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The real part of optical conductivity Reσ (ω) of the Mott insulators has a large amount of information on
how spin and charge degrees of freedom interact with each other. By using the time-dependent density-matrix
renormalization group, we study Reσ (ω) of the two-dimensional Hubbard model on a square lattice at half
filling. We find an excitonic peak at the Mott-gap edge of Reσ (ω) not only for the two-dimensional square
lattice but also for two- and four-leg ladders. For the square lattice, however, we do not clearly find a gap
between an excitonic peak and continuum band, which indicates that a bound state is not well defined. The
emergence of an excitonic peak in Reσ (ω) implies the formation of a spin polaron. Examining the dependence
of Reσ (ω) on the on-site Coulomb interaction and next-nearest-neighbor hoppings, we confirm that an excitonic
peak is generated from a magnetic effect. Electron scattering due to an electron-phonon interaction is expected
to easily suppress an excitonic peak since spectral width of an excitonic peak is very narrow. Introducing a large
broadening in Reσ (ω) by modeling the electron-phonon coupling present in La2CuO4 and Nd2CuO4, we obtain
Reσ (ω) comparable with experiments.

DOI: 10.1103/PhysRevB.104.205123

I. INTRODUCTION

The complexity of the relationship between spin and
charge degrees of freedom is the source of rich physical
properties in the Mott insulators. A great deal of research
has been done to understand the relationship since it holds
the key to understanding the mechanism of high-temperature
superconductivity. The most fundamental phenomenon for
understanding this issue is the separation of spin and charge
degrees of freedom, which is strictly valid in the strong cou-
pling limit [1] of the one-dimensional Hubbard model [2]. It
has been suggested that a spin-charge separation holds well
even for a finite but strong coupling regime, and the optical
response of the one-dimensional Hubbard model is also well
characterized by a spin-charge separation even in the presence
of photo-induced carriers [3,4]. Since spin and charge degrees
of freedom are no longer separated in the two-dimensional
Hubbard model on a square lattice, the dynamics of charge de-
grees of freedom generates string-type excitations associated
with the disordered spin degrees of freedom. Such changes in
the relationship between spin and charge degrees of freedom
due to dimensionality can be well captured in the shape of an
optical spectrum.

The real part of optical conductivity Reσ (ω) of insulat-
ing cuprates such as La2CuO4, Nd2CuO4, and YBa2Cu3O6

exhibits a gap of around 2eV, above which a continuum
band is present [5,6]. Reσ (ω) contains a great amount
of information about the electronic states of a material,
but a quantitative comparison with theoretical analysis is
necessary for extracting the information. Theoretically, the
electronic states of the cuprates are known to be well de-
scribed by the single-band Hubbard model with a large

on-site Coulomb interaction on a square lattice in two
dimensions.

Numerous theoretical works have been done to understand
the optical properties of the two-dimensional Hubbard model
[8–13]. Among them, a numerical diagonalization technique
based on the Lanczos algorithms has been intensively used to
obtain Reσ (ω) [8–10]. Reσ (ω) calculated in small clusters
shows an excitonic peak at the Mott gap in addition to a
continuum above the peak. Reσ (ω) obtained with dynamical
mean-field theory has also captured an excitonic peak [11]. An
excitonic peak seen in a one-dimensional system is attributed
to the long-range Coulomb interactions [14–18], whereas that
seen in a two-dimensional system is thought to be of a mag-
netic origin. The emergence of an excitonic peak in Reσ (ω)
implies the formation of coherent but heavy quasiparticles
dressed by a spinon cloud, i.e., a spin polaron in the ground
state of the two-dimensional Hubbard model [9,11]. Sz strings
produced by spin mismatches in sublattice magnetization play
an important role in the formation of spin polarons. Since the
relationship between spin and charge degrees of freedom in
the Mott insulator is very complicated, we must be careful
when introducing approximations. It is necessary to go be-
yond static mean-field approximation of a spin-density wave
to describe spin-polaron formation [11]. It has been suggested
that a phase string effect, which is missed in the self-consistent
Born approximation, is important for understanding spectral
weights emerging at mid infrared upon introducing a hole
[19]. With the self-consistent Born approximation, the optical
conductivity can be calculated for much larger systems than
with the Lanczos method. However, this approximation may
lose fine structures of an optical conductivity [12]. Optical
conductivities have been also obtained using the quantum
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Monte Carlo method [13], but fine structures are difficult to
discuss due to finite temperatures.

In this paper, we study the optical conductivity of the two-
dimensional Hubbard model on a square lattice at half filling
by using the time-dependent density-matrix renormalization
group (tDMRG). A previous study using the Lanczos method
up to 20 sites results in discrete spectral weights since the
number of states that can be excited by dipole transitions is
insufficient due to the finite-size effect [9]. The present study
using 6×6 clusters, provides the optical conductivity with
dense spectral weights, which is quantitatively comparable
to experiments. Studying cluster-dependence of the optical
conductivity, we find that Reσ (ω) has roughly three peaks
in a strong coupling regime. One of them appears to be an
excitonic peak at the Mott gap with a narrow spectral width.
We note here that the excitonic peak cannot be well separated
from a continuum band, which indicates that an excitonic
bound state is not well established. Nevertheless, we clearly
find a sharp peak characterized by a delta function at the
Mott-gap edge even for large on-site Coulomb interactions.
In this paper, we refer to the singularly sharp peak as an
excitonic peak in a broad sense, which does not accompany
a well-formed bound state. The presence of an excitonic peak
has been long debated, but we conclude that a sharp peak is
indeed present, but continuously connected to a continuum
band based on our calculations.

This excitonic peak becomes larger when the on-site
Coulomb interaction reduces, i.e., the antiferromagnetic-
exchange interaction increases. An excitonic peak is sup-
pressed when next-nearest-neighbor hoppings giving rise to
spin frustration are introduced. These properties suggest that
an excitonic peak is generated from a magnetic effect. Elec-
tron scattering due to an electron-phonon interaction may
suppress the peak, which indicates that an excitonic peak has
been difficult to observe in real materials. However, carefully
comparing latest experiments and our theory, we find that
a structure associated with the formation of an exciton is
indeed present in the optical conductivities of La2CuO4 and
Nd2CuO4.

This paper is organized as follows. We introduce the Hub-
bard model and tDMRG to calculate the optical conductivity
in Sec. II. In Sec. III, we show Reσ (ω) obtained with tDMRG
for several clusters. Examining the effect of on-site Coulomb
interactions and next-nearest-neighbor (NNN) hoppings, we
microscopically understand the shape of an optical spectrum.
Introducing a large broadening in Reσ (ω) that models an
electron-phonon coupling present in La2CuO4 and Nd2CuO4,
we show Reσ (ω) to be comparable with experiments. Finally,
we give a summary of the present work in Sec. IV. Note that
in this paper, we set the light velocity c, the elementary charge
e, the Dirac constant h̄, and the lattice constant to 1.

II. MODEL AND METHOD

We study the optical conductivity of the Mott insulator
whose Hamiltonian given by the Hubbard model is repre-
sented as

H = − th
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) + U
∑

i

ni,↑ni,↓, (1)

FIG. 1. An example of cluster investigated in the present article.
A cluster with (Lx, Ly ) = (6, 6) is shown. We use a lattice with Lx

sites along the x axis and Ly sites along the y axis.

where c†
iσ is the creation operator of an electron with spin

σ at site i, ni,σ = c†
i,σ ci,σ , and ni = ∑

σ ni,σ . The summation
〈i, j〉 runs over pairs of nearest-neighbor (NN) sites. th and
U are the NN hopping and the on-site Coulomb interaction,
respectively. We take th to be the unit of energy (th = 1).

Since the optical conductivity is a linear response of an
electric current to an external spatially homogeneous elec-
tric field, we calculate the time-evolution of electric current
jc(t ) ≡ −〈 ∂H

∂A(t ) 〉 after applying an electric field whose vector
potential is written as A(t ). An electric field applied along
x direction can be incorporated via the Peierls substitution in
the hopping terms as c†

i,σ c j,σ → eiA(t )·Ri j c†
i,σ c j,σ with A(t ) =

(Ax(t ), 0) and Ax(t ) = A0e−(t−t0 )2/(2t2
d ) cos[�(t − t0)]. Here,

we set Ri j = Ri − R j . We obtain the optical conductivity
σ (ω) = jc

x (ω)/[i(ω + iη)LAx(ω)], where Ax(ω) and jc
x (ω)

are the Fourier transforms of Ax(t ) and the current along the
x direction, respectively. We use a cluster with Lx and Ly sites
along the x and y axis, which are defined as shown in Fig. 1. L
is the total number of sites given by L = Lx×Ly. Unless oth-
erwise noted, we map a two-dimensional system with Lx×Ly

cluster onto a one-dimensional system using tilted-z mapping
as suggested in Refs. [20–22] in the DMRG sweeping process,
since the ground state readily converges to a state with a
uniform charge distribution. This mapping runs the sites as
(1, Ly), (2, Ly), (1, Ly − 1), (3, Ly), (2, Ly − 1), (1, Ly − 2),
(4, Ly), · · · , and repeats this pattern until we reach the site
(Lx, 1).

The parameters of the vector potential are A0 = 0.001,
td = 0.02, � = 10, and t0 = 1. The time-dependent wave
function is obtained by the tDMRG [4,19]. We employ open
boundary conditions and keep 4500 to 6000 density-matrix
eigenstates for the tDMRG method. See Appendix A for
technical details on numerical calculation with tDMRG in
the present paper. Since we focus on the linear response
regime by taking small A0, we can obtain time-dependent
wave functions using tDMRG with high accuracy comparable
with obtaining ground-state wave functions.
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III. RESULTS AND DISCUSSIONS

A. Optical conductivity for a two-leg ladder

We show in Fig. 2 the cluster-dependence of Reσ (ω).
Figures 2(a), 2(b), and 2(c) are for (Lx, Ly) = (32, 2), (8,4),
and (6,6), respectively. Truncation errors to obtain ground
states with U = 10 are 3×10−13, 5×10−8, and 2×10−5 for
(Lx, Ly) = (32, 2), (8,4), and (6,6), respectively. We start our
discussion with Reσ (ω) of the two-leg Hubbard ladder at

half filling, which has been investigated in a weakly coupled
region [23,24]. The renormalization-group transformation
scales the two-leg Hubbard ladder at half filling towards the
SO(8) Gross-Neveu (GN) model. The ground state of the half-
filled Hubbard ladder called D-Mott state has been believed
to partially share the same low-energy physics as that of the
SO(8) GN model. Reσ (ω) of the SO(8) GN model for ω < 3m
is exactly obtained by expanding a current-current correlation
into the sum of one- and two-particle form factors as [24]

Reσ (ω) ∝ 1

m2

2
√

π�(1/6)

9
√

3�(2/3)
exp

[
−2

∫ ∞

0
dx

G(x) sinh2(x/3)

x sinh(x)

]

× δ(ω −
√

3m)

+ 12m2 exp

{∫ ∞

0
dx

G(x)[1 − cosh(x) cos {xθ (ω)}]
x sinh(x)

}

×
√

ω2 − 4m2

ω2(ω2 − 3m2)2
θ (ω2 − 4m2), (2)

where θ (ω) = 1
π

cosh−1( ω2−2m2

2m2 ) and G(x) =
2 cosh(x/6)−sinh(x/6)e−2x/3

cosh(x/2) . Here, m is a fermion mass in the
GN model. One-particle contribution to Reσ (ω) leads to an
excitonic peak at ω = ωex = √

3m, which is schematically
drawn in Fig. 3 with a label A. Two-particle contribution
leads to a continuum due to unbound particle and hole for
ω � ωc = 2m, which is schematically drawn in Fig. 3 with a
label B. Although multiparticle form factors more than two
particles contribute to Re(σ ) for ω > 3m, their contribution is
small. At ω = ωl = 3m, a three-particle process contributes
to Reσ (ω) but is no longer exactly obtained. If the matrix
element of three-particle form factor does not vanish at
ω = ωl, Reσ (ω) shows jump or divergence at ω = ωl. Since
a three-particle contribution is strictly a consequence of
interactions, we call a spectral weight possibly present at
ω = ωl as “interaction peak”, which is schematically drawn
in Fig. 3 with a label C. It should be noted that the SO(8)
GN model is only an effective model at weak coupling with
symmetry higher than that of the half-filled Hubbard ladder,
but it does provide information on the optical conductivity of
the half-filled Hubbard ladder at three characteristic energies
ωex, ωc, and ωl, which satisfy

(
ωc

ωex
,

ωl

ωex

)
=

(
2√
3
,

3√
3

)
. (3)

It is a strongly coupled region that we focus on in the
present paper. In the case of strong coupling, the weak cou-
pling theory is no longer valid, but we find that the optical
conductivity has a structure at three characteristic energies
similar to that proposed by the weak coupling theory. We
find in Fig. 2(a) an excitonic peak at ωex = 6.7, a peak at
ωc = 7.9 where a continuum begins, and an interaction peak
at ωl = 12, which approximately follows Eq. (3) leading to
ωc = 2√

3
ωex � 7.7 and ωl = 3√

3
ωex � 12. We consider that a

small bump found at ω = 6.5 is due to the finite size effect.

It seems not so surprising that the optical conductivity in
the strong-coupling regime also shows the behavior expected
from the weak-coupling theory. The behavior of correlation
functions suggests that the weak-coupling theory can describe
low-energy physics even in the strong-coupling regime. In
fact, the decay of spin-density wave, charge-density wave, and
pair correlation functions is known to be well described by
weak-coupling theory [25,26].

It is unclear at what energy a continuum begins. If the size
of system is small, the number of states that can be excited
with dipole transition from a given ground state is small. Then,
an excitonic peak and a continuum seem to be separated,
which leads to a well-defined excitonic bound state. As Lx

increases, the number of spectral weights increases around
an excitonic peak as well as in a continuum band, obscuring
the formation of a bound state. However, we consider that an
excitonic peak remains in the thermodynamic limit since we
find a definite dip between an excitonic peak and continuum
up to Lx = 32.

Here, we make a comment on an interaction peak at
ω = ωl. If we denote the hopping in the x and y axes as tx
and ty, respectively, ty corresponds to hopping between two
chains. When ty = 0, we obtain the one-dimensional Hubbard
model. In this case, there is no structure in Reσ (ω) except for
ω � U , and only a continuous band exists. A peak at ω � U
corresponds to a bound state made of dispersionless charge
excitations and can be seen as a localized exciton [15–17].
The finite spectral weight carried by the localized exciton
originates from a dimer-dimer correlation present in a ground
state. The ground state of the Heisenberg model, which is an
effective spin model for the half-filled Hubbard model in the
strong-coupling limit, has relevant dimer-dimer correlations,
and a localized exciton carries a finite optical weight. An inter-
action peak at ω = ωl seen in the two-leg ladder is considered
to have the same origin. As ty increases from 0, the spectral
weight of an interaction peak increases. As ty further increases
and approaches ty = 2, where the bonding and anti-bonding
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FIG. 2. Reσ (ω) of the half-filled Hubbard model with U =
10. A broadening factor η = 0.2 is taken. (a) (Lx, Ly ) = (32, 2),
(b) (Lx, Ly ) = (8, 4), and (c) (Lx, Ly ) = (6, 6).

A

B
C

FIG. 3. Schematic picture of Reσ (ω) of the two-leg Hubbard
model based on the analysis of the SO(8) GN model. A blue peak
labeled by “A” is an excitonic peak represented by the Delta function.
A green structure labeled by “B” is a continuum. A orange peak
labeled by “C” indicates an interaction peak.

bands represented as ε±(kx ) = −[2tx cos(kx ) ± ty] in the Hub-
bard ladder are separated, the weight of the interaction peak
becomes very large. Here, kx is a wave number defined in the
x axis. Dimers are formed at each rung of a ladder for ty �= 0,
and a charge excitation localized at each rung contributes to
the interaction peak of the optical conductivity. In addition,
the ratio of the spectral weight of the interaction peak to total
spectral weights increases as U increases. This is because a
ground state with relevant dimer-dimer correlation is well de-
scribed by the Heisenberg model in a strong coupling region.

B. Optical conductivity for two-dimensional systems

With increasing Ly, a system approaches a two-
dimensional system from a ladder system. We show in
Fig. 2(b) Reσ (ω) for (Lx, Ly) = (8, 4). We find that the shape
of Reσ (ω) for the four-leg Hubbard ladder is similar to that
for the two-leg Hubbard ladder in the sense that there are three
characteristic peaks above the Mott gap. The three peaks are
at ω = 6.6, 8.3, and 12, which may be interpreted as ωex, ωc,
and ωl, respectively, by analogy with the case of a two-leg
ladder. For a two-dimensional system with (Lx, Ly) = (6, 6),
we find qualitatively the same behavior as for the two- and
four-leg Hubbard ladders: Three peaks at ω = 7, 9, and 12.
If we drew an analogy from a two-leg ladder, the three peaks
would tempt us to assign them to ωex, ωc, and ωl. However, for
Ly = 4 and 6, ωex, ωc, and ωl no longer follow Eq. (3). Three
characteristic peaks in the two-dimensional Hubbard model
have also been found in Reσ (ω) for (Lx, Ly) = (48, 48) ob-
tained with the self-consistent Born approximation although
the peak structures are not so clear [12].

We find an excitonic peak even for (Lx, Ly) = (6, 6), and
thus we conclude that an excitonic peak is present in Reσ (ω)
of the two-dimensional Hubbard model on a square lattice. We
consider that an antiferromagnetic-exchange interaction in a
two-dimensional system contributes to forming an excitonic
peak in Reσ (ω). However, an excitonic peak is not clearly
separated from a continuum band. Integrating these findings,
we conclude that a distinct sharp peak emerges at the Mott-gap
edge in a strong coupling regime even though an excitonic
bound state is not well established. We refer to the sharp
peak as an excitonic peak in a broad sense. The long-range
Coulomb interaction, which is ignored in the present analysis,
can also contribute to an excitonic peak in Reσ (ω). We find
that an excitonic peak is enhanced by introducing the NN
Coulomb interaction as discussed in Appendix B.

We comment here on the cluster geometry that we use in
our calculations. Since our study is based on finite systems,
electronic properties depend on cluster geometries. For this
reason, it is often useful to compute physical quantities in
several kinds of clusters [10]. In the present paper, however,
we focus on a 6×6 cluster as a two-dimensional system be-
cause this cluster is special in the sense that it is the most
appropriate choice at the moment to construct a symmetric
square lattice with accuracy in tDMRG. Furthermore, the 6×6
cluster also plays a key role in investigating the ground state of
the Hubbard model in the thermodynamic limit by the Monte
Carlo and other sophisticated methods [27].

As Ly increases, spectral weight increases to fill in the
gaps among the three peaks. As a result, the structure of
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the spectrum above the excitonic peak is flattened. Reσ (ω)
obtained by the self-consistent Born approximation does not
clearly show an excitonic peak. The system size studied in
Ref. [12] is much larger than the present work. However, the
use of the self-consistent Born approximation misses impor-
tant information on the ground state of the Mott insulator such
as phase strings [28]. We consider that our results, which are
obtained using as large a size as possible for a nonperturbative
calculation, shed light on an intricate relationship between
spin and charge degrees of freedom in two-dimensional Mott
insulators. It is interesting to confirm our findings in larger
systems, which leaves for future research.

The emergence of an excitonic peak in Reσ (ω) implies the
formation of a spin polaron in the ground state of the two-
dimensional Hubbard model [9,11]. Sz strings produced by
spin mismatches in sublattice magnetization play an important
role in the formation of spin polarons [19]. Sz strings are
not repairable in infinite dimensions, since quantum spin-flip
processes are absent, i.e., the Heisenberg interaction reduces
to the Ising one [29–31]. However, Sz strings are relaxed
in finite-dimensional systems since the lifetime of string ex-
citations is finite. This indicates that the emergence of an
excitonic peak is nontrivial in two-dimensional systems. Our
results showing the emergence of an excitonic peak in Reσ (ω)
indicates that Sz strings present in the two-dimensional Hub-
bard model plays a significant role in forming an excitonic
peak. We note here that the size of a spin polaron may be
as large as or larger than that of clusters we use, since an
excitonic peak is not well separated from a continuum band.

According to the renormalization group approach from
weak coupling [32–34], it has been proposed that when the
N-leg Hubbard ladder goes to a two-dimensional system by
letting N to be large, the gapped charge degrees of freedom
decouple from the gapless spin degrees of freedom and are
simply described by the sine-Gordon model. As a result,
the ground state of the two-dimensional Hubbard model is
characterized by the Fermi surface with a perfect nesting,
where the Mott gap simultaneously opens. Gapless magnons
do not contribute to the formation of an excitonic peak in
Reσ (ω), leading to only a continuum band above the Mott
gap [35]. However, our calculations suggest that this scenario
does not hold in a strongly coupled regime. The ground
state of the two-dimensional Hubbard model with a large
interaction shows an excitonic peak in Reσ (ω) characterized
as a singularly sharp peak that continuously connects to a
continuum band. We consider that the difference between
weakly and strongly coupled antiferromagnetic states is man-
ifested as the difference in the absence and presence of an
excitonic peak in Reσ (ω), respectively. In a strong-coupling
region, a superexchange interaction J ∼ 4t2

h /U drives the an-
tiferromagnetic ordering of local magnetic moments, whereas
antiferromagnetism in a weak coupling region is caused by
the nesting of the Fermi surface. Strongly and weakly coupled
antiferromagnetic states cross over continuously, but there are
unambiguous distinctions between them [11]. Therefore, we
consider that an excitonic peak emerges in Reσ (ω) if a ground
state is an antiferromagnetic state driven by a superexchange
interaction.

In Fig. 4, we show U dependence of Reσ (ω) for the two-
dimensional Hubbard model with (Lx, Ly) = (6, 6). We find

FIG. 4. U dependence of Reσ (ω) of the Hubbard model. A clus-
ter of (Lx, Ly ) = (6, 6) is used. We take a broadening factor η = 0.2.
Reσ (ω) for U = 7, 10, and 15 are shown in red, black, and blue lines,
respectively.

the formation of an excitonic peak at the edge of the Mott
gap for U � 7, which corresponds to intermediate and strong
coupling regions considering the bandwidth W = 8. With in-
creasing U , the spectral weight of an excitonic peak decreases,
since the excitonic peak has a magnetic origin organized by
the superexchange interaction J . Even for U = 15, we find
an excitonic peak at the Mott gap, which indicates that a spin
polaron may contribute to the formation of an excitonic peak
even when J is small.

We show in Fig. 5 the NNN-hopping-dependence of
Reσ (ω) for the two-dimensional Mott insulator with
(Lx, Ly) = (6, 6). The Hamiltonian with a NNN hopping t ′

h is
represented as

H′ = H − t ′
h

∑
〈〈i, j〉〉,σ

(c†
i,σ c j,σ + H.c.). (4)

The summation 〈〈i, j〉〉 runs over pairs of NNN sites. Re-
sults for t ′

h = ±0.25 are obtained combining tDMRG with
a linear prediction method, which has been used to inter-
polate spectral function when we perform a discrete Fourier

FIG. 5. t ′
h dependence of Reσ (ω) of the Hubbard model with a

NNN hopping (4) for U = 10. A cluster of (Lx, Ly ) = (6, 6) is used.
We take a broadening factor η = 0.2. Reσ (ω) for t ′

h = 0, −0.25, and
0.25 are shown in black, red, and green lines, respectively.
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(a)

(b)

FIG. 6. Comparison of Reσ (ω) between theory and experiment
for La2CuO4. (a) Black line is Reσ (ω) obtained by tDMRG for
the Hubbard model with U = 10. A cluster of (Lx, Ly ) = (6, 6) and
η = 0.8 is used. Red points show Reσex(ω) obtained from Ref. [5].
(b) Same as (a), but red points are obtained from Ref. [7]. Reσ (ω) is
rescaled.

transformation [36]. To perform tDMRG for th �= 0, we con-
struct a snakelike one-dimensional chain, which runs from the
site (1,1) to (1, Ly), then from (2, Ly) to (2,1), and repeats this
pattern until we reach the site (Lx, 1). By introducing t ′

h, an
excitonic peak at ω = 7 is suppressed. This is because spin
frustration suppresses the formation of an exciton. We also
find the suppression of a peak at ω = 9 for t ′

h = ±0.25. If t ′
h is

introduced as t ′
h = ±0.25, spectral weights are redistributed,

and the peaks at ω = 7 and 9 are seamlessly connected. As a
result, the spectrum has two characteristic peaks: An interac-
tion peak at ω = 12 and a nonexcitonic but broad peak at the
edge of the Mott gap.

C. Comparison with experiments

Figures 6 and 7 show Reσ (ω) obtained by using tDMRG
with experimental ones. In Fig. 6, we compare optical con-
ductivities Reσex(ω) of La2CuO4 reported in Refs. [5,7]
with Reσ (ω) of the Hubbard model for U = 10. The
value of U = 10 for La2CuO4 is consistent with U =
10.4 estimated by an ab init io study [37]. Putting the-
oretical and experimental optical conductivities together
at [ω, Reσex(ω)] = (2.1eV, 0.85×103�−1cm−1) in Fig. 6(a)
and (2.2eV, 0.57×103�−1cm−1) in Fig. 6(b), our theoreti-
cal result shows in good agreement with the experiments of
La2CuO4. The best agreement with the experiments is ob-
tained when we take th = 0.26eV. We use a larger broadening
factor η = 0.8 in Fig. 6 as compared with that used in previous
figures. Since the spectral width of an excitonic peak is very
narrow [see Fig. 2(c)], the excitonic peak is suppressed if
we introduce a large broadening factor. Since the resulting
theoretical spectral shape in Fig. 6(a) is broad and flattened

(a)

(b)

FIG. 7. Comparison of Reσ (ω) between theory and experiment
for Nd2CuO4. (a) Black line is Reσ (ω) obtained by tDMRG for
the Hubbard model with U = 8. A cluster of (Lx, Ly ) = (6, 6) and
η = 0.7 is used. Red points show Reσex(ω) obtained from Ref. [5].
(b) Same as (a), but red points are obtained from Ref. [7]. Reσ (ω) is
rescaled.

above the Mott gap for U = 10, our theoretical calculation
yields a spectrum that agrees well with an experimental one,
which shows a flattened structure above the Mott gap.

Figure 6 shows that Reσex(ω) obtained by a latest ex-
periment [7] [see red points in Fig. 6(b)] agrees better with
Reσ (ω) obtained by tDMRG than Reσex(ω) previously re-
ported in Ref. [5] [see red points in Fig. 6(a)]. It has been
long debated as to the origin of the spectral weights that
have finite values at 1eV < ω < 1.8eV in Fig. 6(a). In this
region, Reσex(ω) obtained in Ref. [5] does not agree with
Reσ (ω) obtained by tDMRG. However, these spectral weights
are suppressed in Fig. 6(b), giving rise to a good agreement
of Reσex(ω) with Reσ (ω). In addition, we find that tDMRG
can reproduce the features of peaks of Reσex(ω) in Fig. 6(b)
above the Mott gap: Both Reσex(ω) and Reσ (ω) show peaks
at ω = 2.2eV, 2.7eV, and 3.3eV. We consider that a peak at
ω = 2.2eV is due to the formation of an exciton that has a
magnetic origin. One of the most striking advances in Ref. [7]
compared to Ref. [5] is that this excitonic peak is now visible.

If the system were purely electronic, it would not be dif-
ficult to observe an excitonic peak at the Mott gap regardless
of a very narrow structure. In reality, however, the presence of
an electron-phonon interaction is not negligible. The highest
energies of the phonon dispersion curves are 74 meV [38,39]
and 83 meV [39] for Nd2CuO4 and La2CuO4, respectively.
There is a finite electron-phonon interaction in real materi-
als, which is ignored in our theory. As the effects of lattice
vibrations propagate to electrons through an electron-phonon
interaction, transitions between levels are scattered, and fine
structures of Reσ (ω) with the energy of phonon frequency are
smoothed out. Because of this, even though the spectral width
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of an excitonic peak we found is very narrow, such a sharp
peak has not been observed in La2CuO4 [5]. If we assume
for simplicity that all phonons have the same frequency ω0

as in the Einstein model, a single-particle spectrum shows
sidebands with an interval of ω0 around the level that ap-
pears when there is no electron-phonon interaction [40]. If an
electron-phonon interaction is large, higher-order sidebands
have large spectral weights. In such a case, levels can be
smoothed out over energy several times larger than a phonon
frequency, and large broadening factors introduced in Fig. 6
make sense. Figure 6(b) shows that an excitonic peak, which
was not visible in a previous experiment [5], can be captured
by the latest experiment [7] even in the presence of large
electron-phonon interactions.

As well as La2CuO4, we compare an optical conduc-
tivity Reσex(ω) of Nd2CuO4 reported in Refs. [5,7] with
Reσ (ω) of the Hubbard model for U = 8. Putting theo-
retical and experimental optical conductivities together at
[ω, Reσex(ω)] = (1.5eV, 1.4×103�−1cm−1) for Fig. 7(a) and
(1.6eV, 0.90×103�−1cm−1) for Fig. 7(b), our theoretical
result shows in good agreement with the experiments of
Nd2CuO4. The best agreement with the experiments is ob-
tained when we take th = 0.24eV. We use a large broadening
factor η = 0.7 in Fig. 7.

Figure 7 shows that Reσex(ω) obtained by a latest ex-
periment [7] [see red points in Fig. 7(b)] agrees better with
Reσ (ω) obtained by tDMRG than Reσex(ω) reported in
Ref. [5] [see red points in Fig. 7(a)]. We find that tDMRG
can reproduce the features of peaks and bumps of Reσex(ω)
in Fig. 7(b) above the Mott gap: Both Reσex(ω) and Reσ (ω)
show a peak at ω = 1.6eV and bump at 2.2eV. We consider
that a peak at ω = 1.6eV is due to the formation of an exciton
that has a magnetic origin. The reason why a peak at the
Mott-gap edge is observed more clearly in Nd2CuO4 than in
La2CuO4 is that an excitonic peak increases with decreasing
U . Since the excitonic peak becomes distinct when U is
smaller than 10 as shown in Fig. 4, Reσ (ω) for U = 8 is in
good agreement with experimental observations. The value of
U = 8 is reasonable since U is considered to be smaller in
Nd2CuO4 than in La2CuO4.

IV. SUMMARY AND OUTLOOK

We have investigated Reσ (ω) of the two-dimensional Hub-
bard model at half filling by using tDMRG. We have found
that an excitonic peak emerges at the Mott-gap edge in
Reσ (ω) for a two-leg ladder, four-leg ladder, and square
lattice. However, no dip between an excitonic peak and con-
tinuum has been found in the square lattice which indicates
that an excitonic peak may not accompany a definite bound
state. The emergence of an excitonic peak in Reσ (ω) implies
the formation of a spin polaron. Sz strings produced by spin
mismatches in sublattice magnetization in a photoexcited state
are relaxed in the two-dimensional Hubbard model. However,
we have found that Sz strings retain a capability to form a
spin polaron and excitonic peak in Reσ (ω). An excitonic peak
is suppressed by increasing the on-site Coulomb interaction,
i.e., decreasing a superexchange interaction. Nevertheless, an
excitonic peak remains clearly visible even if the on-site
Coulomb interaction is as large as U = 15. An excitonic peak

is suppressed when we introduce next-nearest-neighbor hop-
pings, which give rise to a spin frustration. These properties
suggest that an excitonic peak is generated from a magnetic
origin. Electron scattering due to an electron-phonon interac-
tion may easily suppress an excitonic peak, which indicates
that an excitonic peak has been difficult to observe in real ma-
terials. Taking into account the smoothing of Reσ (ω) due to
phonon vibration present in La2CuO4 and Nd2CuO4, we have
obtained Reσ (ω) comparable with experiments. The optical
conductivities obtained with tDMRG are in good agreement
with that observed in the latest experiment reported in Ref. [7].
We have identified the peak structure at the Mott-gap edge
as being associated with the formation of an exciton with a
magnetic origin. It is interesting to examine the origin of other
peaks and bumps of the optical conductivities, which remains
as future work.
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APPENDIX A: TIME-DEPENDENT DMRG

We briefly explain the tDMRG and technical details. The
dynamics of wave function |ψ (t )〉 of quantum systems is
described by the time-dependent Schrödinger equation, whose
solution is given by |ψ (t )〉 = U (t, 0)|ψ (0)〉, where |ψ (0)〉 is
the wave function at initial time t = 0. Here,

U (t, 0) = T̂ exp

[
−i

∫ t

0
dsH (s)

]
(A1)

is the time-evolution operator with the time-ordering opera-
tor T̂ and the time-dependent Hamiltonian H (t ). For small
time step dt , in practice dt = 0.02, we can approximate
U (t + dt, t ) � exp[−idtH (t )]. To obtain |ψ (t )〉 accurately,
we need to calculate U (t + dt, t ) as precise as possible. One
of the efficient approximations for U (t + dt, t ) is given by
using the Suzuki-Trotter decomposition [41]. However, this
approach is basically restricted to one-dimensional case. An-
other approach is the use of the kernel polynomial method to
approximate U (t + dt, t ) as follows [42]:

U (t + dt, t ) =
∞∑

l=0

(−i)l (2l + 1) jl (dt )Pl (H (t ))

�
Mp∑
l=0

(−i)l (2l + 1) jl (dt )Pl (H (t )), (A2)
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where jl (s) is the spherical Bessel function of the first kind
and Pl (s) is the lth Legendre polynomial. They can be effec-
tively obtained by the recurrence relations

jl+1(x) = (2l + 1)x−1 jl (x) − jl−1(x) (A3)

with j0(x) = x−1 sin x and j1(x) = x−1[− cos x + x−1 sin x]
and

Pl+1(x) = 2l + 1

l + 1
xPl (x) − l

l + 1
Pl−1(x) (A4)

with P0(x) = 1 and P1(x) = x. The calculation of the tDMRG
in the present paper is performed by using the kernel poly-
nomial method with the truncation number Mp, practically
for Mp ≈ 10, which gives sufficiently converging result. Fur-
thermore, we use two target states |ψ (t )〉 and |ψ (t + dt )〉 in
the tDMRG procedure to effectively construct a basis that
can express wave functions in time-dependent Hilbert space.
With the two-target tDMRG procedure, we can calculate time-
dependent physical quantities with high accuracy even when
the Hamiltonian varies rapidly with time.

To obtain Reσ (ω) for the Hubbard model, we calculate
charge current up to time tmax = 30, which indicates that
energy resolution is 0.2. Thus, we can determine the structure
of peaks and dips of Reσ (ω) with η = 0.2, which is small
enough to distinguish peaks and dips discussed in the main
text. When we introduce t ′ and the nearest-neighbor Coulomb
interaction V discussed in Appendix B, we calculate charge
current up to tmax = 20 and combine the linear prediction
method. We have confirmed that the change in spectrum due
to the use of linear prediction is small and does not affect the
discussion in the main text, since an excitonic peak with very
narrow width is no longer present in Reσ (ω) for t ′ �= 0 and
V �= 0.

FIG. 8. Reσ (ω) of the half-filled extended Hubbard model (B1)
obtained with (Lx, Ly ) = (6, 6). Reσ (ω) with η = 0.2 for V = 0, 1,
and 2 are shown in black, red, and green lines, respectively.

APPENDIX B: OPTICAL CONDUCTIVITY
OF THE EXTENDED HUBBARD MODEL

We show in Fig. 8 that the optical conductivity Reσ (ω) of
the extended Hubbard model on a square lattice at half filling.
The Hamiltonian of the model is represented as

HV = H + V
∑
〈i, j〉

nin j, (B1)

where ni = ∑
σ ni,σ . V indicates the nearest-neighbor

Coulomb interaction. We introduce potentials V and 2V at the
edges and corners of the system, respectively, to reduce the
finite size effect. We find that an excitonic peak is enhanced
with increasing V . The peak positions of Reσ (ω) shift to
lower energies as V increases. This behavior is the same as
found in the one-dimensional extended Hubbard model [17].
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