also compressible according to this definition. To
see this, we turn on a chemical potential μ. This changes the
time derivative term in the action to

κ

2
(∂τφ − iμ)2. (63)

Clearly the susceptibility to μ is simply given by κ as
promised. Thus the QLM critical point has dn/dμ �= 0.

Next consider the particle number conductivity. This may
be discussed by turning on a transverse vector potential 	AT

that satisfies 	∇ · 	AT = 0. If AT has a wavenumber 	q and
frequency ω, the frequency-dependent conductivity σ (ω) re-
quires considering the limit 	q → 0. In the low-energy QLM
fixed point theory (where we set the irrelevant perturbation
u = 0), the transverse gauge field does not couple to the ac-
tion. Thus we conclude that, for the fixed point theory, the
conductivity σ (ω) = 0 for all ω. Thus, despite being com-
pressible, the QLM fixed point is an insulator at T = 0.

Let us now show how this result may be understood as
an illustration of the critical drag mechanism. We argued in
the previous section that the only way to suppress the dissipa-
tionless current is to have the susceptibility of the conserved
charges of the 1-form symmetry diverge. In the present exam-
ple, this conserved density takes the form

ui = 1

2π
εi j∂ jφ. (64)

By completing the square in the action Eq. (61), one can
compute the susceptibility tensor χ i j defined in Eq. (60). The
result is that

χ i j = 1

4π2ρs
δi j . (65)

Clearly this susceptibility diverges at the QLM critical point
where ρs → 0, and this suppresses the dissipationless current.
Thus we see that the QLM explicitly demonstrates the critical
drag mechanism.

In the QLM, we can also study the effect of irrelevant per-
turbations. We will see below that these will have important
effects on the transport. Hence these perturbations should be
regarded as dangerously irrelevant. First at zero temperature,
the irrelevant perturbations will lead to a nonzero finite fre-
quency conductivity. In particular, 	AT will couple to the theory
through the u term in Eq. (62), and this will lead to a nonzero
σ (ω) that nevertheless will vanish in the DC limit ω → 0.

Let us now consider nonzero T . We begin by ignoring the
vortices. Then at any nonzero T , we claim that the model
has an infinite DC conductivity. This is because though the
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phase stiffness ρs is tuned to zero at the T = 0 critical point,
at nonzero T , the nonlinear interaction(the u term) will lead to
a nonvanishing ρs(T ). This effect was calculated in Ref. [22],
and the result is

ρs(T ) = c
T

√
K ln

(
ln

(
1
T

))
ln

(
1
T

) , (66)

where c is a number of order 1. The nonzero phase stiffness
leads to a finite temperature complex conductivity

σ (ω, T ) = ρs(T )

iω
, (67)

whose real part is a delta function in frequency. Hence the
DC conductivity is infinity at any nonzero temperature. In the
general language of critical drag, this is because the 1-form
susceptibility χ i j becomes finite at nonzero temperature. In
the absence of vortices, the system is a quasi-long-range or-
dered superfluid at any T > 0.

Now let us include the gapped vortices. Note that as ρs

T
goes to zero as T goes to zero, the quasi-long-range ordered
state is always unstable to proliferation of unbound vortex-
antivortex pairs at low T . Equivalently we are above the
Berezinski-Kosterlitz-Thouless (BKT) transition temperature
TBKT which, for a system with phase stiffness ρs will occur
at TBKT = aρs, where a is a constant of order 1. The devia-
tion from this putative BKT transition may be parametrized
by t = T −TBKT

TBKT
≈ ln( 1

T ) at low T , which is hence not small.
Consequently in what follows, we will simply treat intervortex
interactions as weak, and roughly estimate the free vortex
density nv to be

nv ∼ e− �
kBT , (68)

where � is the vortex gap. (As a consequence of the nonzero
vortex density at nonzero temperature, the 1-form symmetry
is weakly broken. Therefore it no longer perfectly protects
the current and one expects nonzero resistivity regardless of
the 1-form susceptibility). This will destroy the power law
finite-T long-range order, and restore a finite DC conductivity.
To estimate this, we follow the standard analysis [23] of elec-
trical transport above the BKT transition in two-dimensional
superconductors. The frequency dependent conductivity can
then be expressed in the Drude form

σ (ω, T ) = D(T )

π (−iω + γ (T ))
, (69)

where the Drude weight D(T ) = ρs(T ), and γ (T ) ∼ nv (T ).
Since nv goes to zero exponentially as T → 0 while ρs(T )
only scales like a power law, we find that the DC conductivity
scales (up to power law corrections) as

σ (ω = 0, T ) ∼ e
�

kBT . (70)

We may understand this as the inverse of the vortex conductiv-
ity σv = nvμv , where μv is the mobility of the vortices. In the
DC limit, we expect that the mobility will come from vortices
scattering off the gapless phase fluctuations which will lead
to some power-law T dependence of μv . The temperature
dependence will thus be dominated by that of nv .

We see therefore that there is a nonzero DC conductivity
at nonzero T which, furthermore, goes to infinity rapidly as

T → 0 despite the fact that the conductivity is zero exactly at
T = 0. However, we should not interpret this fact as signify-
ing that the critical drag mechanism is ineffective at nonzero
temperature. Indeed, the weight D(T ) of the Drude peak in
Eq. (69) does go to zero continuously as T → 0, reflecting the
critical drag. The diverging DC conductivity arises because
the width ∼nv of the Drude peak goes to zero even faster
(exponentially). Thus to observe the large DC conductivity
would require observing the system over exponentially long
time scales in order to have enough frequency resolution to
resolve the Drude peak. If the Drude peak is not resolved, then
one will instead measure the weight D(T ), which goes to zero
as T → 0. Another way to say this is that if one switches on a
static electric field E at time t = 0, then the current j(t ) in the
system will gradually increase with time at a rate D(T )E until
it finally saturates at a value of σDC(T )E . At low temperatures
where D(T ) is small, this increase will happen very slowly
even if the final saturation value is large. The behavior of
the conductivity in this system is a dramatic illustration of
a familiar phenomenon at quantum critical points where the
ω → 0 and T → 0 limits often do not commute. In the QLM
model, these two limits yield infinitely different answers!

It is also instructive to recast these results in the language
of the emergent one-form symmetry and its weak breaking
at finite temperature. We begin with the anomaly Eq. (39)
for the emergent one-form symmetry which we have argued
will remains present in the QLM fixed point. Specializing to
spatially uniform situations, we focus on the time evolution of
ui = J 0i to write

∂0ui = 1

2π
εi jE j . (71)

At a small nonzero temperature, thermally excited vortices
will weakly relax the one-form density ui at the rate γ ∼ nv .
We describe this by adding a relaxation term to write

∂0ui + γ ui = 1

2π
εi jE j . (72)

For small deviations from equilibrium we write ui = χηi.
where χ ∼ 1

ρs (T ) is the 1-form susceptibility and ηi is the
one-form chemical potential. Using now the result that the
electrical current is ji  m

2π
εi jη j , we immediately reproduce

the conductivity of Eq. (69).
What we can extrapolate from the above analysis is that

a conductivity of the form Eq. (69), with the Drude weight
D(T ) and relaxation rate γ (T ) both going to zero as T → 0,
is likely generic in systems exhibiting critical drag, with the
caveat that in general it only represents the “coherent” con-
ductivity that is related to nearly conserved quantities, and in
general there could be another additive contribution σQ repre-
senting the “incoherent” conductivity [14,24]. (In the QLM,
the incoherent contribution would only come from irrelevant
terms and goes to zero in the DC limit, but the same need
not be true in other systems). The Drude weight going to zero
as T → 0 results from the susceptibility of the appropriate
(nearly) conserved quantity going to zero, while γ (T ) going
to zero as T → 0 is a consequence of the emergent symmetry.
In the QLM example, γ (T ) goes to zero exponentially with T
and hence dominates the scaling of the coherent DC conduc-
tivity σ coherent

DC (T ) = D(T )/γ (T ); however, in the ersatz Fermi
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liquids discussed in Ref. [7], it is more likely that D(T ) and
γ (T ) both scale as some power law in T . The corresponding
exponents will determine how σ coherent

DC (T ) scales as T → 0; it
does not necessarily diverge as it does in the QLM. In any
case, as previously mentioned in Ref. [7], in ersatz Fermi
liquids, weak disorder can also likely lead to γ (T ) going to a
nonzero value as T → 0. Combined with D(T ) going to zero,
this would certainly ensure that σ coherent

DC (T ) goes to zero as
T → 0.

VIII. DISCUSSION

In this work, we have presented a general point of view on
the origin of nonzero resistivity and its relation with conserved
quantities. In particular, we have argued that in compressible
systems, there is always an emergent conserved quantity that
would protect the current and lead to infinite DC conductivity
in the RG fixed point theory, unless the weight of the Drude
peak is suppressed by critical fluctuations, i.e., the mechanism
we have called “critical drag.” Moreover, we have presented a
solvable model of critical drag, namely the quantum Lifshitz
model (QLM).

The QLM itself may be relevant to certain experi-
ments such as the re-entrant superconductivity in twisted
trilayer graphene [12]. However, in this paper, we mainly
intended to use the QLM as proof of principle for the
critical drag mechanism. On the other hand, for the rea-
sons described here and previously in Ref. [7], it seems
likely that the “strange metal” seen in cuprates and heavy
fermion materials must also manifest critical drag. It is
therefore a very important open question to develop models
that exhibit critical drag while being more relevant to such
systems.

In this work, we have focused on the electrical con-
ductivity. However, critical drag may also have implica-
tions for thermal and thermoelectric transport coefficients,
as well as the electrical transport in the presence of
magnetic fields. We leave such developments for future
work.
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APPENDIX A: GENERALIZED GIBBS ENSEMBLE
FOR HIGHER-FORM SYMMETRIES

Here we will give the derivation of the thermal equilib-
rium state in the presence of higher-form symmetries. For
pedagogical reasons, we first present the argument for the
particular case of a 1-form symmetry for a system on the two-
dimensional torus, and then we will generalize to a k-form
symmetry on an arbitrary oriented manifold, at the cost of
introducing additional abstraction.

a. 1-form symmetry on the 2-torus

Consider a system with a 1-form symmetry for which space
is a two-dimensional torus with extent Lx and Ly in the x and y
directions respectively. Then as described in Sec. IV A, there
is a “charge density” ûi, which is a contravariant spatial vector
that satisfies

∂iû
i = 0. (A1)

The nontrivial conserved charges are found by integrating
ûi over nontrivial cycles of the torus, i.e.,

Q̂y =
∫ Lx

0
ûy(x, a)dx (A2)

and

Q̂x =
∫ Ly

0
ûx(a, y)dy, (A3)

where Eq. (A1) ensures that the results of the integrals are
independent of a.

In particular, if we replace a with y in Eq. (A2) and average
over y, we find another expression for Q̂y (and similarly for
Q̂x). We conclude that

Q̂i = 1

Li

∫
ûi(x)d2x (A4)

(no implicit summation) for i = x, y, where the integral is over
the whole torus.

Now we want to find the state that maximizes the von
Neumann entropy subject to the constraint that the expectation
values of Q̂x and Q̂y, as well as the total energy and electric
charge Q̂, are held fixed. By standard arguments, such a state
is given by

ρ = 1

Z exp(−β[H − μQ̂ − λiQ̂i]) (A5)

for some Lagrange multipliers λx, λy. If we now define the
spatial vector ηi = λi/Li (no implicit summation), then Eq.
(A5) becomes

ρ = 1

Z exp

(
−β

[
H − μQ̂ −

∫
ηiu

i(x)d2x
])

, (A6)

in agreement with Eq. (30). In this case η can be taken to be a
constant 1-form, which certainly implies that it is closed.

b. The general case

Consider a system with a k-form symmetry in d spatial
dimensions. Then there is a “charge density” ûi1···ik , which is
an a rank-k antisymmetric tensor that satisfies

∂i1 ûi1···ik = 0. (A7)

From this we can define a dual (d − k)-form ξ̂ with
components

ξ̂ j1··· jd−k = ε j1··· jd−k i1···ik ûi1···ik . (A8)

Eq. (A7) implies that ξ̂ is a closed (d − k)-form, d ξ̂ = 0.
The charge Q̂� associated with a closed (d − k)-dimensional
surface � is given by

Q̂� =
∫

�

ξ̂ . (A9)
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The fact that ξ̂ is closed implies that Q̂� only depends on the
homology class of �. In fact, Q̂� is still conserved when � is
any (d − k)-chain with coefficients in R.

Next we invoke the standard fact, which follows from the
theory of Poincaré duality [25] (for a concise and useful re-
view, see Appendix of Ref. [26]), that if the spatial manifold
X is oriented, then for every closed (d − k)-chain �, there is
a corresponding closed k-form σ� such that∫

�

ξ =
∫

X
σ� ∧ ξ (A10)

for any closed (d − k)-form on X . The map � �→ σ� induces
an isomorphism from Hd−k (X,R) → Hk (X,R).

Now we want to find the state that maximizes the von
Neumann entropy subject to the constraint that the expectation
values of Q̂� for any closed (d − k)-chain �, as well as the to-
tal energy and electric charge, are held fixed. By Eq. (A10), it
is equivalent to require that the expectation value of

∫
X σ ∧ ξ̂

is held fixed for every closed (d − k)-form σ . In turn, this is
equivalent to requiring that the expectation value of

∫
X σ j ∧ ξ̂

is held fixed for each j, where σ1, · · · σn are representative
k-forms corresponding to a set of generators for Hk (X,R).
By standard arguments, the state that maximizes the entropy
subject to these constraints is

ρ = 1

Z exp

(
−β

[
Ĥ − μQ̂ −

n∑
j=1

λ j

∫
X

σ j ∧ ξ̂

])
. (A11)

where λ1, . . . , λn are real-valued Langrange multipliers. Now
if we define the closed k-form η = ∑n

j=1 λ jσ j , then Eq. (A11)
becomes

ρ = 1

Z exp

(
−β

[
Ĥ − μQ̂ −

∫
X

η ∧ ξ̂

])
, (A12)

If we invoke the relation Eq. (A8), then we can also write this
as

ρ = 1

Z exp

(
−β

[
Ĥ − μQ̂ −

∫
X

ηi1···ik ûi1···ik dd x
])

. (A13)

APPENDIX B: PROOF OF BLOCH’S THEOREM
IN d DIMENSIONS

Consider a system that lives on a d-dimensional manifold
X . For the simple case where X is a torus, the argument for
Bloch’s theorem (without mixed anomalies) was discussed
in Ref. [3] and can easily be generalized to include mixed
anomalies. Here we will give a more general argument for an
arbitrary oriented manifold X . The result we need is that for
any closed (d − 1)-dimensional surface � in X [or generally
any closed (d − 1)-chain on X with Z coefficients, there exists
a scalar function λ� on X valued in R/(2πZ) [that is, λ� (x) is
an angular variable] with the property that any divergenceless
vector field j(x) satisfies∫

�

j · d� = 1

2π

∫
X

(∇λ) · j. (B1)

To show this one first invokes the Poincaré duality isomor-
phism previously described in Appendix A, which gives a

closed 1-form σ� such that∫
�

j · d� =
∫

X
(σ� )i ji (B2)

for any divergenceless vector field j. Moreover, because σ�

originated from an integer-valued (d − 1)-chain �, it follows
that the integral of σ� over any closed cycle on X is an integer.
It follows that if we try to define an angular field λ on X
through the equation

1

2π
∂iλ = (σ� )i, (B3)

then there exists a global solution. Equation (B1) then follows:
Now if we define

Uλ = exp

(
−i

∫
λ(x)n̂(x)dd x

)
, (B4)

then we have analogously to Eq. (7) that

Uλ�
ĤU −1

λ�
= Ĥ +

∫
[∇λ� (x)] · ĵ(x) + · · · (B5)

= Ĥ + Î� + · · · , (B6)

where Î� = ∫
�

ĵ · d� is the electric current flowing through
�, and we have invoked Eq. (B1). The arguments then pro-
ceed similarly to the 1D case. The main difference is in the
estimating the contribution of the “· · · ” terms in Eq. (B5). We
can roughly estimate their maximum possible contribution to
the current as O(�� ), where we have defined the geometrical
factor �� by

�� =
∫

Rλ(x)−2dd x, (B7)

where Rλ(x) is the radius of variation of λ near the point x.
One can argue that �� is roughly bounded above by |�|R−1,
where R is the length of the smallest loop in X that has
nontrivial intersection number with �.

APPENDIX C: COMMUTATOR OF DENSITIES FROM ’T
HOOFT ANOMALY IN 1D

We imagine subjecting the system to a time-dependent
Hamiltonian Ĥ + V̂ (t ), where

V̂ (t ) =
∫

φ(x, t )n̂(x), (C1)

and φ(x, t ) represents the scalar potential, such that

−∂xφ(x, t ) = E (x, t ) (C2)

is the electric field.
It follows that

∂t n̂� (x, t )

∣∣∣∣
t=0

= i[Ĥ, n̂� (x)]

+ i
∫

φ(x′, 0)[n̂(x′), n̂� (x)]dx′. (C3)

Now, from the continuity equation in the absence of applied
electric field, we have that

i[Ĥ, n̂� (x)] = −∂x ĵ� (x), (C4)

where ĵ� (x) is the current operator. Now if we combine
Eq. (C3), Eq. (C4), and the anomaly equation Eq. (22), we
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find that ∫
φ(x′, 0)[n̂(x′), n̂� (x)] = i

m

2π
∂xφ(x, 0). (C5)

Since this must hold for any functional form of φ(x, 0), we
conclude that

[n̂(x), n̂� (x′)] = −i
m

2π
δ′(x − x′), (C6)

which is Eq. (23).

APPENDIX D: LOOP GROUP ANOMALIES

The ’t Hooft anomalies of the loop group LU(1) were
discussed in Ref. [17]. Let us review the results.

Firstly, a gauge field for LU(1) comprises a covariant vec-
tor Aμ on M × S1, where M is the space-time manifold, and
S1 parameterizes the Fermi surface. The component of Aθ of A
along the Fermi surface can be interpreted as a Berry’s phase
for Fermi surface excitations. The current Jμ associated to the
loop group conservation law is a contravariant vector field on
M × S1 and contains a component Jθ describing the flow of
charge along the Fermi surface.

The anomaly equation then takes the form

∂μJμ = m

8π2
εμνλσ (∂μAν )(∂λAσ ), (D1)

where the anomaly coefficient m is quantized to be an integer.
From this one can derive, analogously to the 1D case (see
Sec. III and Appendix C), the commutation relation for the
densities (see also Refs. [17,27,28]):

[n̂(θ, x), n̂(θ ′, x′)]

= −i
m

(2π )2
εabc∂aAb∂c[δ(θ − θ ′)δ2(x − x′)], (D2)

where the indices a, b, c range over the two spatial dimensions
and the θ dimension (but not time). If we assume that the
magnetic field εi j∂iA j is zero (where indices i and j range
only over the spatial dimensions), then this reduces to

[n̂(θ, x), n̂(θ ′, x′)]=−i
m

(2π )2
εi jFiθ (θ )δ(θ−θ ′)∂ jδ

2(x − x′),

(D3)
where we defined

Fiθ = ∂iAθ − ∂θAi. (D4)

If we now repeat the argument for Bloch’s theorem, we find
that in the thermodynamic limit the electric current is given
by

ji = m

(2π )2

∫
εi jFjθ (θ )μ(θ )dθ. (D5)

It remains to determine how Fiθ is related to microscopic
quantities. Without a magnetic field, the right-hand side of
the anomaly Eq. (D1) reduces to (m/4π2)εi jEiFjθ . On the
other hand, in a Fermi liquid one can compute the charge
nonconservation exactly, and one finds that the right-hand side
of Eq. (D1) should take the form (1/4π2)εi jEi∂θki(θ ). Hence,
at least in a Fermi liquid (for which we already know that
m = 1), we must set

Fiθ = ∂θki(θ ). (D6)

Presumably this relation still holds in any ersatz Fermi liquid;
see, for example, Sec. VI B of Ref. [17] for an argument based
on dimensional reduction

APPENDIX E: PROOF OF CONJECTURE IN d = 1.

Here we give the proof of the conjecture of Sec. V for
1D systems. It is not possible to have nontrivial higher form
symmetries in 1D, so we can assume the emergent symmetry
group is some 0-form symmetry group G; specifically we
will take to be a finite-dimensional Lie group (not necessarily
compact), with Lie algebra g.

To formulate the result, we first recall from the general
filling framework of Ref. [17] that a ’t Hooft anomaly of G
defines a function α(Q|τ ) valued in R/Z that is defined when
Q ∈ g and τ ∈ G commute, in which case α(Q|τ ) computes
the microscopic electric charge filling (modulo 1) of a system
with emergent symmetry G in which the microscopic electric
charge maps into Q and the microscopic translation symmetry
maps into τ . Physically, α(Q|τ ) describes the charge of τ

created by a 2π flux insertion of Q. Here the only properties
of α that we need are

(1) α(Q|τ ) is linear in τ : that is, if τ and τ ′ commute with
Q, then

α(Q|ττ ′) = α(Q|τ ) + α(Q|τ ′), (E1)

(2) α(Q|τ ) is continuous in τ , and
(3) α(Q|τ ) is invariant under conjugation: that is, for any

g ∈ G we have that

α(gQg−1|gτg−1) = α(Q|τ ). (E2)

Now, consider A,Q ∈ g that commute. Then we say that
A and Q have a mixed anomaly if

m := d

dθ
α(Q|eiθA)

∣∣∣∣
θ=0

�= 0. (E3)

This in turn implies that the local densities corresponding to
Q and A have a nontrivial commutator of the form Eq. (23)
with the coefficient m given by Eq. (E3).

The precise formulation of the conjecture of Sec. V for the
case of one spatial dimension is that a system is compressible
if and only if there is A ∈ g that commutes with the electric
charge Q and has mixed anomaly with it. One direction of
the “if and only if” is easy to prove. Specifically, if Q and A
commute and have a mixed anomaly, then for any τ ∈ G, we
can define a one-parameter deformation τθ = τeiθA, and we
see that

α(Q|τθ ) = α(Q|τ ) + mθ. (E4)

Hence, the filling of the system can be continuously tuned by
varying how the microscopic translation embeds into G, so the
system is compressible.

The converse is a little more challenging and constitutes
Theorem 1. Suppose G is a finite-dimensional Lie group,

with Lie algebra g, and fix a function α satisfying the prop-
erties described above. Let S ⊆ g comprise those Q such
that e2π iQ = 1. Then there exists a set C ⊆ R/Z such that
(R/Z) \ C is countable, and for any Q ∈ S and τ ∈ G such
that Q and τ commute and satisfy α(Q|τ ) ∈ C, it follows
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that there exists A ∈ g that commutes with Q and has mixed
anomaly with Q.

Note in particular that (R/Z) \ C countable implies that
any open interval (ν1, ν2) contains uncountably infinite num-
ber of points in C. Therefore, if the system is compressible,
then we can tune the filling to lie in C and we conclude that
there is an A ∈ g that has mixed anomaly with Q.

To prove theorem 1, we will make use of the following
Lemma, whose proof we give later.

Lemma 1. There exists a countable set S∗ ⊆ S such that for
any Q ∈ S, there exists u ∈ G such that uQu−1 ∈ S∗.

Now, for any Q ∈ S, let us define HQ � G to comprise
those elements that commute with Q. HQ is a Lie subgroup
of G. Therefore, like any Lie group, or indeed any manifold,
it has countably many connected components. This follows
from the second-countability property that is part of the defi-
nition of a manifold.

Now define

V (0)
Q := {

α(Q|τ ) : τ ∈ H (0)
Q

}
, (E5)

where H (0)
Q is the connected component of the identity in HQ.

Observe that V (0)
Q is the image under a continuous map of a

connected set; it follows that V (0)
Q is itself connected. The only

connected subsets of R/Z are intervals. If V (0)
Q is an interval

I ⊆ R/Z of nonzero length, then since on the one other hand
we see from the definition nV (0)

Q ⊆ V (0)
Q , while on the other

hand nI = R/Z for sufficiently large n; hence, we find that
V (0)
Q = R/Z. The other possibility is that V (0)

Q is a single point.

Let � ⊆ S comprise those Q such that V (0)
Q is a single

point, and define �∗ = � ∩ S∗, and

R/Z ⊇ Cc := {α(Q|τ ) : Q ∈ �, τ ∈ HQ}. (E6)

Then from lemma 1 we see that we can equivalently write

Cc := {α(Q|τ ) : Q ∈ �∗, τ ∈ HQ}. (E7)

However, now for any Q ∈ �∗, α(Q|τ ) only depends on the
connected component of τ in HQ. Since �∗ is countable
and HQ only has countably many connected components (see
above), it follows that Cc is countable.

Now, if we have some Q ∈ S, τ ∈ G commuting such that
α(Q|τ ) ∈ C := (R/Z) \ Cc, it follows that Q /∈ �. Therefore
V (0)
Q = R/Z. So if we define a Lie group homomorphism

ϕ : H (0)
Q → R/Z according to ϕ(τ ′) = α(Q|τ ′), then ϕ is

surjective. It follows that the Lie algebra homomorphism
ϕ̃ : Lie(HQ) → R induced by ϕ [where Lie(HQ) � g is the
Lie algebra of HQ] must be surjective, and in particular not
zero; hence, there exists some A ∈ Lie(HQ) such that ϕ̃(A) �=
0, which implies that A commutes with Q and has mixed
anomaly with Q. This completes the proof of theorem 1.

a. Proof of lemma 1

Here we give the proof of lemma 1. This follows as a
consequence of the following standard theorems [29,30].

Theorem 2. Let G0 be a locally compact connected group.
Then every compact subgroup of G0 is contained in a maximal
compact subgroup of G0, and all maximal compact subgroups
of G0 are in the same conjugacy class.

Theorem 3. Let G be a compact finite-dimensional Lie
group. Then every torus in G is contained in a maximal torus,
and all maximal tori of G are in the same conjugacy class.

[A “torus” in a Lie group G is a Lie subgroup that is
isomorphic to U(1)×k for some k.]

By combining these two results, we obtain
Corollary 1. Let G be a finite-dimensional Lie group. Then

every torus T � G is contained in a torus T [T ] � G, such that
T [T ] and T [T ′] are in the same conjugacy class for any tori
T, T ′ � G.

Proof. Let T be some torus of G. Then clearly T � G0,
where G0 is the connected component of the identity in G.
Hence, applying Theorem 2 (recalling that finite-dimensional
Lie groups are always locally compact), we find that T is
contained within a maximal compact subgroup H[T ] � G0.
The closed subgroup theorem implies that H[T ] is itself
a finite-dimensional compact Lie group. Hence, applying
Theorem 3 with respect to H , we find that H[T ] is contained
in a maximal torus of H , which we call T [T ]. If we start from
two tori T, T ′ � G, then Theorem 2 shows that there exists
g ∈ G such that gH[T ]g−1 = H[T ′]. Then since gT [T ]g−1

and T [T ′] are both maximal tori in H[T ′], Theorem 3 shows
that they are in the same conjugacy class.

Now let T∗ be a representative of the unique conjugacy
class of tori T [T ] constructed in Corollary 1. Let t � g be
its Lie algebra. Then the intersection S∗ := t ∩ S is countable,
since any Q ∈ S∗ can be expressed as

Q =
n∑

j=1

k jQ j, (E8)

for some integers k j , and where Q1 · · ·Qn are the standard
generators of the torus T∗. Then lemma 1 follows.

APPENDIX F: BOSE-LUTTINGER LIQUIDS: EMERGENT
SYMMETRIES, ANOMALIES, AND TRANSPORT

In this Appendix, we briefly discuss the Bose-Luttinger
Liquids (BLL) introduced in Ref. [19] and show how they fit
in with the considerations of the present paper. For simplicity,
we restrict to space dimension d = 2. The BLL is a phase of
matter of bosons, possibly at finite density, which has gapless
excitations living on a surface in momentum space. We will
consider such a phase in a microscopic system of bosons with
global U(1) and continuous translation symmetries. The BLL
ground state preserves these symmetries. Further, it can exist
at nonzero boson density, and is a compressible phase. The
microscopic boson field ψx is expressed in terms of “patch”
fields ψγ that live near the Bose surface (a circle of radius
kB):

ψ (x) = 1√
N

∑
γ

eikBγ ·xψγ (x). (F1)

Here N , the number of patches, is to be taken to infinity (and
correspondingly the size of each patch to zero).

In the IR theory, these patch fields are described in terms
of their phase fields

ψγ ∼ eiφγ . (F2)
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The action of the IR theory is quadratic in terms of φγ . The
resulting IR fixed point has power law correlations of the
boson ψx everywhere on the Bose surface.

As noted in Ref. [19], the BLL has a huge emergent sym-
metry group. First there is a loop group LU(1) symmetry
associated with conservation of boson number at each point of
the Bose surface. Our interest here is in emergent higher form
symmetries associated with vortex excitations of the boson
field which were argued [19] to be gapped at the IR fixed
point. This prompted the suggestion in Ref. [19] that there
was an emergent one-form symmetry (similar to the superfluid
or the QLM examples). Here we shall argue that there is in
fact an emergent two-form symmetry group [which we denote
(U(1))2]. To see this, we first observe that we can view the γ

direction as an additional spatial dimension (see Ref. [17] for
an analogous viewpoint on Landau Fermi liquids). In other
words we will regard the patch fields φ(x, γ , τ ) as living in a
3 + 1 dimensional space-time with x, γ being the “spatial”
coordinates and τ the time coordinate. We define the con-
served currents

J μνλ = 1

2π
εμνλκ∂κφ, (F3)

where the Greek indices μ, ν, λ, κ all take values in τ, x, y, γ .
These conserved currents define a two-form (U(1))2 sym-

metry. There are three corresponding conserved densities:

J0γ x = 1

2π
∂yφ(x, γ , τ ), (F4)

J0yγ = 1

2π
∂xφ(x, γ , τ ), (F5)

J0xy = 1

2π
∂γ φ(x, γ , τ ). (F6)

To understand the meaning of these conserved densities, we
place the system on a spatial torus. (Note that the γ direction
naturally lives in S1; so we are only requiring that x and y also
be taken to each live in S1). Then we may define three distinct
integer winding numbers

Wi =
∫

dxi
1

2π
∂iφ(x, γ , τ ) (F7)

for i = x, y, γ . Consider first Wx or Wy. This represents the
winding number of φ(x, γ , τ ) at any particular y, γ . As in
previous sections, this winding number is independent of the
y-coordinate. Crucially it is also independent of γ . This is
because of, as noted in Ref. [19], the requirement of smooth-
ness of the φγ on the Bose surface. Indeed, we can simply
regard Wx as the winding number (along the x direction) of
the phase of the full boson field ψ (x). This leads to a winding
of the phase of all of the patch bosons. Next consider Wγ .
This represents the winding of the phase on moving around
the Bose surface. Configurations with nonzero integer Wγ are
well-defined and are smooth on the Bose surface, and hence
should be included in the IR theory of the BLL. Further, Wγ

will be independent of x, y within the IR theory.
Thus we have the full set of three independent winding

numbers expected for an emergent 2-form (U(1))2 symmetry,
in addition to the LU(1) loop group symmetry. There is a
mixed anomaly between these two symmetries. To see this,
note that in the presence of an LU(1) gauge field Aμ, the

currents of the 2-form symmetry become

J μνλ = 1

2π
εμνλκ (∂κφ − Aκ ). (F8)

Clearly then the J μαβ are no-longer conserved but satisfy

∂μJ μαβ = 1

4π
εαβλκFλκ , (F9)

where Fλκ = ∂λAκ − ∂κAλ is the field strength for the LU(1)
gauge field.

Reference [19] argued that the BLL has zero phase stiff-
ness associated with the global U(1) symmetry but a nonzero
Drude weight, i.e., the physical electrical conductivity has a
delta-function peak at zero frequency:

σ (ω) = Dδ(ω) + . . . (F10)

The presence of this delta function can be understood within
the framework described in this paper, as we elaborate below.
First let us define the vector field uk (with k = x, y, γ ) through

J 0i j = εi jkuk . (F11)

Similar to the other examples discussed in the main text, the
anomaly equation implies that the LU(1) charge density n(x)
[with x = (x, γ )] satisfies the commutation relation

[n(x), uk (x′)] = − i

2π

∂

∂x′
k

δ3(x − x′). (F12)

Consider now the generalized Gibbs ensemble

ρ = e−β(Ĥ−∫
γ

μγ N̂ (γ )−∫
d3xhk (x)uk (x)), (F13)

where hk (x) is the thermodynamic conjugate to uk (x) and
satisfies ∂ihi = 0, and Nγ dγ is the total LU(1) charge at point
γ . Repeating the logic from the main text leads to an LU(1)
current

jk (x)  hk (x)

2π
. (F14)

Next consider an electric field impulse along the x direction:

Ex(t ) = Eδ(t ) (F15)

with E independent of x. From the anomaly equation this will
lead to a change of ux:

�ux = E
2π

. (F16)

We may now relate this to the change of hx using the ther-
modynamic susceptibility of the 2-form conserved charge. To
keep things simple we will consider the limit of a patch diag-
onal action, ignoring Landau parameters that couple together
different patches. In that case, the (Euclidean) BLL action has
the form

SBLL =
∫

d2xdτ
dγ

2π

kB

4πη
(v−1(∂τφγ )2 + v[w(γ ) · ∇φγ ]2),

(F17)

where w(γ ) is the unit vector normal to the Bose surface at
the point γ , and ∇φγ denotes the gradient of φγ with respect
to x and y. If we make a change of variables ∇φγ → ∇φγ +
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2π�u in Eq. (F17), we see that this is equivalent to shifting
the conjugate field h by

�h = kBv

η
[w(γ ) · �u]w(γ ). (F18)

In other words, the inverse susceptibility matrix χ−1, defined
by �hi = (χ−1)i j�u j , has components

(χ−1)i j = kBv

η
wi(γ )w j (γ ). (F19)

Although this is a degenerate matrix (i.e., it has a zero eigen-
value), it is not the zero matrix, and as a consequence the
dissipationless current is not suppressed (that is, there is no
critical drag). Indeed, using the expression Eq. (F14) for the
current, as well as the shift �u for an electric field impulse

in the x direction given by Eq. (F16), we find that the LU(1)
current is

given by

jx(γ ) = kBvE
(2π )2

cos2 γ ,

jy(γ ) = kBvE
(2π )2

cos γ sin γ . (F20)

Therefore, integrating over γ to get the total electric current,
we find that it is in the x direction and given by

jx
tot = kBvE

4πη
. (F21)

This gives a Drude weight D = kBv/(4η) in agreement with
the result in Ref. [19].
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