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Topological Kondo device for distinguishing quasi-Majorana and Majorana signatures
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To confirm the Majorana signatures, significant effort has been devoted to distinguishing between Majorana
zero modes (MZMs) and spatially separated quasi-Majorana modes (QMMs). Because both MZMs and QMMs
cause a quantized zero-bias peak in the conductance measurement, their verification task is thought to be very
difficult. Here, we proposed a simple device with a single nanowire where the device could develop clear
evidence of the topological Kondo effect in the topologically trivial phase with four QMMs. On the other hand, in
the topological superconducting phase with MZMs, the transport signatures are significantly different. Therefore,
our scheme provides a simple way to distinguish Majorana and quasi-Majorana modes.
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I. INTRODUCTION

The topological superconductors can host localized zero-
energy excitations named “Majorana zero modes” (MZMs)
[1,2]. Among many experimental searches for MZMs, the
semiconductor nanowire in proximity to an s-wave super-
conductor [3–19] proved to be one of the most promising
platforms to study non-Abelian braiding statistics [20–23]
and topological quantum computation [23,24]. Usually, a
quantized zero-bias peak in the tunneling spectroscopy was
considered as a smoking gun signature for the MZMs [25].
However, many recent works have shown that individual near-
zero-energy Andreev bound states (ABSs) can also cause
a zero-bias conductance anomaly [26–41]. (Such near-zero-
energy ABS was also studied recently in two-dimensional
vortex systems [42]). If the potential near the nanowire’s
edge is smooth [26], this ABS decomposes into two almost
decoupled Majoranas [35–37]. Because such states are in the
topologically trivial phase, the two decomposed Majoranas
are also called “quasi-Majorana modes” (QMMs) [37]. (In
the following, we will use MZMs to refer to the Majorana
zero modes in the topological phase, QMMs to refer to the
quasi-Majorana modes in the topologically trivial phase, and
Majorana to refer to both). In the tunneling spectroscopy ex-
periments, only one of the two QMMs couples to the outside
metallic lead, resulting in also a robust quantized zero-bias
conductance peak [36,41]. Therefore, it is tough to distinguish
between QMMs and real MZMs in the local quantum trans-
port experiments [35,36,43].

With the rapid progress of the Majorana search in the
past years, significant effort has been devoted to studying
the topological Kondo effect (TKE) due to the topological
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degeneracy of MZMs [44–72]. Different from the Kondo
effect [73] which arises from the coupling between conduc-
tion electrons and quantum spin with degenerate levels, TKE
arises from the coupling between conduction electrons and the
nonlocal quantum spin caused by the topological degeneracy
of MZMs. Not only the topological degeneracy, but also the
TKE can demonstrate the non-Fermi liquid (NFL) [74,75]
behavior which is unstable and difficult to achieve in the
conventional Kondo context. Such TKE in its minimal setup
[44–46] consists of a floating topological superconducting
island supporting four localized MZMs (Mtot = 4), three of
which (M = 3) are tunnel coupled to three conducting leads,
respectively. The main experimental phenomenon of TKE
is that as the temperature decreases, the linear conductance
will then saturate at a fractional value (G = 2e2/Mh) [44].
Besides, we believe that the measurement of TKE could both
provide strong evidence of coherence nature in Majorana
devices (alternative methods, such as Majorana teleportation
interferometer [76] and dissipative Majorana teleportation
[43]) and a transport characterization scheme for Majorana
qubits.

A single Majorana nanowire system with smooth potentials
at both ends could host four QMMs, which satisfy the mini-
mum requirements for TKE. Therefore, we would like to ask if
the TKE can be realized and observed experimentally in such
a single-nanowire setup. In this paper, we propose a simple
quasi-Majorana device with a single nanowire as shown in
Fig. 1 to realize TKE in the topologically trivial phase and
derive the conditions under which TKE could appear and
potentially be observed in experiments. We believe that our
device is much easier to realize for experimentalists than the
standard TKE devices that require, at least, two nanowires.
Besides, our device provides a robust experimental scheme
to distinguish between topological MZMs and nontopological
QMMs.
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FIG. 1. (a) is the proposed experimental setup to study the TKE
in quasi-Majorana nanowire. (b) is the cross-sectional view along
with the tunneling probe to the lead L2 in (a). Here we consider a
device structure similar to that in the experiment from Ref. [77] to
detect the zero modes in the bulk of the wire. The semiconductor
is also proximitized by the ferromagnetic shell (e.g., EuS) as the
experimental devices shown in Refs. [78,79]. This magnetized part
acts as a spin polarizer which allows only modes with a certain spin
direction to strongly couple to the outside lead. (c) is the energy
dispersion of a quasi-one-dimensional nanowire without the super-
conductor shell. (d) is a schematic of this three-lead setup. The most
influential hybridizations are labeled.

II. PROPOSED DEVICE STRUCTURE

The proposed system setup is shown in Fig. 1(a). A semi-
conductor nanowire (purple) with Rashba spin-orbit coupling
is in proximity to an s-wave superconductor shell (green).
A magnetic-field B is applied in parallel with the nanowire.
The nanowire is tunnel coupled to outside, so the central part
including the nanowire and the superconductor shell forms a
floating island. The floating island has finite Coulomb elec-
trostatic energy which can be tuned by the plunger gate with
voltage Vg. The tunnel gates control the couplings between the
leads and the nanowire and give rise to the smooth potentials
V (x). The proximity-induced gap �(x) gradually vanishes in
the regime where no superconducting shell is covered. Near
the position where the superconductor shell vanished, a piece
of semiconductor is in contact with the wire to detect the
QMM in the bulk similar to the experimental device struc-
ture shown in Ref. [77]. The tunnel coupling between the
nanowire and the semiconductor is achieved by applying a
narrow tunnel gate or adding an insulating layer between them
as performed in Ref. [77]. The semiconductor in proximity to
a ferromagnetic shell shown in the T-shape leg in Fig. 1(a),

and their cross-sectional view is shown in Fig. 1(b). The
ferromagnetic insulator is used to magnetize the states in the
semiconductor as those in recent experiments [78,79]. Each
pair of QMMs at the same wire end always has the opposite
spin polarization [37,80]. Therefore, the magnetized semicon-
ductor near L2 further suppresses the potential “cross talk”
between the quasi-Majorana mode at the end of the nanowire
and the L2 lead. Besides lead L2, two more electrodes (L1,
L3) cover the wire ends to detect the QMMs there. This three-
leads setup is schematically shown in Fig. 1(d).

III. THE TKE IN THE QUASI-MAJORANA WIRE

A. Quasi-Majorana modes in a one-dimensional wire

Here will demonstrate that four QMMs could be generated
in a single nanowire with smooth potentials at both sides
[26,35–37]. The one-dimensional Bogoliubov–de Gennes
(BdG) Hamiltonian of a Majorana nanowire extending in the
x direction can be written as HNW = 1

2

∫
dx �†(x)HNW�(x)

with

HNW =
(

p2
x

2m∗ − μ + V (x)

)
σ0 ⊗ τz + α

h̄
pxσy ⊗ τz

+VZσx ⊗ τ0 + �(x)σ0 ⊗ τx, (1)

where �(x) = [ψ↑(x), ψ↓(x), ψ†
↓(x),−ψ

†
↑(x)]T , px = −ih̄∂x

is the momentum, m∗ is the effective mass, μ is the chemical
potential, V is the electrostatic potential, α is the spin-orbit
coupling (SOC) strength, VZ is the Zeeman energy due to
the magnetic field parallel to the nanowire in the −x direc-
tion, and � is the proximity-induced superconducting gap. σi

and τi (i = x, y, z) are Pauli matrices which act on spin and
particle-hole space, respectively. σ0 and τ0 are the correspond-
ing identity matrices. Here we use a Gaussian shape V (x) =
V0 exp[(x − xV )2/σ 2

V ] to model the smooth potential for both
left and right junctions [see Figs. 1(a) and 2(b)]. The transition
between the superconducting and the nonsuperconducting
regimes is also smooth: �(x) = �0{1 + tanh[(x − x�)/σ�]}.

By discretizing the Hamiltonian (1) to a tight-binding
model and solving it, we can obtain the spectrum and the wave
functions of the QMMs and MZMs. The energy spectrums
as a function of the Zeeman energy and chemical potential
of this system are shown in Fig. 2(a) from which we can
see there are zero modes both before and after the topologi-
cal phase transition point (V 2

Z = μ2 + �2
0). MZMs appear in

the topological regime (VZ > V c
Z or μ < μc). In the topolog-

ically trivial regime there are two ABSs stuck to zero energy
which are shown by two pairs of particle-hole symmetric
zero-energy spectra before the phase transition point (V c

Z or
μc) in Fig. 2(a). Because in our case the potential variations at
the left and right ends are identical, the two near-zero-energy
ABSs are degenerate, and their spectra overlap with each
other. The two ABSs can be decomposed into four QMMs,
and their wave functions are shown in Fig. 2(c). For one
ABS, its two particle-hole-symmetry-related BdG eigenstates
are used to construct two Majorana wave-functions χA(x) and
χB(x): χA = 1/

√
2(ϕ+εeiθ + ϕ−εe−iθ ), χB = i/

√
2(ϕ+εeiθ −

ϕ−εe−iθ ), where ϕ±ε(x) are two eigenstate wave functions
with near-zero eigenenergy ±ε and ϕ−ε = Pϕ+ε . P is the
particle-hole symmetry operator with P = (σy ⊗ τy)K , where
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FIG. 2. (a) The energy spectrum of a bare quasi-Majorana
nanowire with smooth potential on one side as a function of the
Zeeman energy VZ and the chemical potential μ. The critical
V c

Z (
√

μ2 + �2
0) and μc (

√
V 2

Z − �2
0) at which topological phase

transition happens are labeled. (b) The spatial distribution of the po-
tential V (x) and induced gap �(x). The parameters for the variation
of the potential and the superconducting gap are V0 = 6 meV, xV =
200, σV = 100, x� = 250, and σ� = 100 nm. (c) The wave func-
tions of four QMMs along the nanowire when VZ < V c

Z . (d) The
wave functions of two MZMs in the topological regime when
VZ > V c

Z . The other parameters of the nanowire are taken as: m∗ =
0.023me, α = 50 meV nm, the induced gap �0 = 0.5 meV, and the
lattice constant a = 10 nm.

K is the complex conjugation. Then we can see that the
wave-function χα (α=A,B) is particle-hole symmetric of itself.
In the quasi-Majorana case, there is always a value of phase
θ which will make χA and χB partially separated and only
one of them located at the edge of the nanowire. If a lead
is attached to the same edge, only one Majorana component
will be detected by the outside and, therefore, in the tunneling
experiment, the signatures will be the same as that of the
topological Majorana. In a nanowire, two pairs of QMMs χA

and χB can arise near the two wire ends as shown in Fig. 2(b).
However, in the topological regime, there is only one pair of
particle-hole-symmetric states remaining which corresponds
to two Majorana states. The two Majorana wave functions are
shown in Fig. 2(d).

B. The Bose condensate of the quasi-Majorana wire

Next we want to show that the quasi-Majorana wire can
provide an effective Bose condensate and the QMMs-leads-
coupled model can be mapped to the ideal TKE model [44].
The formation of quasi-Majoranas requires that the Fermi
surface intersects two helical bands of the nanowire, forming
two pairs of Fermi points as shown in Fig. 1(c). Although the
system is in the topologically trivial regime if the scatterings
between the two pairs of Fermi points ±k+

F and ±k−
F are

weak enough (e.g., due to the smooth potential), the two
bands can be seen as two independent spinless bands [26].

In the presence of the proximity-induced superconducting
correlation, the proximity effect induces Cooper correlations
for electrons near each pair of Fermi points and generates
two Bose condensates. Each condensate bears two QMMs for
which the spatial wave function is shown in Fig. 2(c). The
inner two QMMs belong to one condensate, and the outer two
QMMs belong to the other. Then with M = 3 leads coupled
to three QMMs, the tunneling Hamiltonian can be written as

HT =
∑

j

t j jγ jψ je
iφ j/2 + H.c., (2)

where t j j is the lead-QMM tunneling amplitude, ψ j is the
electron annihilation operator of lead- j ( j = 1–3). φ1,3 = φA

and φ2,4 = φB represent the phase of the outer (A) and inner
(B) condensates. The operator e±iφ j/2 in HT increases or de-
creases the charge numbers in each condensate [nα, e±iφα/2] =
±e±iφα/2, α = A, B. Because the nanowire and the supercon-
ductor shell are floated, the Coulomb interactions between
electrons will give rise to a Hamiltonian term Hc(n) = Ec(n −
ng)2, where n = nA + nB is the total electron number and Ec is
the charging energy. The plunger gate controls the parameter
ng with ng = CVg/e, where C is the effective capacitance. Tun-
ing ng to an integer N , at an energy scale below Ec, the charge
transfer between different leads is accompanied by virtual
transitions connecting the lowest-energy charge state (n = N)
of the island to the states with ±1 extra electrons (n = N ± 1).
The physics is captured by the effective Hamiltonian,

HT
eff =

∑
j �=k

t j jt∗
kk

Ec
γ jγkψ

†
k ψ je

i(φ j−φk )/2, (3)

which is obtained by a Schrieffer-Wolf transformation [44,81]
with t j j � Ec. If γ j and γk belong to different condensates
there is phase exponential factor e±i(φA−φB )/2 which represents
the electron transfer between the two condensates. For our
quasi-Majorana device, both condensates exchange Cooper
pairs with the proximity superconductor at the same spatial
positions; and, therefore, the effective coherent Josephson
coupling HJ = −EJ cos(φA − φB) between the two conden-
sates could be very strong. For a large EJ , φA − φB will be
fixed at 0. In addition, the two condensates together share the
same spatial locations and only feel a single constant charging
energy. Then HT

eff is reduced to the ideal topological Kondo
model [44]. Here, we note that in order to observe the TKE in
the Majorana double wire “H-shape” qubits [82,83] (the sim-
plest device to realize four MZMs using topological wires),
we need: (1) the Cooper pairs in different topological wires to
feel the same charging energy, and (2) the Josephson coupling
between the two different wires is very strong. Therefore, our
proposal provides a more natural platform for the TKE.

C. Conditions for the TKE

Here we will review the conditions for experimental ob-
servation of the TKE in a floating Majorana island with N
MZMs coupling to M (� N ) different metallic leads. Two
key points for the TKE are as follows: (1) the tempera-
ture range where the TKE can be observed and (2) the
strength of the Majorana-lead hybridizations as well as the
Majorana-Majorana hybridizations. The Kondo temperature
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FIG. 3. The wave functions of the four QMMs γ1–4 when attach-
ing the magnetized part. Relevant parameters are taken as μ = 4.5
and VZ = 3.5 meV. The length of the magnetized semiconductor is
taken as 0.5 μm.

TK 	 Ec exp[−πEc/2(M − 2)�] describes the crossover en-
ergy scale between the trivial regime and the TKE regime,
below which the typical NFL behavior of the TKE can be
observed [44–46,81]. � is the average value of the Majorana
level broadenings � j j over all j leads with � j j = 2πν|t j j |2
where ν is the density of states (DOS) at the Fermi level
of the leads. However, in addition to the local couplings t j j

in Eq. (2), mutual couplings between MZMs and crossed
couplings between γ j and another lead k may also exist

HM = i
∑
j �=k

ε jkγ jγk, HT 2 =
∑
j �=k

t jkγ jψkeiφ/2 + H.c., (4)

which are shown in Fig. 1(d). Here we name the ε jks
Majorana-Majorana hybridizations, and � j j = 2πν|t j j |2 and
� jk = 2πν|t j �=k|2 local and nonlocal Majorana-lead hy-
bridizations. The terms in Eq. (4) are relevant perturbations
that can destroy the TKE. If these “imperfect terms” are
small (|t jk|, ε jk � t j j, j �= k), the TKEs could exist, but they
give rise to another crossover energy scale Th [49,53] below
which these terms will drive the system away from the TKE
regime of M MZMs to the TKE of M − 2 MZMs. Th can be
estimated [49,53] as Th 	 TK(h̄/TK )M/2, where h̄ is the typical
value of the effective Majorana-Majorana hybridization: h̄ =
max |hjk| = max |ε jk + ∑

p
tkpt∗

j p

iEC
|, which includes the effects

from both two imperfect terms. For the case of M = 3, below
Th the system will be driven to a trivial state. This will result
in a temperature window Th � T � TK where the TKE can
be observed. Hereafter we will call this window NFL window
since in it the system is in a NFL state. The dependence of
the size of this window (TK − Th)/Th on the Majorana-lead
hybridization � and the Majorana-Majorana hybridization h̄ is
shown in Fig. 4(a) of Sec. (III E), which indicates that we have
a large parameter regime to observe the TKE (Th � TK). The
most satisfactory condition is that � is strong whereas is weak
which means the three QMMs are independently coupled to
the three leads, respectively.

D. Attaching the T leg

Before studying the hybridizations when attaching the out-
side metallic leads, we first check whether the QMMs can
be separated in order to satisfy the condition for the TKE.
In a bare quasi-Majorana nanowire, the wave functions of
four QMMs are shown in Fig. 2(c), and we saw the partially
separated QMMs γ1 and γ2 (γ3 and γ4) located close to the
left (right) end of the wire. At the left (right) end of the wire
only the wave function of γ1 (γ3) has a distribution. Therefore,

FIG. 4. (a) The relative size of the temperature window (TK −
Th )/Th (in which TKE are allowed to be observed) as a function of
the local Majorana-lead hybridization and the effective Majorana-
Majorana hybridization. (b) The simulation result which gives
the dependence of (TK − Th )/Th on the tunnel-coupling strength
tc/t0

c (t0
c = 3 meV) and the spin-polarization direction of the mag-

netized part. Relevant parameters used are xT = 0.38 μm, μ =
4.5, VZ = 3.2, Ec MeV, and ν = 10 meV−1. (c) The conductance
G13 for the setup shown in Fig. 1 as a function of temperature.
The solid (dashed) lines describe the topological trivial case with
QMMs (topological case with MZMs). The curves with the same
local Majorana-lead hybridization � are drawn in the same color. The
upper curves correspond to larger � (� is the average value of � j js).
For the two upper solid curves which belong to the case of QMMs,
their TK and Th are labeled with the same color as the corresponding
curves. In the same manner, the blue (orange) shaded area indicates
the NFL window of the blue (orange) solid curve. (d) The couplings
�22, �12, and ε12 when the T leg is attached at different position x
measured from the left side of the nanowire. (e) and (f) show ratios
of the hybridization parameters �12/�22 and ε12/�22 as a function of
μ and VZ. The range of μ and VZ are chosen to support QMMs as
shown in Fig. 2(a).

the lead L1 (L3) can only couple to γ1 (γ3) and the crossed
Majorana-lead coupling between L1 and γ2 (L3 and γ4) can
be neglected. Considering a long wire and a very smooth
barrier potential landscape, we can imagine that the direct
Majorana-Majorana coupling is very small. However, in the
QMM nanowire, γ1 and γ2 are only partially separated in
space, and there is some small but clearly visible contribution
from γ1 on top of the major γ2 part as shown in Fig. 2(c).
Therefore, both γ1 and γ2 could leak into the attached L2 lead
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and cause strong crossed Majorana-lead couplings. Because
the γ1 and γ2 have the opposite spin polarization [37,80], we
consider adding a spin-polarized part to resolve this issue. As
shown in Figs. 1(a) and 1(b), A T leg made of a ferromag-
netically proximitized semiconductor is attached between the
nanowire and the L2 lead. In order to reduce the effects, such
as the induced local variation of the electrostatic potential, the
contact between the T leg and the nanowire will be made nar-
row [84]. In our numerical simulation, the magnetization of
this part is represented by the term M · σ. The tunnel coupling
between the nanowire and the magnetized semiconductor can
be simulated by a small hopping term with hopping strength tc
[84,85]. When the spin polarization is at the +x direction, the
full spatial distributions of the quasi-Majorana wave functions
are shown in Fig. 3. The numerical results tell us that the
leakage from γ1 into the T-leg L2 is very weak, and all the
imperfect couplings with the L2 lead could be very small.
Therefore, there could be a parameter interval that satisfies
the TKE conditions. The details of the numerical calculation
can be found in Appendix A.

E. The Majorana-Majorana and Majorana-lead hybridizations

Next, we calculate Majorana-Majorana hybridization εi j

between γi and γ j and Majorana-lead hybridizations �i j =
2πν|ti j |2 between γi and lead L j in order to quantitatively
check whether our device can meet the condition for the TKE.
Those hybridizations are labeled in Fig. 1(d). We have the
situation that: (1) the wave functions of γ1 and γ2 have a finite
small overlap, and (2) the attached magnetized T leg connects
the wire in their overlapping regime and may disturb their hy-
bridizations; and, therefore, the most influential hybridization
factors are �12 and ε12. Other hybridizations can be safely ne-
glected. According to the expressions of TK and Th, we require
small ratios �12/�22 and ε12/�22 to reach the conditions, in
general. We numerically compute those hybridizations in the
lattice model using a kwant simulation [86]. We add the lead
L2 to the end of the T leg and extract hybridization parameters
from the single-terminal conductance. The details are shown
in Appendix B.

The hybridization parameters are numerically shown in
Figs. 4(d)–4(e). By changing the connection point xT between
the T leg and the nanowire from left to right, the coupling
strengths oscillate as shown in Fig. 4(d). Those oscillations
come from the variation of the wave functions and the spin
densities of QMMs (shown in Appendix C). One can choose
a range of xT near γ2 such that �22 
 �12 and ε12, where
the lead 2 is only strongly coupled to γ2. In a practical sit-
uation with a fixed xT, one can tune the value of �22, �12,
and ε12 by shifting the wave function horizontally, which
can be achieved by changing the chemical potential μ or
the Zeeman energy VZ. The ratios �12/�22 and ε12/�22 as a
function of μ and VZ are plotted in Figs. 4(e) and 4(f), which
indicates a large regime to observe the TKE. Besides, the
lead-Majorana hybridizations are also related to the tunnel
barrier. The dependence of the relative value (TK − Th)/Th

on the coupling strength tc among the nanowire, the magne-
tized semiconductor, and the magnetization direction angle ϕ

is shown in Fig. 4(b). Here, the magnetization direction is
represented by the angle ϕ through (cos ϕx̂ + sin ϕẑ). The

numerical result indicates a large parameter regime to support
the TKE.

IV. QUASI-MAJORANA VS MAJORANA

Finally, we discuss how to distinguish the Majorana modes
from the quasi-Majorana modes in our proposed setup shown
in Fig. 1(a). In the experiment, one can apply a voltage
on the L1 lead and detect the current in Lk lead (k =
2, 3), which yields the linear conductance G1k = dIk

dV1
|V1→0.

By reducing the temperature much lower than Ec, G1k will
show Coulomb blockade (CB) oscillations: when the float-
ing island is further away from the degenerate point where
the electromagnetic energy of N and N + 1 electrons are
the same, the injected electron will be blockaded because
of the large charging energy. By tuning ng through the
plunger gate, G1k will alternately show peaks at the degen-
erate points ng = N + 1/2 and valleys at ng = N . In order
to observe the TKE, ng should be fixed at a value in the
CB valley. In the CB valley when T � Ec, the noncoherent
transport contributed by thermal excitations (the sequential
tunneling process [66,72]) will be exponentially (∼e−Ec/T )
suppressed [66,72]. The coherent transport signatures will
help us to distinguish the QMMs and MZMs. Next we will
discuss how to distinguish the two in the TKE temperature
region.

If the nanowire is in the topologically trivial phase with
four QMMs, the system will show the clear TKE as discussed
before. When the temperature is lowered close to the Kondo
temperature TK, the electron transports are significantly mod-
ified by the Kondo physics, and the conductance G1k will
show the Kondo enhancement and a significant increase in
the conductance will be observed. Further lowering the tem-
perature below TK, the strong correlations in the TKE regime
will drive the couplings with three leads to the isotropic strong
limit: � j j/�kk → 1. The conductance will reach the fractional
quantized value in a power-law way: 2e2/3h − G1k ∝ T 2/3

[44]. This convergence to 2e2/3h and power-law dependence
are NFL behaviors. However, when the temperature reaches
T ∼ Th, the coupling between γ1 and γ2 cannot be neglected
anymore and the system will be driven out of the TKE regime
as discussed in Sec. III C. The conductance will drop to 0
when T decreases. The above-mentioned behaviors of G13

are shown by the solid curves with large � in Fig. 4(c). The
behavior of G12 is the same as that of G12 when T > Th,
but at T � Th, G12 can still have a remaining value which
is contributed by the local state formed by γ1 and γ2.

If the nanowire is in the topological phase, there are only
two MZMs (γ1 and γ2) located at each side of the nanowire.
Then, MZM γ1 couples to both the L1 and the L2 leads,
and MZM γ2 couples to the L3 lead. In the CB valley, at
low-temperature T � Ec, the conductance will be dominated
by the cotunneling process between every two leads. Other
higher-order processes involving the third lead will be sup-
pressed by the large Ec. Then the conductance in the real
Majorana case can be given by the two-terminal cotunneling
results [87,88]: GM

1k ∼ (e2/h)�1�k/E2
c , where � j( j=1–3) is the

hybridization between lead j and its nearest Majorana. Be-
cause the three � js may not be equal, GM

12 and GM
13 are not

necessarily equal. We demonstrate the low-temperature GM
13
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for the case that the three leads are symmetrically coupled to
the nanowire in Fig. 4(c) using dashed lines where the upper
dashed line indicates the case with larger �. In this case GM

12
is the same as GM

13. There is no conductance enhancement due
to the TKE.

Therefore, the QMMs can be distinguished from the
MZMs by the conductance measurement featured the Kondo
enhancement, as shown by the NFL window shown in
Fig. 4(c). The fractional quantized conductance G1k = 2e2/3h
(also the T 2/3 law behavior towards it) will show the evidence
of the TKE of QMMs. However, it is favorable to detect
the nonlocal conductance G13 (or both G13 and G12) instead
of G12. Because the leads L1 and L2 are very near to each
other, it is more susceptible to the influence of local states.
In the case that a quantum dot forms at the left end of the
nanowire because of the potential variation, a real Majorana
can leak into the dot and cause special conductance signals of
a two-terminal detection. It is shown that due to the Majorana
leakage to a side-coupled quantum dot and the conventional
Kondo effect at the same time, the conductance between two
leads connected to the quantum dot can be e2/2h (or 3e2/2
when there is an additional conventional Kondo conductance
through the dot) at low temperature [89–91]. Although the
conductance is not the characteristic fraction 2e2/3h of TKE,
a conductance enhancement may be observed in the real Ma-
jorana case and may mislead people. In contrast, the nonlocal
conductance G13 only has the Kondo enhancement in the
quasi-Majorana case. At last, the TKE can be further veri-
fied by the smoking gun signature: TKE should disappear if
any one of the three leads is decoupled. For example, after
decoupling the lead L2, the enhancement of conductance G13

will disappear. It is also worth mentioning, that with the larger
hybridization strength �, this window can be easier to ob-
serve. When � is small, the temperature window between Th

and TK will be small, and the quantized conductance will be
hard to observe, but a conductance enhancement may also be
observed as long as there is TKE physics as shown by the solid
green curve in Fig. 4(c). In this case a logarithmic dependence
∼ln−2(T/TK ) [44] on T when T > TK can be taken as the
evidence for the TKE.

V. CONCLUSIONS

In this paper, we proposed a simple experimental setup for
observing the topological Kondo effect in a single nanowire
system. In the topologically trivial phase, the nanowire can
have four quasi-Majorana modes which share many same
properties with the true Majorana modes but are protected by
the smooth potential. We add three leads to the nanowire with
two leads coupling the QMMs at the ends of the wire and one
lead coupling the QMM in the bulk. (We also add a magne-
tized semiconductor to the latter one to suppress the unwanted
crossed couplings). We study the conditions for observing
the TKE and show that in this quasi-Majorana nanowire and
found that when three quasi Majoranas strongly coupled to
three leads topological Kondo effect could appear. At last,
we show that our scheme could be applied to distinguish
Majorana from quasi-Majorana systems through the transport
signatures of the TKE in our proposed three-terminal device.
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APPENDIX A: DETAILS OF THE SETUP
OF QUASI-MAJORANA NANOWIRE

The Hamiltonian of the nanowire proximitized by the
superconductor shown in Eq. (1) of the main text can be
discretized on a one-dimensional atom chain,

HNW = 1

2

∑
i

(�†
i {[2t − μ + V (i)]σ0 ⊗ τz + VZσx ⊗ τ0

+�(i)σ0 ⊗ τx}�i − [�†
i+a(tσ0

+ iα̃σy) ⊗ τz�i + H.c.]), (A1)

The Nambu spinor basis now is changed to �i =
(ψi,↑, ψi,↓, ψ

†
i,↓,−ψ

†
i,↑)T , where i labels the atom site and

i + a labels its nearest neighbor to the right. The hopping con-
stant t = h̄2/2m∗a2 ≈ 13 meV and the Rashba SOC strength
α̃ = α/2a = 2.5 meV. The values of all the parameters can
be found in the caption of Fig. 2 of the main text. V (i) and
�(i) are the discretizations of the potential V (x) and the
induced gap �(x) given in the main text and their the spatial
distribution is shown in Fig. 2(b). Solving Eq. (A1) of a 3 μm
wire gives the spectrum and the wave functions of the QMMs
and MZMs as shown in Fig. 2. The eigenstate of Eq. (A1) can
be written in a four-component vector form (ui, vi )T , where ui

and vi are the particle and the hole parts, respectively, and each
has two spin components. The Majorana wave functions can
be constructed with the particle-hole pair of near-zero-energy
eigenstates ϕ±,[

χA

χB

]
= 1√

2

[
eiθ e−iθ

ieiθ −ie−iθ

][
ϕ+
ϕ−

]
, (A2)

where ϕ−(i) = Pϕ+(i) and the particle-hole operator is P =
(σy ⊗ τy)K . The Majorana wave-function χα (α=A,Bt ) is self-
particle-hole symmetric and, therefore, can be written as χα =
(ũα,i, iσyũ∗

α,i )
T , where ũα,i = (ũα,i↑, ũα,i↓) is a two-component

spinor. The phase θ in Eq. (1) is arbitrary which is not a
physical phase. With each value of θ , through the unitary
transformation in Eq. (1) one can obtain the wave functions of
the two Majorana components. In the quasi-Majorana regime,
there is always a value of θ which can make the two Ma-
jorana wave functions partially separated, and only one can
be detected by the detector at the wire end. In this case we
call the two Majorana components QMMs. Then for a sin-
gle quasi-Majorana nanowire, when attaching a lead electrode
to the wire end, only one QMM can strongly couple to the
lead. Then the resulting tunneling conductance is G(E ) ≈
(2e2/h)[�2/(E2 + �2)] which is same to that of topological
MZMs. Therefore, it is hard to distinguish between MZMs
and QMMs in a single-terminal tunneling experiment.

Next we talk about modeling of the T leg shown in
Figs. 1(a) and 1(b). The tight-binding Hamiltonian of the
magnetized semiconductor which is tunnel coupled to the
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FIG. 5. The wave functions of the two QMMs γ1,2 when attaching the semiconductor. (a)–(c) are the cases corresponding to tc =
t0
c , 0.6t0

c , 0.3t0
c with t0

c = 3 meV. The leakage of γ2 to the T leg is suppressed when the tunneling barrier is high (small tc). The parameters are
taken as μ = 4.5, VZ = 3.5, ts = 3, μs = 0 meV, and M = Mx̂ with M = 3 meV. The length of the magnetized semiconductor is taken as
0.5 μm. The relatively smaller hopping ts means that the semiconductor in the T leg has a relatively high DOS, which could make the coupling
between γ2 and lead L2 (when attached) stronger.

nanowire can be written as

HS = 1

2

∑
j

{�†
j [(2ts − μs)σ0 ⊗ τz − M · σ ⊗ τ0]� j

− [�†
j+as

(tsσ0 ⊗ τz )� j + H.c.]}, (A3)

where j labels the lattice site and j + as labels its nearest-
neighbor site in the y direction, between the nearest sites
between which the hopping constant is ts. The term M · σ

arises from the magnetization of this part. The chemical po-
tential μs intersect the lower band split by M and the spin is
polarized at the direction of M. The direction can be written
as M = M(cos ϕx̂ + sin ϕẑ). In the results of Figs. 3 and
4(d)–4(f) the magnetization is fixed at +x with ϕ = 0. In
Fig. 4(b), we allow the magnetization direction rotates on the
x-z plane to study the dependence on ϕ.

The tunneled coupling between the nanowire and the semi-
conductor is described by the Hamiltonian Hhop = tcψ

†
i ψ j +

H.c. Here site i = int(xT ) is the position in the nanowire
(HNW) where the T leg is attached and j = 1 is the end
site of the magnetized semiconductor (HS). The quasi-
Majorana wave functions of the cases corresponding to tc =
t0
c , 0.6t0

c , 0.3t0
c with t0

c = 3 meV are shown in Fig. 5. The
leakage of the wave function of γ2 to the T leg can be sup-
pressed by lowering tc. All relevant parameters are given in the
caption. Figure 3 is in the same condition but with tc = 0.9t0

c .
Figure 6 shows an alternative configuration to that of the
main text shown in Fig. 1. Here a T-shape semiconductor
nanowire is used. In experiments, this T-shape nanowire can
be made through the epitaxial growth [92] or the selective
area growth [93–95]. In order to polarize the spin, the T leg
of the nanowire is covered by a ferromagnetic shell which
can induce an exchange coupling in it. Here we reemphasize
that the disturbance of the T leg to the nanowire should be
minimized. Some works [84,96] studied the effects of the T
leg on the bulk states of the nanowire and gave some solutions
in the case of different configurations. This different proposed
device may be valuable to experimentalists because it is made
by different manufacturing processes. They can choose a sim-
pler and easier-to-implement one according to the specific
experimental conditions.

In the quasi-Majorana regime, the low-energy excitations
of the hybrid device shown in Fig. 1(a) are QMMs. Their wave

functions are shown in Fig. 3. Except for the four QMMs, all
other states are above the superconducting gap and with their
wave functions having very little distribution at the three end
points of the device. Therefore, when leads are attached to
each of the three end points, only the QMM near each end
point has strong couplings with the lead attached there. Other
states have very small couplings with the leads and are very
hard to be excited at low temperatures. The only conducting
channels in the central island are via the QMMs. If lead j has
Nc channels, the couplings between all these channels and the
Majorana γk can be expressed as

HT, jk = N−1/2
c

Nc∑
m=1

t jkγkcm je
iφ/2 + H.c. (A4)

Then the tunneling Hamiltonian between the leads and the
device can be expressed as

HT, j =
∑

k

t jkγkψ je
iφ/2 + H.c., (A5)

where we have defined ψ j = N−1/2
c

∑Nc
m=1 cm j . The Nc chan-

nels are equivalent to one effective channel. Here we have
assumed that the leads are general metallic leads and all the

FIG. 6. An alternative setup to detect the TKE of QMMs for
experimentalists. The T leg here is directly made by a T-shape
nanowire. The T leg is covered by a ferromagnetic shell in order to
polarize the spin. The theoretical models of this device and the one in
Fig. 1 are the same, but the manufacturing difficulty of them may be
different. Experimentalists can choose the easier-to-implement one.
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FIG. 7. (a) shows the single-terminal conductance (solid blue
curve) detected by the L2 lead and the fitting conductance (dashed
green curve) using Eq. (B3) as a function of the bias voltage. (b) is a
zoomed view of the simulated conductance peak in (a). The T leg
is connected at xT = 0.42 μm from the left of the nanowire with
tc = 0.83t0

c . μs = 2.5 meV. The other parameters are the same as
that of Fig. 5. (c) and (d) are schematics of a single-terminal tun-
neling process to detect Majorana. The electron and the hole channel
in the lead have been divided into two virtual leads. As shown in (d),
there are two paths from the “electron lead” to the “hole lead” which
have interference with each other. In our case, the tunnelings between
the lead and the two Majoranas have a π/2 phase difference (t1 and
it2 where t1 and t2 are real). Then the accumulated phases of the two
paths have a phase difference π as shown in (b) and, therefore, the
interference of the two paths is in the most destructive case.

channels in each lead are equivalent (with the same coupling
strength to each Majorana). The other complicated cases are
beyond the scope of this paper, and it may be worthwhile to
be studied elsewhere.

APPENDIX B: EVALUATING THE HYBRIDIZATION
PARAMETERS FROM THE TUNNELING CONDUCTANCE

Here we will show the details about how we evaluate the
Majorana-lead and Majorana-Majorana hybridization param-
eters when leads are attached to our device. As mentioned in
the main text, the hybridization factors �12, �22, and ε12 are
most influential and are simultaneously disturbed by the at-
tached semiconductor. To evaluate these coupling parameters,
we ground the nanowire, attach a normal metallic L2 lead,
and numerically compute the single-terminal tunneling con-
ductance. Those parameters can then be extracted from those
numerical results. Here, we assume that those hybridization
couplings are the same even if we add a finite charging energy
when considering a floating nanowire island. If the nanowire
is sufficiently long, the hybridizations between the left QMMs
γ1,2 and the right QMMs γ3,4 can be neglected. Under the
Majorana basis, the effective Hamiltonian of two Majoranas
on the left with finite hybridization ε12 is

HM
eff =

(
0 iε12

−iε12 0

)
, (B1)

with the L2 lead attached to the end of the T leg, the effective
coupling matrix between the lead and γ1, γ2 can be written as

W = (
τ12 −τ ∗

12
τ22 −τ ∗

22
), where τ12, τ22 are the effective couplings

FIG. 8. The wave functions and the spin densities of the two
QMMs γ1 and γ2. The ranges of the y axis of (a) and (b) are the
same which shows that the spin is mainly in the ±x direction.

between L2 lead and γ1,2, and the two columns of the matrix
W represent the electron part and the hole part of the L2 lead,
respectively. With the Mahaux-Weidenmüller formula we can
obtain the scattering matrix of the junction between the device
and the L2 lead,

S(ω) = 1 − 2π iW †(ω − HM
eff + iπWW †)−1

W. (B2)

Then the single-terminal tunneling conductance in the L2

lead when applying a bias voltage V (V < �0) is G(V ) =
2e2

h Tr S†
he (eV)She (eV). Using Eq. (B2), we can obtain the

conductance,

G(V ) = 2e2

h

(�12 − �22)2 (eV)2

[
(eV)2 − ε2

12 − �12�22
]2 + (�12 + �22)2 (eV)2

,

(B3)

where �i j = 2π |τi j |2 and τ12 and τ22 have a phase difference
π/2. If the lead couples only one Majorana (L2 couples γ2

in our case), the resonant Andreev reflection will result in a
Lorentz-shaped conductance peak with maximum 2e2/h as a
function of bias voltage [25]. However, if another Majorana
(γ1) participates in the transport through the hybridization ε12

with γ2 or the hybridization �21 with lead L2 will cause a
splitting of the one Majorana peak. ε12 will couple γ1 and γ2

and move the energy of the state formed by them to ±ε12,
and the resonant peak will be split. �21 will bring in another
transport path through γ1 which has a destructive interference
with the path through γ2 which can be seen in the virtual
two-leads picture shown in Fig. 7(d). This process will also
suppress the conductance and cause a dip at zero bias. The
overall impact is included in Eq. (B3). Here Eq. (B3) is used
to fit the result obtained from simulation of the tight-binding
model given in Appendix A. As shown in Fig. 7(a), the blue
curve in Fig. 7(a) is obtained from the KWANTsimulation [86],
and the dashed green curve is fitted by Eq. (B3). The zoom
view of the conductance peak shows that there is also a narrow
split peak, which is contributed by the two QMMs on the
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FIG. 9. The variations of hybridization parameters �22, �12, and
ε12 as a function of xT , μ, and VZ.

other side of the nanowire. Nevertheless, their couplings to
this lead are too weak, and we can neglect their influence. In
Sec. (III E) of the main text, we assume that the nanowire is
long enough, and we only consider the Majorana-Majorana
and Majorana-lead hybridizations at the same end. The pa-
rameters used in Figs. 4(d)–4(f) are the same as that of
Fig. 7.

APPENDIX C: WAVE FUNCTIONS AND SPIN DENSITIES
OF QMMs

By changing the location x of the connection point of the L2

lead, we can obtain a series of hybridization parameters with

Eq. (B3) as shown in Fig. 4(d) of the main text. The spatial
variations of �22 and �12 are related to the spatial distributions
of the wave functions and spin densities of γ1 and γ2. Given
the spinor representation of the particle-hole symmetric quasi-
Majorana wave function χα (i) = (ũαi↑, ũαi↓, ũ∗

αi↓,−ũ∗
αi↑)T ,

the spin density of γα for different directions is obtained
from the formula 〈σν〉α (i) = ∑

s,s′ u∗
αis[σν]ss′uαis′ . The ampli-

tude of the wave functions and spin densities of γ1 and γ2

as a function of the position x in the same range of the
connection point variation xT of Fig. 4(d) is shown in Fig. 8.
We can see that the two QMMs have opposite spin directions
when projecting onto the σx eigenbasis. The two QMMs also
have nonzero 〈σz〉α which is much smaller than 〈σx〉α . The
small 〈σz〉α will result in a small asymmetry of the value of
(TK − Th)/Th around ϕ = 0 shown in Fig. 4(b) of the main
text.

With a fixed connection point xT between the L2 lead and
the nanowire, the wave functions of QMMs can be shifted hor-
izontally by changing the chemical potential of the nanowire
μ or the Zeeman field VZ; therefore, the hybridization can
be tuned by changing μ and VZ as well. A comparison of
the hybridization couplings �22, �12 and ε12 for changing the
control parameters xT , μ,VZ is shown in Fig. 9. Therefore, in a
practical situation with a fixed xT , the values of hybridization
parameters can be tuned by changing the chemical potential
or the magnetic field.
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