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Proof for the electronic band crossing in sliding bilayer graphene
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Dirac points are found to emerge due to the crossing of bands in the electronic structure of so-called sliding
bilayer graphene. Group representation theory analysis corroborated with a tight-binding model for the pz

orbitals is employed to demonstrate that the band crossings of energy dispersion curves at generic k points
are guaranteed by the compatibility relations between the symmetries of eigenstates at the high-symmetry k
points in the Brillouin zone. The Lifshitz transition picture and the transport properties of the systems are shown
as consequences of the presence of Dirac points in governing the geometrical and topological properties of the
Fermi energy surfaces.
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I. INTRODUCTION

The shape and topological structure of the Fermi energy
surface are important features that govern the behavior of
a material’s electronic properties [1–4]. Both depend on the
geometries of the energy surfaces and the crossings between
them. Recently, the topic of band crossings has been exten-
sively revisited in the context of topological characterization
of the electronic structure of semimetals [5–10]. It is well
established that if nonsymmorphic symmetries are present in a
crystalline lattice, they will enforce the crossing of electronic
bands [11–14]. Dirac and/or Weyl points are formed and they
are globally stable [5–10]. The band crossing can also occur
at generic k points in the Brillouin zone and is independent
of the symmetry properties of the system, including the lattice
symmetries and the reality of the Hamiltonian. This case is
called accidental band crossings that were first discussed by
Herring in 1937 [15]. In this case, Dirac points are formed
and protected by space-time inversion [14,16,17]. Studying
of the band crossings therefore requires not only quantitative
calculations of the electronic structure, but also qualitative
symmetry analysis to validate the viability of the data-driven
predictions.

Dirac points are special points in the electronic structure
of a material. They are nonsmooth local extremal points
of energy surfaces. Their appearance usually induces saddle
points. These points essentially define topological features of
energy surfaces. Dirac points may be present “accidentally”
by Herring’s means, but they are shown to be topologically
protected by spatial and time symmetries [18]. Graphene is a
typical two-dimensional material showing all such features of
Dirac points. The primitive hexagonal lattice of graphene does
not possess any nonsymmorphic symmetries, but Dirac points
emerge from the touching of the lowest conduction energy
surface and the highest valence one at the six corner (K) points
of the Brillouin zone [19,20]. Thus, the Fermi energy surface
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simply takes the form of points. The Dirac points, though sta-
ble under perturbations that do not break either time-reversal
or spatial-inversion symmetries, may annihilate each other
if the threefold rotation is broken [18–20]. Similarly to the
graphene monolayer, AB-stacked bilayer graphene also pos-
sesses the Fermi energy surface composed of points. However,
the dispersion in the vicinity of these points is characterized
by the parabolic law, instead of the linear law [21,22]. Unlike
AB-stacked bilayer graphene, AA-stacked graphene has circles
surrounding each K point in its Fermi energy surface. This
is the result of the upward and downward shift in the energy
surfaces for the two graphene layers due to the interlayer cou-
pling under the mirror symmetry around the lattice plane (see
Sec. III C). The bilayer graphene configurations with a twist
angle (TBG configurations) can also have the same degree
of symmetry as that of the AA- or AB-stacked configurations,
depending on the value of the twist angle [23–27]. However,
band crossings in the TBG configurations become really com-
plicated due to the shrinking of the Brillouin zone and the
folding of the energy surfaces [22,28–30].

Besides these special bilayer graphene configurations,
there is another class in which the alignment between
the two graphene lattices preserves the parallelism of the
armchair/zigzag line between the two layers’ lines [31–34].
These structures are characterized by a sliding vector τ

and therefore are called the sliding bilayer graphene (SBG).
Though having the same translation symmetry as that of the
AA- and AB-stacked configurations, all rotation symmetries
with the vertical axes are broken, except for some twofold-
rotation axes in the lattice plane. This dramatic change in
the symmetry properties leads to a significant change in the
interlayer coupling, and thus the physical properties [35–41].
Electronic structure calculations for the SBG configurations
suggested the presence of Dirac points, but their existence has
not yet been rigorously proven, especially for their occurrence
at generic k points rather than at high-symmetry points in the
hexagonal first Brillouin zone. In this work, we employ group
representation theory to prove that the emergence of such
Dirac points is due to the crossing of energy dispersion curves.
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We also interpret in detail the band structure of the bilayer
graphene as the merging of the band structure of two graphene
layers. The interpretation is based on an analysis for the AA-
stacked configuration which has an Mxy mirror symmetry and
the chiral symmetry. To discuss consequences of the band
crossing we will show that the emergence of the Dirac points
influences the geometrical properties of the energy surfaces,
and thus the topological structure of the Fermi energy surface
as well as the overall energy spectrum and transport properties
of the SBG configurations.

The contents of the paper are organized as follows: We
first present in Sec. II A an analysis of the spatial symmetry
of all bilayer configurations. We then present in Sec. II B the
representation of the symmetry groups of special k points in a
Hilbert space spanned by 4N electronic states of the π bands
of the system. The compatibility relations are established and
presented. In Sec. III A, we present a tight-binding model for
the electronic structure of the bilayer systems. In Sec. III B
we present a proof for the crossing of energy dispersion
curves. The detailed analysis of the overall electronic band
structure of SBG configurations is presented in Sec. III C.
Typical consequences of the band structure, including the
Lifshitz transition and transport properties, are discussed in
Secs. III D and III E. Finally, the main results and conclusions
are summarized in Sec. IV.

II. LATTICE CONFIGURATIONS

A. Real-space symmetry

Let us consider a system of two flat graphene layers stacked
together with the interlayer distance dGG = 3.35 Å. We do
not consider the relative twisting between the two layers, but
only the sliding among them, which is characterized by a
sliding vector τ. Accordingly, when τ = 0 the SBG config-
uration corresponds to the AA-stacked configuration. Because
the sliding does not break the parallel property in the lattice
plane, the resulted complex atomic lattices always have the
same translation symmetry of the AA-stacked configuration
with the primitive cell defined by two basis vectors:

a1 = a

2
(
√

3x̂ + ŷ), a2 = a

2
(
√

3x̂ − ŷ), (1)

where a = √
3aCC is the lattice constant and aCC = 1.45 Å is

the distance between two nearest lattice sites; x̂ and ŷ denote
unit vectors in the Cartesian coordinate frame. The reciprocal
lattice is then built by the following two basis vectors:

b1 = 2π√
3a

(x̂ +
√

3ŷ), b2 = 2π√
3a

(x̂ −
√

3ŷ). (2)

These vectors define a Brillouin zone that is shaped as a
hexagon with six corner points, called the K points. They are
determined by

K1 = 2
3 b1 + 1

3 b2 = −K4, (3a)

K2 = 1
3 b1 − 1

3 b2 = −K5, (3b)

K6 = 1
3 b1 + 2

3 b2 = −K3. (3c)

The SBG lattices always have the spatial-inversion cen-
ters. One of these is the central point of the parallelogram

A1A2B2B1, i.e., at the point determined by the vector (A1A2 +
A1B1)/2 = (τ + d1)/2; here d1 = (a1 + a2)/3. We choose
the origin O at this spatial-inversion center, except for the
case of the AA-stacked configuration (i.e., SBG with τ = 0)
in which O is chosen to be at the highest symmetry central
point of one of the hexagonal atomic rings. Accordingly, the
positions of the carbon atoms are determined by the vector
Rα = R + dα, α = A1, B1, A2, B2, where

dA1 = OA1 = − 1
2 (d1 + τ), (4a)

dB1 = OB1 = + 1
2 (d1 − τ), (4b)

dA2 = OA2 = − 1
2 (d1 − τ ), (4c)

dB2 = OB2 = + 1
2 (d1 + τ). (4d)

Due to the periodicity of the real-space lattices, it is nec-
essary to consider the sliding vector τ in the domain of a
triangle. Accordingly, we consider sliding in two directions:
τ parallel to d1 and τ perpendicular to d1. Figure 1 shows
the schema for some typical SBG configurations along with
the previously described vectors and other useful notation.
Among all possible configurations of the SBG systems, the
AA-stacked configuration with τ = 0 has the highest symme-
try and can be described using the symmorphic space group
P6/mmm (No. 191). Accordingly, the lattice has a mirror
plane Mxy lying in the middle between two graphene layers;
a sixfold-rotation axis C6z perpendicular to Mxy; 3 mirror
planes contain the C6z rotation axis and crossing the middle
points of the hexagonal edges; 3 other mirror planes also
contain the axis C6z and two corner points of the hexagonal
ring. The quotient group of P6/mmm is exactly the point
group D6h with 24 symmetry operations, which are classi-
fied into 12 equivalent classes. The symmetry operations of
the D6h point group are specified in our notation as D6h =
{E , 2C6z, 2C3z,C2z, 3C2x, 3C2y,i,2S3z,2S6z,Mxy, 3Myz, 3Mxz}.

The AB-stacked configuration has lower symmetry and is
obtained when the sliding vector τ = d1. In this configuration,
the plane xy is no longer a mirror symmetry plane. The princi-
ple rotation axis is the threefold C3z, going through one atomic
site in the top graphene layer and another in the second layer.
Additionally, three out of six planes containing the C3z axis
and going through the middle points of the hexagonal ring are
no longer mirror planes. The other three planes going through
the corner points of the atomic ring remain being mirror
planes. The space group of the lattice is symmorphic and is
denoted by P3̄m1 (No. 164). Its quotient group is exactly the
point group D3d with 12 symmetry operations. There are 6
equivalent classes in the group and the symmetry operations
in our notation are D3d = {E , 2C3z, 3C2y, i, 2S6z, 3Mxz}.

When sliding along the direction of the vector d1, i.e., τ =
ξ (a1 + a2)/3, where ξ ∈ (0, 1) ∪ (1, 3/2), the resulting con-
figurations have much lower symmetry. They are in the space
group of P2/m (No. 10). This is a symmorphic group whose
the quotient group is identical to the point group C2h. The
symmetry operations of C2h include C2h = {E ,C2y, i, Mxz}.
When ξ = 1 we obtain the AB-stacked configuration. When
ξ = 3/2 then τ = (a1 + a2)/2 and we obtain a special SBG
configuration; see Fig. 1(e). The space group of this configura-
tion is found to be P222 (No. 16), which is also a symmorphic
group. It has the associated point group D2 which consists of 4
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FIG. 1. Typical lattice configurations of the SBG system and the associated Brillouin zone. The configurations given in (a), (b), and (c) are
characterized by the sliding vector τ = ξ (a1 + a2)/3. The configurations given in (d) and (e) are defined by τ = ζ (a1 − a2)/2. The primitive
unit cell is denoted by the red rhombus with two basis vectors a1 and a2. The three vectors d1, d2, d2 connect one lattice node to its three nearest
in-plane neighbors. The Brillouin zone of all configurations is the same, but the symmetry of the special points K, M and of the �, �, � axes
is not because of different lattice space groups.

symmetry operations, i.e., D2 = {E ,C2z,C2y,C2x}. However,
it should noted that the D2 group is isomorphic to the groups
C2h and C2v = {E ,C2z, Myz, Mxz}. We chose to work with the
C2h group.

When the sliding vector is along the direction perpendic-
ular to the d1 vector, τ ∝ (a1 − a2)/2, the resulting SBG
configurations have the space group P2/m (No. 10). The
associated point group is C2h = {E ,C2x, i, Myz}. We find that
the SBG configuration with τ = (a1 − a2)/2 is identical to the
one with τ = (a1 + a2)/2.

For the other values of the sliding vector τ the resulting
atomic lattices have the lowest symmetry. They fall under
the space group P1̄, which is the product of the translation
group and the point group Ci = {E , i} consisting of only two
symmetry operations, the identity and the spatial inversion.
In summary, for all possible sliding vectors the space groups
of the resulting SBG configurations are symmorphic, i.e.,
always decomposed into the product of a point group and
the translation group with the Braivais lattice vectors. The
symmetry groups of special k points in the first Brillouin zone
of several typical SBG configurations are presented in Table I.
One should note that despite the first Brillouin zone of all
SBG configurations adopting the same hexagonal shape, the
symmetry groups of the K and M points are different from
one configuration to the other because of their different space
groups.

B. Electronic structure symmetries

Electronic states in a crystalline atomic lattice are ex-
pressed in terms of Bloch functions. In the rhombus unit
cell of all SBG configurations, there are 4 distinct carbon
atoms, named A1, B1, A2, and B2. In this work, we only con-
sider energy bands formed by the hybridization of the pz

orbitals of each carbon atom. The ket vector |α, pz, R + dα〉
stands for the orbital pz of the carbon atom α located at
the position dα in the unit cell R, i.e., φα,pz (r − R − dα ) →
|α, pz, R + dα〉. The set of Bloch vectors is {|α, pz, k〉 | ∀α =
A1, B1, A2, B2; k ∈ Brillouin zone (BZ)}, wherein

|α, pz, k〉 = 1√
N

∑
R

e−ik·(R+dα )|α, pz, R + dα〉, (5)

therefore forming a set of basis vectors that represents all
the electronic states. We use this basis set to realize a rep-
resentation of the space group and of the k-vector groups
of the atomic lattices. Formally, Tg denotes a linear operator
representing a symmetry operation g from the lattice symme-
try group. Its action on the basis vector is formally defined
by [42–45]

Tg|α, pz, k〉 = |gα, gpz, gk〉, (6)

where gα → α′, gpz → ±pz, and gk → k′. From Eq. (5) one
should note that |α, pz, k + G〉 = eiG·dα |α, pz, k〉, where G
is any reciprocal lattice vector. We use Eq. (6) to determine
all character values of the representation. The results for all
points and axes in the first Brillouin zone are presented in
Tables I and II.

In the case of the AA-stacked configuration, it has six
K points with D3h symmetry, six M points with D2h sym-
metry, and three high-symmetry axes (�,�, and �) with
C2v symmetry. Representing these symmetry groups in the
4-dimensional Hilbert space we obtain the following results.
For the 
 point, the representation of the D6h group is re-
ducible and therefore decomposed into four 1-dimensional
irreducible representations A1g ⊕ A2u ⊕ B2g ⊕ B1u. For the K
points, the representation of the D3h group is decomposable
into two 2-dimensional irreducible representations, E ′ ⊕ E ′′.
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TABLE I. Space groups and the groups of special k points in the Brillouin zone of typical SBG configurations [†ξ ∈ (0, 1) ∪ (1, 3
2 );

‡ζ ∈ (0, 1)].

Configurations Space group 
 K M � � �

Monolayer P6/mmm (#191) D6h D3h D2h C2v C2v C2v

τ = 0 P6/mmm (#191) D6h D3h D2h C2v C2v C2v

(AA-stacked)
τ = 1

3 (a1 + a2) P3̄m1 (#164) D3d D3 C2h Cs C2 C2

(AB-stacked)
τ = ξ

3 (a1 + a2)† P2/m (#10) C2h C2 M1,4 : C2h; M2,3,5,6 : Ci Cs C2 C2

τ = 1
2 (a1 ± a2) P2/m (#10) C2h Cs M1,4 : C2h; M2,3,5,6 : Ci C2 Cs Cs

τ = ζ

2 (a1 − a2)‡ P2/m (#10) C2h Cs M1,4 : C2h; M2,3,5,6 : Ci C2 Cs Cs

τ# P1̄ (#2) Ci C1 Ci C1 C1 C1

For the M points, the representation of the D2h group is
decomposable into four 1-dimensional representations Ag ⊕
B1g ⊕ B2u ⊕ B3g.

For the AB-stacked configuration, which has lower symme-
try compared to the AA-stacked configuration, all six K and
all M points of the Brillouin zone have the same symmetry
groups D3 and C2h, respectively. However, unlike for the AA
configuration, the three high-symmetry axes �,�, and � do
not have the same symmetry group. The � and � axes have
the same C2 group whereas the � axis has Cs symmetry. Rep-
resenting these symmetry groups in the 4-dimensional Hilbert
space it can be seen that at the 
 point, the representation of
the D3d group is decomposable into two 1-dimensional irre-
ducible representations A1g and two other 1-dimensional ones
A2u, i.e., 2A1g ⊕ 2A2u. For the K points, the representation of
the D3 group can be decomposed into two 1-dimensional and
one 2-dimensional irreducible representations, i.e., A1 ⊕ A2 ⊕
E . For the M points, the representation of the C2h group de-
composes into two 1-dimensional irreducible representations
Ag and two other 1-dimensional irreducible representations
Bu, i.e., 2Ag ⊕ 2Bu.

For the SBG configurations with τ = ξ (a1 + a2)/3 such
that ξ �= 0 or 2/3, they belong to the P2/m space group. The
symmetry group of the 
 point is C2h. We verified that all six
K points belong to the same C2 symmetry group. However,
this is not the case for the M points. The two points, M1 and
M4, belong to the same C2h symmetry group whereas M2,3,5,6

points are of the lower Ci symmetry group (a group with only
two symmetry operations: the identity and the spatial inver-
sion). We also examined that the two axes, � and �, have the
same C2 symmetry, unlike the � axis which has Cs symmetry.

For the configurations under discussion, the representation of
the C2h group for the 
 and M1,4 points is a reducible represen-
tation. It is decomposable into two 1-dimensional irreducible
representations Ag (even under the inversion) and two other
1-dimensional irreducible representations Bu (odd under the
inversion): 2Ag ⊕ 2Bu. For the K points, the representation of
the group C2 is decomposable into two 1-dimensional repre-
sentations A and two other 1-dimensional representations: B,
i.e., 2A ⊕ 2B. For the points M2,3,5,6 the representation of the
group Ci may be decomposed into 2Ag ⊕ 2Au.

For the SBG configurations with τ = ζ (a1 − a2)/2,
wherein ξ �= 0 and 1, although they have the same P2/m
space group as the previously mentioned SBG configurations
[i.e., τ = ξ (a1 + a2)/3], the six K points are of Cs symmetry.
Furthermore, the M1 and M4 points are of C2h symmetry, while
the M2,3,5,6 points belong to Ci symmetry. For the � and �

axes, they are described by the Cs symmetry group, and the
� axis by the C2 symmetry group. The representation of the
group of the 
 and M1,4 points is decomposable into four
one-dimensional irreducible representations Ag ⊕ Bg ⊕ Au ⊕
Bu. The representation of the Cs group for the K points is
decomposable into the following 1-dimensional irreducible
representations 2A′ ⊕ 2A′′.

In addition to analyzing the representation of the symmetry
groups of the high-symmetry K and M points in the Brillouin
zone we also established the compatibility relations of such
points along the high-symmetry axes. These results are pre-
sented in Tables III and IV for all typical configurations of the
bilayer system.

The analysis of the representation of symmetry groups
of the k points in the Brillouin zone does not provide

TABLE II. Irreducible representations at high-symmetry points in the Brillouin zone of various SBG configurations [†ξ ∈ (0, 1) ∪ (1, 3
2 );

‡ζ ∈ (0, 1)].

τ = 0 τ = ξ

3 (a1 + a2)† τ = 1
3 (a1 + a2) τ = ζ

2 (a1 − a2)‡


 A1g ⊕ A2u ⊕ B2g ⊕ B1u 2Ag ⊕ 2Bu 2A1g ⊕ 2A2u Ag ⊕ Bu ⊕ Au ⊕ Bg

K E ′ ⊕ E ′′ 2A ⊕ 2B A1 ⊕ A2 ⊕ E 2A′ ⊕ 2A′′

M1,4 B2g ⊕ B3g ⊕ Ag ⊕ B1u 2Ag ⊕ 2Bu 2Ag ⊕ 2Bu Au ⊕ Bg ⊕ Ag ⊕ Bu

M2,3,5,6 B2g ⊕ B3g ⊕ Ag ⊕ B1u 2Ag ⊕ 2Au 2Ag ⊕ 2Bu 2Ag ⊕ 2Au

� A1 ⊕ A2 ⊕ B1 ⊕ B2 4A′ 4A′ 2A ⊕ 2B
� A1 ⊕ A2 ⊕ B1 ⊕ B2 2A ⊕ 2B 2A ⊕ 2B 2A′ ⊕ 2A′′

� A1 ⊕ A2 ⊕ B1 ⊕ B2 2A ⊕ 2B 2A ⊕ 2B 2A′ ⊕ 2A′′
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TABLE III. Compatibility relations between the groups D6h, D3d and their subgroups.

C2v (�,�, �) D6h(
) D3h(K ) D2h(M ) Cs(�) D3d (
) C2h(M1) C2(�,�) D3d (
) D3(K2)

A1 A1g E ′ Ag A′ A1g, A2u Ag, Bu A A1g A1, E
A2 B2g E ′′ B3g B A2u A2, E
B1 B1u E ′ B2u

B2 A2u E ′′ B1u

quantitative information on the energy eigenvalues of the
Bloch-Hamiltonian matrix. However, it allows one to de-
termine the basis vectors for the Hilbert subspaces of the
irreducible representations of the symmetry groups. We de-
termined the vectors spanning such invariant subspaces for
all the relevant symmetry groups. We present these results
in Tables V, VI, and VII. The unnormalized basis vectors
of the invariant subspaces are expressed as the linear com-
binations of the Bloch vectors of the pz electrons in the
A1, B1, A2, B2 sublattices of the total bilayer lattices. Re-
markably, for generic SBG configurations, we find that the
combination coefficients in the basis vectors spanning the
subspaces representing the symmetry groups of the M points
depend on the sliding vector τ, while this is not the case for
the 
 and K points.

In Fig. 2, we present the energy dispersion curves along
our previous identified symmetry axes that connect the high-
symmetry points in the Brillouin zone. The four dispersion
curves are labeled by the names of the irreducible represen-
tations of the symmetry groups of the corresponding k axes.
In the next section, we will discuss this qualitative analysis
along with numerical results obtained from a tight-binding
model for the electrons localized in the pz atomic orbitals of
the bilayer graphene system.

III. ENERGY BAND CROSSINGS
AND ELECTRONIC PROPERTIES

A. Tight-binding model

In the basis set of the atomic orbital vectors
{|α, pz, R + dα〉 | α = A1, B1, A2, B2; R ∈ Bravais lattice},
the tight-binding Hamiltonian is defined as

H =
∑
R,R j

∑
α,β

t
(
d j

αβ

)|α, pz, R + dα〉〈β, pz, R j + dβ |, (7)

where d j
αβ = R j + dβ − (R + dα ) are the vectors connecting

the site α to the neighbor sites β; t (d j
αβ ) refers to the electron

hopping integral between the pz orbitals of the neighboring
atomic sites. The value of this quantity depends only on the

distance between the sites, d j
αβ = |d j

αβ |. For numerical calcu-
lations we use the following model for the hopping integral:

t (d j
αβ ) = Vppπ

(
d j

αβ

)
sin2 θ z

αβ + Vppσ
(
d j

αβ

)
cos2 θ z

αβ, (8)

where cos θ z
αβ = (d j

αβ · ez )/d j
αβ and

Vppπ (d j
αβ ) = V 0

ppπ exp

(
−d j

αβ − aCC

r0

)
, (9a)

Vppσ (d j
αβ ) = V 0

ppσ exp

(
−d j

αβ − aCC

r0

)
. (9b)

In this model, the parameters are commonly set to V 0
ppπ =

−2.7 eV, V 0
ppσ = 0.48 eV, and r0 = 0.148a [46–50].

Now, expanding the vector |α, pz, R + dα〉 in terms of the
Fourier transform of the Bloch vector |α, pz, k〉 yields

|α, pz, R + dα〉 = 1√
N

∑
k

eik·(R+dα )|α, pz, k〉. (10)

Substituting this into Eq. (7), we obtain the following expres-
sion for the Hamiltonian:

H =
∑

k

∑
α,β

|α, pz, k〉hαβ (k)〈β, pz, k|, (11)

where

hαβ (k) =
∑

j

t
(
d j

αβ

)
e−ik·d j

αβ . (12)

Equation (11) is the result of the basis transformation of the
Hamiltonian operator from the localized pz atomic orbital
basis set to the basis set of Bloch vectors {|α, pz, k〉|∀α =
A1, B1, A2, B2; k ∈ BZ}. By defining a field vector |�pz,k〉 =
(|A1, pz, k〉, |B1, pz, k〉, |A2, pz, k〉, |B2, pz, k〉)T we can ar-
range the coefficients hαβ (k) into a matrix, called the

TABLE IV. Compatibility relations of the group C2h and its subgroups in the SBG configurations.

τ = ξ

3 (a1 + a2) C2(�) C2h(
) C2(K2) Cs(�) C2h(
) C2h(M1) C2(�) C2h(M1,4) C2(K1,2)

A Ag A A′ Ag, Bu Ag, Bu A Ag A
B Bu B A′′ Au, Bg Au, Bg B Bu B

τ = ζ

2 (a1 − a2) Cs(�) C2h(
) Cs(K2) C2(�) C2h(
) C2h(M1,4) Cs(�) C2h(M1,4) Cs(K1,2)
A′ Ag, Bu A′ A Ag, Au Ag, Au A′ Ag, Bu A′

A′′ Au, Bg A′′ B Bg, Bu Bg, Bu A′′ Au, Bg A′′
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TABLE V. Irreducible representations of symmetry groups of high-symmetry points in the Brillouin zone of the AA- and AB-stacked
bilayer configurations.

Configuration k point Group Irr. reps. Basis vectors

AA-stacked 
 D6h A1g |A1, pz, 0〉 + |B1, pz, 0〉 − |A2, pz, 0〉 − |B2, pz, 0〉
B2g |A1, pz, 0〉 − |B1, pz, 0〉
A2u |A1, pz, 0〉 + |B1, pz, 0〉 + |A2, pz, 0〉 + |B2, pz, 0〉
B1u |A2, pz, 0〉 − |B2, pz, 0〉

K D3h E ′ |A1, pz, K〉 − |A2, pz, K〉; |B1, pz, K〉 − |B2, pz, K〉
E ′′ |A1, pz, K〉 + |A2, pz, K〉; |B1, pz, K〉 + |B2, pz, K〉

M D2h Ag |A1, pz, M〉 + |B1, pz, M〉 − |A2, pz, M〉 − |B2, pz, M〉
B3g |A1, pz, M〉 − |B1, pz, M〉 + |A2, pz, M〉 − |B2, pz, M〉
B1u |A1, pz, M〉 + |B1, pz, M〉 + |A2, pz, M〉 + |B2, pz, M〉
B2u |A1, pz, M〉 − |B1, pz, M〉 − |A2, pz, M〉 − |B2, pz, M〉

� C2v A1 |A1, pz, k�〉 + |B1, pz, k�〉 − |A2, pz, k�〉 − |B2, pz, k�〉
A2 |A1, pz, k�〉 − |B1, pz, k�〉 + |A2, pz, k�〉 − |B2, pz, k�〉
B1 |A1, pz, k�〉 + |B1, pz, k�〉 − |A2, pz, k�〉 − |B2, pz, k�〉
B2 |A1, pz, k�〉 + |B1, pz, k�〉 + |A2, pz, k�〉 + |B2, pz, k�〉

� C2v A1 |A1, pz, k�〉 + ei 2π
3 |B1, pz, k�〉 − |A2, pz, k�〉 − e−i 2π

3 |B2, pz, k�〉
A2 |A1, pz, kσ 〉 − ei 2π

3 |B1, pz, k�〉 − |A2, pz, k�〉 + ei −2π
3 |B2, pz, k�〉

B1 |A1, pz, kσ 〉 + ei 2π
3 |B1, pz, k�〉 − |A2, pz, k�〉 − e−i 2π

3 |B2, pz, k�〉
B2 |A1, pz, kσ 〉 + ei 2π

3 |B1, pz, k�〉 + |A2, pz, k�〉 + ei −2π
3 |B2, pz, k�〉

� C2v A1 |A1, pz, k�〉 + |B1, pz, k�〉 − |A2, pz, k�〉 − |B2, pz, k�〉
A2 |A1, pz, k�〉 − |B1, pz, k�〉 + |A2, pz, k�〉 − |B2, pz, k�〉
B1 |A1, pz, k�〉 − |B1, pz, k�〉 − |A2, pz, k�〉 + |B2, pz, k�〉
B2 |A1, pz, k�〉 + |B1, pz, k�〉 + |A2, pz, k�〉 + |B2, pz, k�〉

AB-stacked 
 D3d A1g |A1, pz, 0〉 − |B2, pz, 0〉
A1g |B1, pz, 0〉 − |A2, pz, 0〉
A2u |A1, pz, 0〉 + |B2, pz, 0〉
A2u |B1, pz, 0〉 + |A2, pz, 0〉

K D3 A1 |B1, pz, K〉 − |A2, pz, K〉
A2 |A1, pz, K〉 + |B2, pz, K〉
E |A1, pz, K〉; |B2, pz, K〉

M C2h Ag |B1, pz, M〉 − |A2, pz, M〉
Ag |A1, pz, M〉 − |B2, pz, M〉
Bu |B1, pz, M〉 + |A2, pz, M〉
Bu |A1, pz, M〉 + |B2, pz, M〉

�, � C2 A |A1, pz, k�,�〉 − |B2, pz, k�,�〉
A |B1, pz, k�,�〉 − |A2, pz, k�,�〉
B |A1, pz, k�,�〉 + |B2, pz, k�,�〉
B |B1, pz, k�,�〉 + |A2, pz, k�,�〉

� Cs A′ |A1, pz, k�〉
A′ |B1, pz, k�〉
A′ |A2, pz, k�〉
A′ |B2, pz, k�〉

Bloch-Hamiltonian matrix h(k), which is

h(k) =

⎛⎜⎝ 0 fk uk vk
f ∗
k 0 wk uk

u∗
k w∗

k 0 fk
v∗

k u∗
k f ∗

k 0

⎞⎟⎠ (13)

with elements

fk =
∑

j

t
(
d j

A1B1

)
e−ik·d j

A1B1 , (14a)

uk =
∑

j

t
(
d j

A1A2

)
e−ik·d j

A1A2 , (14b)

vk =
∑

j

t
(
d j

A1B2

)
e−ik·d j

A1B2 , (14c)

wk =
∑

j

t
(
d j

B1A2

)
e−ik·d j

B1A2 . (14d)

The index j in the above equations runs over all the atomic
sites neighboring a central site. In our calculation we approx-
imate the in-plane electronic coupling to be only between
pz orbitals of nearest neighbors. Hence, Eq. (14a) can be
expressed as

fk = t0

[
e−ikxaCC + 2ei kx aCC

2 cos

(√
3kyaCC

2

)]
, (15)
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TABLE VI. Irreducible representations of the symmetry groups of high-symmetry points in the Brillouin zone of the SBG configurations
with τ = ξ (a1 + a2)/3.

Configuration k point Group Irr. reps. Basis vectors

τ = ξ

3 (a1 + a2) 
 C2h Ag |A1, pz, 0〉 − |B2, pz, 0〉
Ag |B1, pz, 0〉 − |A2, pz, 0〉
Bu |A1, pz, 0〉 + |B2, pz, 0〉
Bu |B1, pz, 0〉 + |A2, pz, 0〉

K C2 A |A1, pz, K〉 − |B2, pz, K〉
A |B1, pz, K〉 − |A2, pz, K〉
B |A1, pz, K〉 + |B2, pz, K〉
B |B1, pz, K〉 + |A2, pz, K〉

M1,4 C2h Ag |A1, pz, M1,4〉 − e−i 2π
3 eiξπ |B2, pz, M1,4〉

Ag |B1, pz, M1,4〉 − ei 2π
3 eiξπ |A2, pz, M1,4〉

Bu |A1, pz, M1,4〉 + e−i 2π
3 eiξπ |B2, pz, M1,4〉

Bu |B1, pz, M1,4〉 + ei 2π
3 eiξπ |A2, pz, M1,4〉

M2,3,5,6 Ci Ag |A1, pz, M2,3,5,6〉 − e−i π
3 eiξ π

2 |B2, pz, M2,3,5,6〉
Ag |B1, pz, M2,3,5,6〉 − ei π

3 eiξ π
2 |A2, pz, M2,3,5,6〉

Au |A1, pz, M2,3,5,6〉 + e−i π
3 eiξ π

2 |B2, pz, M2,3,5,6〉
Au |B1, pz, M2,3,5,6〉 + ei π

3 eiξ π
2 |A2, pz, M2,3,5,6〉

�, � C2 A |A1, pz, k�,�〉 − |B2, pz, k�,�〉
A |B1, pz, k�,�〉 − |A2, pz, k�,�〉
B |A1, pz, k�,�〉 + |A2, pz, k�,�〉
B |B1, pz, k�,�〉 + |A2, pz, k�,�〉

� Cs A′ |A1, pz, k�〉
A′ |B1, pz, k�〉
A′ |A2, pz, k�〉
A′ |B2, pz, k�〉

TABLE VII. Irreducible representations of the symmetry groups of high-symmetry points in the Brillouin zone of the SBG configurations
with τ = ζ (a1 − a2)/2.

Configuration k point Group Irr. reps. Basis vectors

τ = ζ

2 (a1 − a2) 
 C2h Ag |A1, pz, 0〉 + |B1, pz, 0〉 − |A2, pz, 0〉 − |B2, pz, 0〉
Bg |A1, pz, 0〉 − |B1, pz, 0〉 + |A2, pz, 0〉 − |B2, pz, 0〉
Au |A1, pz, 0〉 − |B1, pz, 0〉 − |A2, pz, 0〉 + |B2, pz, 0〉
Bu |A1, pz, 0〉 + |B1, pz, 0〉 + |A2, pz, 0〉 + |B2, pz, 0〉

K Cs A′ |A1, pz, K〉 + |B1, pz, K〉
A′ |A2, pz, K〉 + |B2, pz, K〉
A′′ |A1, pz, K〉 − |B1, pz, K〉
A′′ |A2, pz, K〉 − |B1, pz, K〉

M1,4 C2h Ag |A1, pz, M1,4〉 + ei 2π
3 |B1, pz, M1,4〉 − |A2, pz, M1,4〉 − ei 2π

3 |B2, pz, M1,4〉
Bg |A1, pz, M1,4〉 − ei 2π

3 |B1, pz, M1,4〉 + |A2, pz, M1,4〉 − ei 2π
3 |B2, pz, M1,4〉

Au |A1, pz, M1,4〉 − ei 2π
3 |B1, pz, M1,4〉 − |A2, pz, M1,4〉 + ei 2π

3 |B2, pz, M1,4〉
Bu |A1, pz, M1,4〉 + ei 2π

3 |B1, pz, M1,4〉 + |A2, pz, M1,4〉 + ei 2π
3 |B2, pz, M1,4〉

M2,3,5,6 Ci Ag |A1, pz, M2,3,5,6〉 − ei π
3 e−iζ π

2 |B2, pz, M2,3,5,6〉
Ag |B1, pz, M2,3,5,6〉 − e−i π

3 eiζ π
2 |A2, pz, M2,3,5,6〉

Bu |A1, pz, M2,3,5,6〉 + ei π
3 e−iζ π

2 |B2, pz, M2,3,5,6〉
Bu |B1, pz, M2,3,5,6〉 + e−i π

3 eiζ π
2 |A2, pz, M2,3,5,6〉

�,� Cs A′ |A1, pz, k�,�〉 + |B1, pz, k�,�〉
A′ |A2, pz, k�,�〉 + |B2, pz, k�,�〉
A′′ |A1, pz, k�,�〉 − |B1, pz, k�,�〉
A′′ |A2, pz, k�,�〉 − |B2, pz, k�,�〉

� C2 A |A1, pz, k�〉 − |A2, pz, k�〉
A |B1, pz, k�〉 − |B2, pz, k�〉
B |A1, pz, k�〉 + |A2, pz, k�〉
B |B1, pz, k�〉 + |B2, pz, k�〉
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FIG. 2. Energy band structure of electrons in four typical SBG configurations: (a) the AA-stacked, (b) the AB-stacked, and the ones with
τ = ξ

3 (a1 + a2) (c) and τ = ζ

2 (a1 − a2) (d). All bands at the points and along the axes of high symmetry are labeled by the corresponding
irreducible representations. The symmetry of each dispersion curve is distinguished by color.

where t0 = tA1B1 = tA2B2 = t (d1) = V 0
ppπ . For the interlayer

electronic coupling, we consider the coupling of one pz orbital
in one layer only to the pz orbitals in the other layer that

are within the vicinity of the cutoff radius Rc =
√

d2
GG + a2

CC .
One may notice that the Bloch-Hamiltonian matrix, h(k), as
defined by Eq. (13), is not periodic with the reciprocal lat-
tice vector G = mb1 + nb2. However, by changing the Bloch
vectors basis set, {|α, pz, k〉}, to the new ones {|α, pz, dα, k〉},
where |α, pz, dα, k〉 = eik·dα |α, pz, k〉, one can obtain a new
form of the Bloch-Hamiltonian matrix H (k). This form satis-
fies the periodicity condition H (k + G) = H (k). Both h(k)
and H (K) result in the identical energy spectrum for a
system since they are related to each other by a unitary
transformation.

B. Proof for the band crossing

Calculating the energy bands requires the diagonaliza-
tion of the Bloch-Hamiltonian matrix. For the 4 × 4 matrix

described in the previous section, see Eq. (13), the diagonal-
ization generally needs to invoke numerical methods. In Fig. 2
we present our calculated results for the energy dispersion
curves for several typical SBG configurations along the high-
symmetry paths in the Brillouin zone. These are the � path
that connects the M4, K2, and 
 points; the � path which
connects the 
 and K1 points; and the � path that connects
the K1 and K2 points [see the red lines in Fig. 1(f)]. We
use colors to refer to electronic states that are symmetrically
compatible. Accordingly, we observe the overall picture of the
smooth energy dispersion curves, instead of the nonsmooth
En(k) curves labeled by band index n. By this way it is the
proof for the crossing of the dispersion curves. We assign
labels to the dispersion curves on the basis of combining
the analysis of the basis vectors of invariant subspaces (see
Tables V, VI, and VII) and checking the symmetry of eigen-
states of the Bloch-Hamiltonian matrix obtained by numerical
calculations. Specifically, in the high-symmetry AA-stacked
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and AB-stacked configurations, the crossing of the disper-
sion curves occurs exactly at the K points. The numerical
results presented in Figs. 2(a) and 2(b) are compatible with
the analysis of the representation of the symmetry group
of the K points in the 4-dimensional Hilbert space H =
span(|A1, pz, k〉, |B1, pz, k〉, |A2, pz, k〉, |B2, pz, k〉). For the
AA-stacked configuration, at the K points, we see two crossing
points involving four energy dispersion curves. Analysis of
the representation of the D3h group at the K points shows
that the 4-dimensional Hilbert space H is separated into two
invariant subspaces of 2 dimensions, H = H (E ′) ⊕ H (E ′′)
(see Table V). The degeneracy of the energy at the crossing
points is therefore equal to 2. For the AB-stacked configura-
tion, we realize that the dispersion curves E2(k) and E3(k)
touch each other at a single K point, while the other two E1(k)
and E4(k) curves separate. The analysis of the representation
of the D3 symmetry group for the K points (see Table V)
shows that the total Hilbert space can be divided into the direct
sum of two 1-dimensional invariant subspaces and one 2-
dimensional invariant subspaces, H = H (A1) ⊕ H (A2) ⊕
H (E ). The energy dispersion curves of the AA- and AB-
stacked configurations around the crossing points has been
commonly analyzed in the literature [21,22]. In particular, the
dispersion curves for the AA-stacked configuration are linear
in terms of δk = k − K, hence En(k) ∝ ‖δk‖. Meanwhile,
for the latter case, the dispersion curves display parabolic
behavior near these points, i.e., En(k) ∝ ‖δk‖2. For the SBG
configurations with τ ∝ a1 ± a2, the dispersion curves cross
the energy axis going through the K point at 4 separate
points [see the insets in Fig. 2(c) and Fig. 2(d)]. This re-
sult is ensured by the group representation theory analysis.
The 4-dimensional Hilbert space H representing the C2 or
Cs groups of the K points is divided into the sum of four
1-dimensional invariant subspaces, H = 2H (A) ⊕ 2H (B),
or H = 2H (A′) ⊕ 2H (A′′), respectively (see Tables VI and
VII). So, what is the reason ensuring the touching between
the energy surfaces E3(k) and E4(k), and between E1(k) and
E2(k), at generic k points? Numerical methods are, of course,
not able to answer this question. The analysis of the symmetry
properties of the Bloch eigenstates at the 
, K , and M points
as well as their symmetry compatibility, however, allows us
to confirm that the dispersion curves must cross each other at
generic k points as seen in the insets in Figs. 2(c) and 2(d). The
results of the symmetry compatibility analysis are presented in
Table IV and shown in Figs. 2(a)–(d).

C. Dependence of energy band structure on the sliding vector

Symmetry group theory analysis results presented in
Tables I–VII and numerical data displayed in Fig. 2 are the
main results of this work. However, one needs to analyze
more to understand fully the origin of special features as well
as the overall behavior of the SBG electronic band structure.
Analyzing the dispersion curves along the �,�,�, and �

paths would not be sufficient to fully understand the behavior
of the energy surfaces around the Fermi energy level. If one

only looks at Fig. 2(c) one may naively observe the opening
of a finite narrow band gap. However, this picture would
not be correct since there is no band gap in the electronic
structure of the SBG configurations. In Fig. 3 we present the
energy surfaces around the K2 point as overall 3D view. From
our calculations we can make the following observations: (1)
The electronic structure of the AA-stacked configuration is
formed by the merging of the energy surfaces of two in-
dividual graphene layers. The merging manifests itself as a
homogeneous potential of −t⊥ for one layer and of +t⊥ for the
other, where t⊥ = t (dz ) = V 0

ppσ = 0.48 eV. As a consequence,
the highest valence surface and the lowest conduction surface
cross each other via a circle on the zero-energy plane. This
circle therefore defines the Fermi energy surface. (2) Sliding
two graphene layers past each other (i.e., τ �= 0) leads to the
relative shift of the energy surfaces corresponding to each
graphene layer along the Oy direction (i.e., along the direction
that is free from the constraints imposed by the lattice symme-
try operation C2y or Myz). (3) The shift of the energy surfaces
occurs together with the deformation of energy surfaces in
the energy range of (−t⊥,+t⊥) due to the hybridization of
the electronic states of the individual graphene layers. (4) The
deformation of the energy surfaces is not able to open a finite
band gap but forms a structure of the highest valence and
lowest conduction surfaces touching each other at two Dirac
points around the K point. In the case of τ = ξ (a1 + a2)/3
where ξ ∈ (0, 1), the two Dirac points lie on the Ox direction
on the same energy plane E = 0. The Fermi energy surface is
therefore determined as the set of points around the K points
[see Fig. 4(a)]. Meanwhile, for τ = ξ (a1 + a2)/3 where ξ ∈
(1, 3/2], and τ = ζ (a1 − a2)/2, the two Dirac points lie along
the Oy direction but not on the same energy plane; one is
shifted upward while another is shifted downward to form the
structure of two tilted miniature cones. The Fermi energy sur-
face therefore takes the form of two separated circles centered
along the Oy direction. (5) For the SBG configurations that are
far from the AB-stacked configuration, the two Dirac points
of each graphene layer (one located on the E = +t⊥ energy
plane and the other on the E = −t⊥ energy plane) are pre-
served because the energy surfaces are strongly deformed only
in the narrower energy range ( − t (dz + d1),+t (dz + d1)),
where t (dz + d1) ≈ 0.2 eV. These two Dirac points move
from the K points because of the shift in the energy surfaces.
In contrast, for the AB-stacked configuration, the hybridiza-
tion of the electronic states in the two graphene layers is
not the same between two sublattices. It therefore causes the
destruction of the two Dirac points and parabolically separates
the E4(1)(k) surfaces from the E3(2)(k) surfaces.

In order to elucidate further the formation of the Dirac
points and five figured-out features in the electronic structure
of the SBG configurations it is instructive to carefully
revisit the highly symmetric AA-stacked configuration.
As described above, the energy calculations show that
around the K points, the electronic structure is formed
as the merging of the energy surfaces of two individual
graphene layers; each one is shifted by a certain amount of
energy. This result is generally explained in the literature
as a consequence of the chiral symmetry of the dynamical
model [51]. With this in mind, for this configuration it
is sufficient to consider the dominant interlayer coupling
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FIG. 3. Energy surfaces of four typical SBG configurations plotted around the K2 point of the Brillouin zone.

between the pz orbitals located at the nodes A1 and
A2, as well as the nodes B1 and B2. Indeed, we have
a quantitative comparison of the magnitude of the hopping
parameters as follows: t0 = 2.7 eV � tA1A2 = tB1B2 = t (dz ) =
0.48 eV � tA1B2 = tB1A2 = t (dz + d1) = 0.2 eV. Therefore,
the Bloch-Hamiltonian matrix elements involved in the terms
vk and wk can be approximately set to zero. The only nonzero
matrix elements besides the fk elements are the uk elements.
They are the most dominant among the interlayer terms. The
approximate Bloch-Hamiltonian becomes

hAA(k) =

⎛⎜⎝ 0 fk uk 0
f ∗
k 0 0 uk

u∗
k 0 0 fk

0 u∗
k f ∗

k 0

⎞⎟⎠. (16)

An important consequence of the approximations is that
chiral symmetry is introduced into the Bloch-Hamiltonian

FIG. 4. (a) The Fermi energy surface of the AA-stacked (red large
circle), AB-stacked (red small triangle at the center) configurations.
The tiny circles or dots on the kx direction are for the SBG config-
urations with ξ = 0.05, 0.5, and 0.8. The pairs of solid circles are
for the cases ξ = 1.05, 1.2, and 1.5. The pairs of dashed ellipse-like
loops are for the cases of ζ = 0.05, 0.2, and 0.5. (b) The density of
states of five typical SBG configurations with ξ = 0.0 (red curve,
the AA-stacked configuration), ξ = 0.5 (moss-green curve), ξ = 1.0
(blue curve, the AB-stacked configuration), ξ = 1.5 (purple curve),
and ζ = 0.5 (brown curve).

matrix. Indeed, by rearranging the order of the basis
vectors representing the Bloch-Hamiltonian matrix into
{|A1, k〉, |B2, k〉; |A2, k〉, |B1, k〉}, we get

hAA(k) =

⎛⎜⎝ 0 0 uk fk
0 0 f ∗

k u∗
k

u∗
k fk 0 0

f ∗
k uk 0 0

⎞⎟⎠. (17)

Chiral symmetry implies that the eigenvalues of the matrix
hAA(k) will always appear in pairs of ±E (k), and if zero-
energy states exist, they must be degenerate (see Appendix B).
We will first consider the existence of the zero-energy states.
The eigenstates corresponding to E = 0 are defined by the
vectors whose coordinates (in the set of basis vectors under
consideration) must satisfy the homogeneous linear equations:⎛⎜⎝ 0 0 uk fk

0 0 f ∗
k u∗

k
u∗

k fk 0 0
f ∗
k uk 0 0

⎞⎟⎠
⎛⎜⎝x

y
z
s

⎞⎟⎠ =

⎛⎜⎝0
0
0
0

⎞⎟⎠. (18)

After some algebraic manipulation, we obtain an equation
which defines the condition for the existence of the zero-
energy states:

f ∗
k fk − u∗

kuk = 0. (19)

This equation actually determines the value of the vector k
defining the corresponding zero-energy states. It is straight-
forward to deduce

z = − fk

uk
s, y = − f ∗

k

uk
x. (20)

The zero-energy state vectors are determined by

|E = 0, k〉 = x|E = 0, k〉1 + y|E = 0, k〉2, (21)

with

|E = 0, k〉1 = 1√
2

(
|A1, k〉 − f ∗

k

uk
|B2, k〉

)
, (22a)

|E = 0, k〉2 = 1√
2

(
|B1, k〉 − fk

uk
|A2, k〉

)
. (22b)

From the equations it is clear that the zero-energy states are
twofold degenerate, as expected. Theses states belong to a
2-dimensional Hilbert space spanned by two orthogonal state
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vectors given by Eqs. (22a) and (22b). Remarkably, these
states are the linear combination of the states locally defined
in two sublattices that are not directly coupled with each other.
Next we will show that Eq. (19) defines the Fermi energy
surface as the set of k points in a circle centered at the K point
and with the radius of t⊥/h̄vF .

Given the chiral symmetry structure of the Bloch-
Hamiltonian matrix of Eq. (17) it is straightforward to deduce
an analytic solution for the eigenvalues En(k) of hAA(k). In-
deed, using the rule for the determinant of the block matrices
(see Appendix A) the secular equation for the nonzero eigen-
values is written as

det

(
f ∗
k fk + u∗

kuk − E2 2 fkuk

2 f ∗
k u∗

k f ∗
k fk + u∗

kuk − E2

)
= 0. (23)

The four eigenvalues are

E1,2(k) = +√
u∗

kuk ±
√

f ∗
k fk, (24a)

E3,4(k) = −√
u∗

kuk ±
√

f ∗
k fk. (24b)

Noting that at the K points we have fK = 0 and uK = t⊥, in
the vicinity of the K points we therefore have the expansion

fK+δk ≈ δk · (∂k fk )K. (25)

Using Eq. (15) for the expression of fk results in

(∂k fk )K = i
3

2
t0aCCei 2π

3 (1, i) ≡ iei 2π
3 h̄vF (1, i). (26)

We thus obtain√
f ∗
k fk ≈ |δk · (∂k fk )K| = h̄vF ‖δk‖. (27)

Hence we can see that the energy surfaces around the K
points of the AA-stacked configuration are cones [21,22]. In
particular, the two surfaces E1(k) and E2(k) can be seen as
the energy surfaces of one graphene layer that is subjected
to a potential equal to uK = t⊥. Similarly, the surfaces E3(k)
and E4(k) are the ones consisting of the electronic structure
of the second graphene layer subjected to a potential of −t⊥.
Consequently, the two energy surfaces E2(k) and E3(k) cross
each other at the zero-energy level, the set of k points lying
on the crossing defined by the equation ‖δk‖ = t⊥/h̄vF . This
is the equation for a circle with its center located at the K
points and the radius of t⊥/h̄vF . This equation defines the
Fermi energy surface of the AA-stacked configuration.

The use of a model with the chiral symmetry was already
presented in the literature [21,22,37,51]. It is, however, much
more intuitive to understand why the electronic structure of
the AA-stacked configuration can be simply seen as the merg-
ing of the energy surfaces of the two individual graphene
layers by noting the mirror symmetry Mxy. Hence by using
the U (k) = (τz + τx ) ⊗ σ0/

√
2 transformation (where τx, τz

are the first and third Pauli matrices, respectively, and σ0 is the
2 × 2 identity matrix), the current Bloch basis set {|α, pz, k〉}
can be transformed so that the Bloch-Hamiltonian matrix is a
diagonal block matrix. In this form, each 2 × 2 diagonal block
is exactly the Bloch-Hamiltonian matrix of a single graphene

subjected to the potential of −uk or uk:

hAA(k) =

⎛⎜⎝uk fk 0 0
f ∗
k uk 0 0
0 0 −u∗

k fk
0 0 f ∗

k −u∗
k

⎞⎟⎠. (28)

The physics of this result can be understood in terms of
the electronic interlayer coupling between the two graphene
layers in the high-symmetry AA-stacked configuration not
breaking the symmetry between the two sublattices A and B of
the individual graphene layers. As a consequence, an electron
in one layer simply sees the presence of the second layer
through a homogeneous and isotropic potential.

Significant sliding between the two graphene layers dra-
matically breaks the symmetry of the system. In particular,
the rotational symmetries around the axes perpendicular to
the lattice plan will disappear and thus the initial symmetry
group P6/mmm is lowered to P2/m. In such cases, it is
necessary to take into account the matrix elements vk and
wk since they play an important role in the mixing of the
electronic states between the graphene layers. Consequently,
the energy surfaces in the range from −t⊥ to +t⊥ are strongly
deformed. Though the degeneracy is lifted up at the crossing
loop between the energy surfaces E2(k) and E3(k), a finite
energy gap is not fully created. In particular, for the cases
where τ = ξ (a1 + a2)/3 (along the Ox axis) with ξ ∈ (0, 1),
the energy surfaces E1,2(k) and E3,4(k) are oppositely shifted
along the Oy direction. Meanwhile, in the same energy range
the two surfaces E2(k) and E3(k) shrink to form a structure
of two minicones touching each other at their vertices. The
two vertices are located at two opposite k points on the
circle ‖δk‖ = t⊥/h̄vF , along the Ox direction. Around these
two vertices, despite the dispersion relation being linear, the
cones are anisotropic. The issue of two Dirac points lying
on the E = 0 plane can be explained as the preservation of a
symmetry operation under the sliding of two graphene layers.
Indeed, we see that when the D6h group is broken to the C2h

group, the symmetry group of the K points reduces from D3h

to C2. In this case, the twofold C2y symmetry is preserved.
This symmetry imposes a constraint on the touching of the
energy surfaces E2(k) and E3(k) at two k points on the cir-
cle ‖δk‖ = t⊥/h̄vF along the Ox direction. When the sliding
vector is long enough, ξ → 1, such that the SBG configura-
tion is transformed into the AB-stacked configuration, the two
mini-Dirac-points can move out of the circle ‖δk‖ = t⊥/h̄vF .
They approach each other and then merge together at the K
point when the group C2h becomes D3d . In the cases that
ξ ∈ (1, 3/2], the electronic structure of the SBG configuration
can be seen as the result of the deformation of the electronic
structure of the AB-stacked configuration (ξ = 1). In the latter
case, the four energy surfaces have the form of the isotropic
parabolic surfaces aligned in the same axis. When ξ > 1,
the opposite shift of the surfaces E1,2(k) and E3,4(k) occurs
along the Oy direction because of the symmetry breaking,
from the group P3̄m1 to P2/m (or from the point group D3

to C2 for the K points). Consequently, it leads to the crossing
of the dispersion curves E1,2,3,4(0, ky) as shown in Fig. 2(d).
At the same time, sliding along the Ox direction causes the
deformation of the E2(k) and E3(k) surfaces along the Ox
direction to result in the formation of the two minicones with
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their vertices not lying on the same energy plane. According to
the previously shown analysis of the symmetry compatibility
relations among the points M4, K2, and 
, the reemergence of
the Dirac points in the SBG electronic structure is guaranteed
by symmetry. In the cases in which the sliding vector τ is
directed along the Oy direction, τ = ζ (a1 − a2)/2, ζ ∈ (0, 1],
the shifting of the graphene layer energy surfaces takes place
along the Oy direction (the axis that is free of the constraints
imposed by lattice symmetries), leading to a picture similar
to that of the case τ = ξ (a1 + a2)/3, ξ > 1. However, one
should notice that the symmetry operation Myz is preserved
in the former case instead of the twofold-rotation operation
C2y in the latter case. These two symmetry operations cause
the same effect on k, i.e., transforming (kx, ky ) into (−kx, ky),
and they impose the constraint En(kx, K2y) = En(−kx, K2y) on
the energy surfaces.

D. Fermi energy surface and Lifshitz transition

As aforementioned, the emergence of Dirac points gov-
erns the geometrical and topological properties of the Fermi
energy surface. In this subsection we discuss some direct
consequences of these electronic features. We present in Fig. 4
the Fermi energy surface and the electronic density of states
(DOS) for several SBG configurations. In Fig. 4(a), the large
red circle is the part of the Fermi energy surface around the K
point of the AA-stacked configuration. As discussed above, it
is the locus of the k points defining the zero-energy surface.
This closed path, described by Eq. (19), is identical to the
crossing of the two cone surfaces E2(k) and E3(k). When
ξ = 0.05, though small, sliding of the bilayers reduces the
symmetry of the AA-stacked configuration from P6/mmm to
P2/m. As a consequence, the Fermi surface collapses onto
the two (blue) points on the red circle as shown in the figure.
For large values of ξ , these two points go off the red circle
and approach each other toward the position of the K point.
As discussed, it is the result of the shift and shrinking of the
energy surfaces in the energy range of (−t⊥,+t⊥) during the
formation of the Dirac points. For the cases where ξ > 1.0 and
ζ > 0, the Fermi surface around the K points takes the shape
of two separate circles centered on the ky axis (the solid curves
for the former cases and the dashed curves for the latter ones).
It reflects the (anisotropic) titling cone structure of the energy
surfaces. Figure 4(a) provides a picture of the topological
transition of the Fermi energy surface with the sliding two
graphene layers. This so-called Lifshitz transition was also
discussed in Refs. [2,38,41,52] for small value of the sliding
vector. The shape of the energy surfaces and the topological
structure of the Fermi surface are reflected in the picture of
the density of states. The red and blue curves of Fig. 4(b)
are the DOSs of the AA- and AB-stacked configurations and
they have been thoroughly studied in the literature [21,22]. In
the same figure, the moss-green, purple, and brown curves are
for the SBG configurations with ξ = 0.5, 1.5, and ζ = 0.5,
respectively. The moss-green curve shows the typical V shape
with the vanishing of the DOS at EF = 0, a feature similar to
that of monolayer graphene. This is obviously the reflection
of the mini-Dirac-cone structure of the energy surfaces whose
Dirac points are on the zero-energy plane. The purple and
orange curves however take the form of the red one with a

constant value in a narrow energy range. This feature is the re-
flection of the circular Fermi energy surfaces due to the tiling
of the mini-Dirac-cones. Apart from these features, we also
observe the significant peaks of the DOS curves. These are
the manifestations of the saddle points in the energy surfaces.
These results are consistent with the behavior of the energy
surfaces shown in Fig. 3.

E. Transport properties

Another important consequence, though not direct to the
Dirac points, but rather the Fermi energy surface, is the
electron transport properties of SBG sheets. The problem of
transporting electrons through finite-size SBG regions, which
are the domain walls separating the likely AB- and BA-stacked
regions in strained bilayer graphene ribbons, was also in-
vestigated by Koshino [53]. Here, to address the transport
properties of SBG sheets we design a two-terminal device
structure with the conduction channel made of a SBG sheet
underneath two semi-infinite electrodes at the two ends [54].
Using the Bloch-Hamiltonian matrix given by Eq. (13) we
establish a Hamiltonian for the transport problem by set-
ting k by Kν + δk with ‖δk‖ � ‖Kν‖, i.e., interested in the
transport of low-energy electrons in each Dirac cone indepen-
dently, and then replacing δkx with −i∂/∂x. This quantization
procedure is in fact equivalent to the transformation from
the basis of Bloch vectors {|α, pz, k〉 | k ∈ BZ} to the new
one {|x〉 ⊗ |α, pz, ky〉 | x ∈ R, ky = Kνy + δky}. In general, an
electrostatic potential V (x) can be added to account for the
variation of the electronic band along the Ox direction. An
effective Hamiltonian is obtained in the form

Heff (x, δky) = −iα
∂

∂x
+ Uδky (x), (29)

where α = h̄vF γ0 ⊗ σ1 with γ0 the 2 × 2 identity matrix and
σ1 the first Pauli matrix as convention, and

Uδky(x) =

⎛⎜⎝ V (x) −ih̄vF δky uKν
vKν

ih̄vF δky V (x) wKν uKν

u∗
Kν w∗

Kν V (x) −ih̄vF δky

v∗
Kν u∗

Kν ih̄vF δky V (x3)

⎞⎟⎠.

(30)

Using this Hamiltonian we employed the recursive nonequi-
librium Green’s function method to calculate the conductance
of the SBG region between the two leads (the device chan-
nel) [55]. Assuming that the stacking of electrodes onto the
surface of the SBG sheets does not induce a significant elec-
trostatic potential onto the latter underneath, we would use
a uniform profile for V (x), specifically V (x) = V0 = 0 in the
limit of zero bias voltage [54]. The numerical results for the
conductance G as a function of the Fermi energy EF are
presented in Fig. 5 for five typical SBG configurations with
ξ = 0 (AA), ξ = 0.5, ξ = 1.0 (AB), ξ = 1.5 and ζ = 0.5. The
channel length of L = 100 nm is used for all calculations; the
temperature is assumed to be at 0 K.

To analyze features of the conductance curves G(EF ) we
calculated the conductance of the channel with two decoupled
graphene layers. This results in a symmetric V curve (the
black curve) in the Fermi energy range of [−1.0, 1.0] eV. The
shape of this curve is a consequence of using the uniform
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FIG. 5. Conductance of the SBG channels of length L = 100 nm
in a two-terminal device structure. Color code is the same as in
Fig. 4(b). The black solid curve is for the SBG channel in which
the interlayer coupling is artificially turned off plotted as reference.
The K valley degeneracy is already included.

potential profile V (x) = 0 that aligns the band structure in the
channel and that in the electrodes and the dependence of DOS
on the absolute value of energy [22]. Accordingly, at EF = 0,
because of the vanishing of the DOS in the electrodes, there
are no free charge carriers to be injected into the channel, so
G(EF ) vanishes. To observe a finite quantum conductance at
EF = 0 of the graphene channel, it simply varies V (x) into
the form of a potential barrier. Free charge carriers are now
available in the electrodes and they are transported through
the channel via the chiral tunneling mechanism [56,57]. We
validated the conductance data presented here by verifying
well this point.

Overall the conductance curves of five typical SBG con-
figurations are close to the V-shape curve of graphene in
the Fermi energy range of [−1, 1] eV. However, they exhibit
distinct features in two typical energy ranges of (−V 0

ppσ ,V 0
ppσ )

and ( − t (dz + d1), t (dz + d1)). As analyzed in the preceding
subsections, these two energy ranges are the sphere of influ-
ence of the interlayer coupling; the latter is due to the sliding
effect. The deviation of the conductance curves from the red
curve in these energy ranges obviously reflects the effect of the
interlayer coupling in deforming the graphene Dirac cones.
The vanishing of the conductance of the SBG sheets with
0 < ξ � 1 is due to the vanishing of the DOS at EF = 0
though mini-Dirac-cones are formed but the Dirac points (the
Fermi energy surfaces) are always in the zero-energy plane;
see Fig. 4(a). In contrast, the conductance curves of the SBG
channels with ξ > 1 and ζ > 0 show the independence of G
on EF in the energy range ( − t (dz + d1), t (dz + d1)). This
behavior is similar to that of the AA configuration. For the
latter case, it is a consequence of the merging of two Dirac
cones at the K points, see Fig. 3(a), that defines a constant
density of states as shown in Fig. 4(b). For the SBG config-
urations, the mini-Dirac-cones do not merge into each other

but they tilt as seen in Fig. 3(d). However, since both DOS
and conductance result from the contribution of all individual
states on the circular Fermi energy surfaces, see Fig. 4(a), this
explains the similarity of the conductance curves as shown in
Fig. 5.

IV. CONCLUSION

The engineering of stacked layer materials to have desired
electronic properties is currently an intensely developed field.
One such actively researched material is bilayer graphene,
which is a flexible 2D system consisting of two graphene
monolayers that are weakly bound together. We investigated
the electronic structure features of a special class of bi-
layer graphene configurations: the sliding bilayer graphene
systems. We systematically studied the geometrical and
topological properties of the energy surfaces of SBG con-
figurations while varying the values of the sliding vector.
Using the group representation theory method associated with
a tight-binding calculation that takes into account only the
atomic pz orbitals we showed that the electronic structure of
SBGs is formed by the merging of the energy surfaces of
two individual graphene layers. Sliding two graphene layers
causes two things. First, sliding along an axis that is free of
constraints due to the lattice symmetries only shifts the energy
surfaces of the individual graphene layers. Second, sliding of
the bilayers breaks the symmetry in the interlayer coupling of
the electronic states for the two graphene layers. Both result
in the crossing of the dispersion curves along the symmetrical
axes and the shrinking of the energy surfaces in a narrow
range of energies around the Fermi level. The emergence of
the Dirac points in the vicinity of the K points is shown to
be the result of the deformation of the energy surfaces under
the constraints of the existing symmetries. These observations
were validated using analysis of the group representation the-
ory. We proved that the band crossings at generic k points
are guaranteed by the compatibility relations between the
symmetries of the eigenstates at the high-symmetry points in
the Brillouin zone. The emergence of Dirac points defines the
geometrical and topological features of the energy surfaces,
i.e., the local maximal, minimal, and saddle points. They
manifest in the electronic properties through the shape of the
Fermi energy surface and the density of states. By varying
the sliding vector we showed the Lifshitz transition picture
as well as the electron transport properties of typical SBG
configurations.
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APPENDIX A: DETERMINANT OF BLOCK MATRICES

In general, let us consider the following block matrix:(
ANN BNM

CMN DMM

)
, (A1)
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where M, N are the sizes of the submatrices (blocks). If the
block DMM is invertible, the original block matrix can be

transformed into a triangular matrix by the following matrix
multiplication:

(
ANN BNM

CMN DMM

)(
INN 0NM

−D−1
MMCMN IMM

)
=

(
ANN − BNMD−1

MMCMN BNM

0MN DMM

)
. (A2)

The definition of the determinant allows one to deduce the
following expression for the determinant of triangular block
matrices:

det

(
ANN 0NM

CMN DMM

)
= det(ANN ) det(DMM ). (A3)

The determinant of the second matrix in Eq. (A2) is trivially
equal to 1; hence one can combine Eqs. (A2) and (A3) to get
the following expression:

det

(
ANN BNM

CMN DMM

)
= det

(
ANN − BNMD−1

MMCMN
)

× det(DMM ). (A4)

Applying this formula to Hamiltonian block matrices, one can
readily obtain the secular equations seen in Eq. (23).

APPENDIX B: CHIRAL SYMMETRY

An electronic system is said to possess chiral symmetry if
it is decomposable into subsystems and there exists a local
unitary Hermitian operator, C, that is anticommutative with
the Hamiltonian of the system. This means that CH (λ) =
−H (λ)C, where λ refers to a set of parameters which define
the Hamiltonian H , but not C (i.e., C is independent of λ).
These basic properties of the C operator allow one to write

C2 = 1, (B1a)

C =
∑

n

Cn, (B1b)

CH (λ)C = −H (λ). (B1c)

Here Eq. (B1a) expresses the unitary and Hermitian properties
of the chiral operator; the locality is expressed by Eq. (B1b)
as the decomposition into a set of unitary operators Cn that act
only on subsystem n.

The hexagonal lattice of monolayer graphene can be seen
as composed of two sublattices A and B. A chiral operator C
can be defined in terms of projection operators (PA and PB) in
the A and B sublattices:

C = PA − PB, (B2)

where PA + PB = 1 and PAPB = 0. The system’s Hamiltonian
H is therefore decomposable into four terms describing the A
and B sublattices and the coupling between them, i.e., H =
HAA + HBB + HAB + HBA. The terms are defined as HAA =
PAHPA, HBB = PBHPB, HAB = PAHPB, and HBA = PBHPA. If
the system possesses chiral symmetry, from Eq. (B1c) it
can be deduced that the terms HAA and HBB must van-
ish. This is the case for a commonly used tight-binding
Bloch-Hamiltonian matrix for noninteracting electrons in the

nearest-neighbor approximation:

hMLG(k) =
(

0 fk
f ∗
k 0

)
. (B3)

Sliding bilayer graphene systems do not always possess chiral
symmetry. In high-symmetry configurations, such as AA- and
AB-stacked, some hopping terms between the four sublattices,
A1, B1, A2, and B2, can be approximately ignored since they
are much smaller than other terms. This may result in a
Bloch-Hamiltonian matrix possessing the chiral symmetry. In
particular, the Bloch-Hamiltonian matrix of the AA-stacked
configuration given by Eq. (17) takes the form of off-diagonal
block matrices. Chiral symmetry is present in this model.
The bilayer lattice is decomposable into two subsystems, one
consisting of the sublattices A1 and B2 and the other of the
sublattices B1 and A2. The zero-energy eigenstates of hAA(k)
given by Eqs. (22a) and (22b) are clearly the linear com-
binations of only two atomic orbitals A1 and B2 or B1 and
A2. These results reflect the localization of the zero-energy
eigenstates on either the lattice nodes (A1, B2) or on the lattice
nodes (B1, A2).

APPENDIX C: SYMMETRY ANALYSIS

In the main text, Tg is a unitary linear operator representing
a symmetry operation g of a symmetry group G(k) for a k vec-
tor within the Brillouin zone. The operators Tg, ∀ g ∈ G(k),
act on the Hilbert space spanned by four orthogonal Bloch
vectors {|A1, pz, k〉, |A1, pz, k〉, |A2, pz, k〉, |B2, pz, k〉}. Us-
ing Eq. (6) we can represent Tg operators in terms of matrices
as follows:

Tg|α, pz, k〉 =
∑
α′

sgŨ
α′α
g |α′, pz, gk〉, (C1)

where α′ is the result of the transformation of the sublattice
index α under the operation of g, i.e., α′ = gα. The other terms
in the expression are the sign sg of the orbital pz under the
operation g and the coefficients, Ũ α′α

g , for a particular linear
combination of the Bloch vectors. Since k is a symmetrical
point in the Brillouin zone, the action of the symmetry oper-
ation g ∈ G(k) results in another point k′ = gk that belongs
to the star of k. This means that gk − k = Gg is a reciprocal
lattice vector. Now, using Eq. (5) for the definition of the
Bloch vector and adding the reciprocal lattice vector to the
k vector,

|α′, pz, k + Gg〉 = e−iGg·dα′ |α′, pz, k〉. (C2)

The elements of the Ug(k) matrix that represent the Tg operator
can be obtained by inserting the basis vector from Eq. (C2)
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into Eq. (C1) and simplifying the expression to

Tg|α, pz, k〉 =
∑
α′

U α′α
g (k)|α′, pz, k〉, (C3)

where

U α′α
g (k) = sgŨ

α′α
g e−iGg·dα′ . (C4)

Since G(k) is a subgroup of a symmetry group of the
system’s Hamiltonian H , the invariant relation TgHT †

g = H
allows one to deduce an identical relation for the Bloch-
Hamiltonian matrix h(k):

h(k) = Ug(k)h(k)U †
g (k). (C5)

This equation implies that the Bloch-Hamiltonian matrix is
invariant under the transformation matrix Ug(k). We there-
fore check the symmetry of the electronic bands using the
following procedure. For every symmetrical k point in the
Brillouin zone we (1) find the Ug(k) matrices that repre-
sent the symmetry operations of the small symmetrical group
G(k); (2) diagonalize the Bloch-Hamiltonian matrix, h(k),
to obtain all the eigenvalues, En(k), and their correspond-
ing eigenvectors, ψn,pz (k); a matrix, W (k), is constructed
from these eigenvectors ordered by their eigenvalues En(k);
(3) check the validity of Eq. (C5); (4) construct the matrix
U g(k) = W †(k)Ug(k)W (k); and (5) determine the traces of
each diagonal block U g(k) and compare them to the character
values of the symmetry group G(k). The electronic energy
bands at high-symmetry k points in Fig. 2 were labeled using
this 5-step procedure.
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