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We study nonlinear Drude weights (NLDWs) for the spin- 1
2 XXZ chain in the critical regime at zero

temperature. The NLDWs are generalizations of the linear Drude weight. Via the nonlinear extension of the
Kohn formula, they can be read off from higher-order finite-size corrections to the ground-state energy in the
presence of a U (1) magnetic flux. The analysis of the ground-state energy based on the Bethe ansatz reveals that
the NLDWs exhibit convergence, power-law, and logarithmic divergence, depending on the anisotropy parameter
�. We determine the convergent and power-law divergent regions, which depend on the order of the response
n. Then, we examine the behavior of the NLDWs at the boundary between the two regions and find that they
converge for n = 0, 1, 2 (mod 4), while they show logarithmic divergence for n = 3 (mod 4). Furthermore,
we identify particular anisotropies � = cos (πr/(r + 1)) (r = 1, 2, 3, . . .) at which the NLDW at any order n
converges to a finite value.
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I. INTRODUCTION

Transport phenomena have been a subject of central in-
terest in condensed matter physics. In particular, anomalous
transport properties of one-dimensional quantum many-body
systems have been actively investigated since they are quite
different from higher-dimensional ones [1–5]. Nevertheless,
our theoretical understanding of them was rather limited to the
linear response regime [6] or noninteracting systems. Thus,
the theoretical study of nonlinear transport in strongly in-
teracting systems is highly challenging. More recently, the
nonlinear Drude weight (NLDW) characterizing the nonlinear
static transport has been introduced [7,8]. This quantity is
a straightforward extension of the linear Drude weight first
proposed by Kohn [9] as an indicator to distinguish between
a conductor and an insulator in quantum many-body systems.
Given that the linear one has played an essential role in charac-
terizing linear transport properties [10–15], we expect that its
nonlinear counterparts will be equally or even more important
in understanding transport phenomena.

There are already a number of previous studies focusing on
the NLDWs [16–19]. In Ref. [16], the NLDWs in the spin- 1

2
XXZ chain, which is a paradigmatic example of a quantum
many-body system, were examined in detail. It was found
that they diverge in certain anisotropy parameter regimes in
the thermodynamic limit. In addition, the origin of these di-
vergences was identified as nonanalytic finite-size corrections
to the ground-state energy [16]. However, this property was
discussed except when the anisotropy parameter takes special

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

values, and thus there are still some cases that have not been
thoroughly investigated. Therefore, further research on the
NLDWs in this fundamental model is needed to achieve a
complete understanding.

In this paper, we investigate the fine structure of the
NLDWs at zero temperature for the spin- 1

2 XXZ chain in
the whole critical regime. The advantage of this model is its
solvability by the Bethe ansatz [20,21]. Since the NLDWs can
be read off from the higher-order finite-size corrections to the
ground-state energy in the presence of a U (1) flux, it is es-
sential to analyze these corrections in detail. This is achieved
by using the Bethe ansatz, in conjunction with a mathemat-
ical method called the Wiener-Hopf method [16,20,22–25].
Furthermore, since the Bethe ansatz enables us to treat very
large systems numerically, we can confirm the asymptotic
behaviors of the NLDWs in the large system-size limit. From
the perspective of the Wiener-Hopf method, we reveal that the
finite-size scaling of the ground-state energy is quite distinct
depending on the value of the anisotropy parameter.

The two main findings of this study are as follows. The
first one is the behaviors of the NLDWs at their boundaries
between the convergent and divergent regions. The detailed
analysis suggests that the nth-order one there converges for
n = 0, 1, 2 (mod 4), while it shows logarithmic divergence
for n = 3 (mod 4) in the large system-size limit. By using
the exact solutions, we calculate the first several orders of the
NLDWs numerically and confirm their behaviors around
the boundaries. The other one is the existence of particular
anisotropies where all the NLDWs converge. Since higher-
order ones have wider divergent regions, some of the special
anisotropies are surrounded by the divergent region. We con-
firm this discontinuous behavior in the critical regime by
calculating one of the higher-order NLDWs numerically.

Our paper is organized as follows: In Sec. II, we review the
Bethe ansatz for the XXZ chain with the U (1) flux and intro-
duce the nonlinear Kohn formula to calculate the NLDWs.
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flux

FIG. 1. A one-dimensional spin chain with the U (1) flux �.

In Sec. III, the main results of our study are summarized.
In Sec. IV, we review the origin of the divergences of the
NLDWs and carefully determine the convergent and divergent
regions. In Sec. V, by considering logarithmic corrections to
the ground-state energy, we analytically identify the behaviors
of the NLDWs at their boundaries between the convergent
and divergent regions and also confirm them numerically. In
Sec. VI, we analytically and numerically reveal that there exist
some exceptional points where all the NLDWs converge. Fi-
nally, the discussion and conclusion of our paper are presented
in Sec. VII. In appendices, we provide the derivation of the
finite-size scaling of the ground-state energy based on the
Wiener-Hopf method. Furthermore, numerical confirmation
of the scaling for several anisotropies is also given there.

II. NONLINEAR DRUDE WEIGHTS IN THE XXZ CHAIN

We consider the spin- 1
2 XXZ chain with the U (1) flux �

defined by the Hamiltonian

Ĥ(�) =
N∑

l=1

2J

[
1

2
ei �

N Ŝ+
l Ŝ−

l+1 + H.c. + �Ŝz
l Ŝz

l+1

]
, (1)

where Ŝα
l (α = x, y, z) are spin- 1

2 operators, Ŝ±
l = Ŝx

l ± iŜy
l ,

J > 0 is the coupling constant, � is the anisotropy parameter,
and N is the number of sites. We impose periodic boundary
conditions on the chain and assume that −1 < � < 1 and N is
even throughout this paper. See Fig. 1 for a schematic picture
of our model. Here it is enough to consider only −π < � �
π , as H(�) and H(� + 2π ) have the same spectrum. We note
in passing that the case with � �= 0 corresponds to the spin- 1

2
XXZ chain with the Dzyaloshinskii-Moriya (DM) interaction
with a uniform DM vector along the z axis [26].

Since the total magnetization Ŝz
tot = ∑N

l=1 Ŝz
l is conserved

in this model, we can obtain the lowest energy state in each
sector individually by the Bethe ansatz [27]. In the sector with
M down spins, the Bethe roots {v j (�)} are determined by the
following Bethe equation for j = 1, 2, . . . , M:

p1(v j (�)) + �

N
− 1

N

M∑
k=1

p2(v − vk (�))

= π

N
(−M + 2 j − 1), (2)

where pn(v) ≡ 2 tan−1
( tanh γ

2 v

tan nγ

2

)
and γ ≡ arccos �. In terms

of the Bethe roots, the energy density is given by

e(�; M ) = 1

N

M∑
j=1

2J sin2 γ

cos γ − cosh (γ v j (�))
+ J�

2
. (3)

If � = 0, it is known that the ground state lies in the sector of
M = N/2 [28]. Thus, for sufficiently small � the ground-state
energy density of H(�) is egs(�) = e(�; M = N/2).

Nonlinear Drude weight (NLDW) is a straightforward ex-
tension of the linear Drude weight [9] and can be calculated by
using the nonlinear Kohn formula [7,8]. At zero temperature,
the nth-order one D(n)

N (�) can be obtained as

D(n)
N (�) = Nn+1 ∂n+1

∂�n+1
egs(�)

∣∣∣
�=�

, (4)

where −π < � � π . Note that the finite � corresponds to
the DM interaction as mentioned above. In the � = 0 case,
only the odd orders are nonvanishing. This is because the
ground-state energy density egs(�) is an even function of
�, which can be seen from Û †Ĥ(�)Û = Ĥ(−�) with the
unitary operator Û = ∏N

l=1 2Ŝx
l .

III. OVERVIEW OF THE RESULTS

Here we summarize the main results of our paper. They
are shown in Fig. 2 and Table I. As shown in Ref. [16], the
nth-order Drude weight D(n)

N (�) has both the convergent and
divergent regions. The boundary between them is given by

�
(n)
B ≡ cos

π (n − 1)

n + 3
. (5)

In the following, we denote the convergent region as S (n)
c ≡

( − 1, �
(n)
B ) and the divergent one as S (n)

d ≡ (�(n)
B , 1) \ S (n)

e ,
where S (n)

e ≡ {cos (πr/(r + 1)) | r = 1, 2, . . . , �(n − 2)/4�}
is the set of exceptional points at which the nth-order one
converges. Note that �x� is the floor function. The definitions
of frequently used symbols are summarized in Table II.

The results for the odd-order NLDWs are shown in the
first and second lines of Table I. In the convergent region
S (n)

c , i.e., −1 < � < �
(n)
B , they converge to finite values in

the thermodynamic limit. At the boundary point � = �
(n)
B ,

they show two distinct behaviors depending on the order
of the response. When n = 1 (mod 4), the NLDWs at their
boundaries converge to finite values in the thermodynamic
limit. On the other hand, when n = 3 (mod 4), the large-N
asymptotic behavior of the NLDWs at their boundaries is
the logarithmic divergence. In the divergent region S (n)

d , the
large-N asymptotic behavior of the NLDWs is the power-law

divergence of the form D(n)
N (�) ∼ Nn−1− 4γ

π−γ . At the points in
S (n)

e , the odd-order NLDWs converge to finite values unlike
the divergent behaviors around the points. This behavior is
the same as that in the convergent region S (n)

c .
The results for the even order NLDWs are shown in the

third line of Table I. In the convergent region S (n)
c , i.e.,

−1 < � < �
(n)
B , they vanish in the thermodynamic limit. At

the boundary point � = �
(n)
B , they converge to finite values

in the thermodynamic limit. These values can be calculated
analytically [see Eq. (12)]. In the divergent region S (n)

d , the
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FIG. 2. Fine structure of the NLDWs throughout the critical
regime. Clearly, higher order NLDWs have wider divergent regions.
Also, behaviors of the NLDWs at their boundaries between the
convergent (white) and divergent (green) regions are shown. The
boundary between them for D(n)

N (�) is given by �
(n)
B = cos γ

(n)
B ,

where γ
(n)

B = π (n − 1)/(n + 3) (n ∈ N ). Note that we here denote
a set of points where the NLDWs contain logarithmic corrections
as Sl . Furthermore, we can see that there exist exceptional points
Se( ≡ S (∞)

e ) where all the NLDWs converge.

TABLE II. Definitions of the sets. The boundary between S (n)
c

and S (n)
d is given by �

(n)
B ≡ cos (π (n − 1)/(n + 3)).

Set Definition

S (n)
c ( − 1, �

(n)
B )

S (n)
e

{
cos

(
πr

r+1

) ∣∣∣ r = 1, 2, . . . , �(n − 2)/4�
}

S (n)
d ( �

(n)
B , 1 ) \ S (n)

e

Se ( ≡ S (∞)
e )

{
cos

(
πr

r+1

) ∣∣∣ r ∈ N
}

Sl

{
cos

(
π (2p−1)
2p−1+2q

) ∣∣∣ p, q ∈ N
}

large-N asymptotic behavior of the NLDWs is the power-law

divergence of the form D(n)
N (�) ∼ Nn−1− 4γ

π−γ , as in the results
for the odd-order ones. At the points in S (n)

e , the even-order
NLDWs vanish unlike the divergent behaviors around the
points. This behavior is the same as that in the convergent
region S (n)

c .
The above results are summarized visually in Fig. 2. It

clearly shows that higher-order NLDWs have the wider di-
vergent regions S (n)

d . One might think that the infinite-order
NLDW diverges everywhere in the critical regime. However,
this is not the case because, at the exceptional points in
S (∞)

e = {cos (πr/(r + 1)) | r ∈ N}, all the NLDWs show the
convergence as we have discussed above. The situation is
illustrated in the bottom panel of Fig. 2.

In the following sections, we derive these results analyti-
cally by using the Wiener-Hopf method. Although there are
some subtle points in this approach, we confirm our results by
directly solving the Bethe ansatz equations numerically.

IV. THE CONVERGENT AND DIVERGENT REGIONS

In this section, we focus on the behaviors of the NLDWs
in the convergent and divergent regions. These regions in-
clude points where egs(�) contains logarithmic corrections
[Eq. (9)]. Here we denote the set of these points by Sl ≡
{cos (π (2p − 1)/(2p − 1 + 2q)) | p, q ∈ N}. For later conve-
nience, we also introduce the set of exceptional points Se ≡
S (∞)

e = {cos (πr/(r + 1)) | r ∈ N}, at which all the NLDWs
converge. For � ∈ (−1, 1) \ (Se ∪ Sl ) [29], the detailed
analysis of their behaviors was given in our previous paper
[16]. From the low-energy effective field theory of the XXZ
chain or the Wiener-Hopf method, the finite-size scaling of

TABLE I. The leading order of D(n)
N (�) in the critical regime. The power-law divergent and logarithmic divergent behaviors in the

large-N limit are shown in bold characters. Here we denote the boundary between the convergent and divergent regions as �
(n)
B ≡

cos (π (n − 1)/(n + 3)). Note that O(x) and o(x) are Landau symbols indicating O(x)/x → (constant) and o(x)/x → 0 (N → ∞),
respectively.

− 1 < � < �
(n)
B � = �

(n)
B �

(n)
B < � < 1

Order of response n (mod 4) Convergent Boundary Divergent Exceptional

Odd order n = 1 O(1) O(1) O
(
Nn−1− 4γ

π−γ
)

O(1)

n = 3 O(1) O(log N) O
(
Nn−1− 4γ

π−γ
)

O(1)

Even order n = 0, 2 o(1) O(1) O
(
Nn−1− 4γ

π−γ
)

o(1)
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egs(�) can be cast into the form

egs(�) − egs(0) =
∑

k�l�1

Ak,l

(
1

N

)2k

�2l

+
∑

k,l,m�1

Bk,l,m

(
1

N

)2k+ 4mγ

π−γ

�2l , (6)

where � ∈ (−1, 1) \ (Se ∪ Sl ), and Ak,l and Bk,l,m are co-
efficients depending on γ (see Appendix A). Note that the
smallest exponent of 1/N in the second sum of Eq. (6), namely
2 + 4γ /(π − γ ), is always noninteger. In other words, there
exist nonanalytic finite-size corrections to the ground-state
energy.

The straightforward differentiation of Eq. (6) with respect
to � enables us to identify the large-N asymptotic behaviors
of the NLDWs. They read

D(2k−1)
N (�) = (2k)!

[
Ak,k + B1,k,1N2k−2− 4γ

π−γ

+
(

Ak+1,k + (2k + 2)!

2(2k)!
Ak+1,k+1�

2

)
N−2+· · ·

]
,

(7)

D(2k)
N (�) = (2k + 2)!Ak+1,k+1

�

N
+ Xk (�)N2k−1− 4γ

π−γ + · · ·,
(8)

where Xk (�) ≡ ∑
l>k (2l )!/(2l − 2k − 1)!B1,l,1�

2l−2k−1

[30]. From these results, we can see that, in the
thermodynamic limit, the odd-order NLDWs converge
to finite values and the even-order ones vanish when
n < 1 + 4γ /(π − γ ), i.e., −1 < � < �

(n)
B , where �

(n)
B

is defined in Eq. (5). On the other hand, in the large-N
limit, D(n)

N (�) shows the power-law divergence of the

form D(n)
N (�) ∼ Nn−1− 4γ

π−γ when n > 1 + 4γ /(π − γ ), i.e.,
�

(n)
B < � < 1.
In fact, these convergent and divergent behaviors can be

seen throughout the regions S (n)
c and S (n)

d , respectively. To
confirm this, we have to consider the remaining two cases:
� ∈ S (n)

c ∩ Se and � ∈ (S (n)
c ∪ S (n)

d ) ∩ Sl . In the case � ∈
S (n)

c ∩ Se, all the coefficients Bk,l,m in Eq. (6) vanish iden-
tically as we will see in Sec. VI. This leads to the fact
that the odd-order NLDWs still converge to finite values
and the even-order ones still vanish in the thermodynamic
limit. In the other case � ∈ (S (n)

c ∪ S (n)
d ) ∩ Sl , the finite-size

scaling of egs(�) contains logarithmic corrections. However,
even in these cases, when −1 < � < �

(n)
B , the odd-order

NLDWs still converge to finite values and the even-order ones
still vanish in the thermodynamic limit as we will see in
Appendix B. Also, when �

(n)
B < � < 1, the nth-order one

D(n)
N (�) still shows the power-law divergence of the form

D(n)
N (�) ∼ Nn−1− 4γ

π−γ in the large-N limit.
As a result, we can conclude that every NLDW D(n)

N (�)
shows the convergence (or vanishing) in the convergent region
S (n)

c and the power-law divergence of the form D(n)
N (�) ∼

Nn−1− 4γ

π−γ in the divergent region S (n)
d (see Table I) [31].

V. BOUNDARY BETWEEN THE CONVERGENT
AND DIVERGENT REGIONS

As we have discussed in the previous section, the bound-
ary point between the convergent and divergent regions
of D(n)

N (�) is given by �
(n)
B = cos γ

(n)
B with γ

(n)
B = π (n −

1)/(n + 3). This suggests that, when n = 1 (mod 4), i.e., n =
4k + 1 (k ∈ N ), the boundary �

(4k+1)
B = cos (πk/(k + 1)) is

included in the set of exceptional points Se. Since the spe-
cial properties of the NLDWs at these points are discussed
in Sec. VI, here we focus on the remaining cases: n =
0, 2, 3 (mod 4), i.e., n = 2k, 4k − 1 (k ∈ N ).

The boundaries of D(2k)
N (�) and D(4k−1)

N (�) are included
in Sl = {cos (π (2p − 1)/(2p − 1 + 2q)) | p, q ∈ N} because
�

(2k)
B and �

(4k−1)
B correspond to the cases when p = k, q =

2 and p = k, q = 1, respectively. In these cases, the detailed
analysis in Appendix A shows that the finite-size scaling of
egs(�) obeys

egs(�) − egs(0)

=
∑

k�1,s�0
k+s(2p−1)�l�1

Ck,l,s

(
1

N

)2k+2s(2p−1)

(log N )s�2l

+
∑

k,l,m�1
s�0

Dk,l,m,s

(
1

N

)2k+ 4mγ

π−γ
+2s(2p−1)

(log N )s�2l , (9)

where � ∈ Sl , and Ck,l,s and Dk,l,m,s are coefficients depend-
ing on γ (see Appendix A). From Eq. (9), the NLDWs at their
boundaries can be calculated as

D(2k)
N,B (�) =

{
Yk (�) + O

( log N
N

)
if k = 1,

Yk (�) + O
(

1
N

)
if k � 2,

(10)

D(4k−1)
N,B (�) = (4k)!C1,2k,1 log N + O(1), (11)

where Yk (�) ≡ ∑
l>k (2l )!/(2l − 2k − 1)!D1,l,1,0�

2l−2k−1.
Note that the subscript “B” is introduced to indicate the
value at the boundary. The above results mean that D(2k)

N,B (�)
converges to the finite value Yk (�) in the thermodynamic
limit. On the other hand, D(4k−1)

N,B (�) shows the logarithmic
divergence in the large-N limit (see Table I). The analytical
form of Yk (�) can be obtained from Eq. (4.1) in Ref. [32] as

Yk (�)

= −
16πJ sin γ sin

( 2πγ

π−γ

)
γ

	2
(

π
π−γ

)
	2

( − 2π
π−γ

)
	2

( − π
π−γ

)

×
[

(π − γ ) 	
(

π−γ

2γ

)
√

π 	
(

π
2γ

)
] 4γ

π−γ d2k+1

d�2k+1

	
(

�+2π
2(π−γ )

)
	
(−�+2π

2(π−γ )

)
	
(

�−2γ

2(π−γ )

)
	
(−�−2γ

2(π−γ )

) .

(12)

These behaviors can be confirmed numerically. The numer-
ical results for D(2)

N (� = 0.1) and N∂ND(3)
N (0) around their

boundaries are shown in Figs. 3(a) and 3(b), respectively.
Figure 3(a) shows that in the large-N region, the data points
for D(2)

N (� = 0.1) at the boundary fall almost on a straight
line and approaching the analytical value indicated by the
orange dotted line. From Fig. 3(a), the value of D(2)

N,B(� =

205116-4
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(a) (2)
N ( )

= cos( /5) 0.05

= cos( /5) (= (2)
B )

= cos( /5)+ 0.05

0.000 0.001 0.002 0.003 0.004 0.005
1/N

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(b) N N
(3)
N (0)

= 0.45

= 0.5 (= (3)
B )

= 0.55

FIG. 3. Numerical results for D(2)
N (� = 0.1) around � = �

(2)
B = cos (π/5) and N∂ND(3)

N (0) around � = �
(3)
B = 0.5 are shown in (a) and

(b), respectively. They have been studied for system sizes ranging from N = 300 up to N = 3500. All the vertical axes are scaled with J .
Panels (a) and (b) show that both quantities vanish below the boundary (blue marker) and diverge (red marker) above the boundary. On the
other hand, at the boundary (green marker), D(2)

N (� = 0.1) and N∂ND(3)
N (0) converge to finite values, and these values can be estimated by the

linear extrapolation as −0.006476 . . . and −0.1414 . . . , respectively. The orange dotted lines indicate the analytical value of D(2)
N (� = 0.1) at

� = �
(2)
B and N∂ND(3)

N (0) at � = �
(3)
B in the thermodynamic limit (N → ∞).

0.1)/J at 1/N = 0 can be estimated as −0.006476 . . . by the
linear extrapolation. Although this value is slightly different
from the analytical value Y1(� = 0.1)/J = −0.006470 . . . at
γ = γ

(2)
B = π/5, we believe that this difference is due to

numerical errors in the finite-differentiation and the extrap-
olation process. We can also see that in the large-N limit,
the behavior of D(2)

N (� = 0.1) above and below the bound-
ary becomes diverging and vanishing, respectively, which is
consistent with Eq. (8).

Figure 3(b) shows that the data for N∂ND(3)
N (0) at the

boundary fall almost on a straight line in the large-N region.
Note that by calculating the quantities related to the derivative
of the NLDWs with respect to N , we can avoid observing di-
rectly the logarithmic divergence of the NLDWs themselves,
which is very difficult to identify numerically. As a result,
we can confirm that D(3)

N (0) shows the logarithmic divergence
at the boundary as we have expected from Eq. (11). This is
because Eq. (11) yields

N∂ND(4k−1)
N,B (�) = (4k)!C1,2k,1 + o(1), (13)

and thus, for the case k = 1, we have N∂ND(3)
N,B(0) =

4!C1,2,1 + o(1). Here we have approximated the derivative
with respect to N by finite differences. From Fig. 3(b),
the value of N∂ND(3)

N,B(0)/J at 1/N = 0 can be estimated
as −0.1414 . . . by the linear extrapolation. On the other
hand, the analytical expression for 4!C1,2,1 can be obtained
as −81

√
3J/(32π3) by setting γ = π/3 + ε and expanding

Eq. (4.1) of Ref. [32] in ε around ε = 0. Thus we can in-
deed confirm that N∂ND(3)

N,B(0) in Fig. 3(b) converges to the

analytical value 4!C1,2,1/J = −81
√

3/(32π3) = −0.1414 . . .

indicated by the orange dotted line. We can also see that
the behavior of N∂ND(3)

N (0) above and below the boundary
becomes diverging and vanishing in the large-N limit, respec-
tively. The same holds for general k and can be understood

from the following relation:

N∂ND(4k−1)
N (0)

= (4k)!

[
− 2A2k+1,2kN−2

+
(

4k − 2 − 4γ

π − γ

)
B1,2k,1N4k−2− 4γ

π−γ + · · ·
]
, (14)

which follows from Eq. (7). Since the power of the second
term in Eq. (14) is the same as one appearing in Eq. (7)
for D(4k−1)

N (�), the above quantity in the convergent region
S (4k−1)

c vanishes in the thermodynamic limit. On the other
hand, the large-N asymptotic behavior of the above quantity
is the power-law divergence of the form N∂ND(4k−1)

N (0) ∼
N4k−2−4γ /(π−γ ) in the divergent region S (4k−1)

d .

VI. EXCEPTIONAL POINTS

Now we focus on the behavior of the NLDWs at the excep-
tional points Se = {cos (πr/(r + 1)) | r ∈ N}. These points
have a special property that all the coefficients Bk,l,m in Eq. (6)
vanish identically. This can be derived analytically by using
the Wiener-Hopf method (see Appendix A). As a result, the
finite-size scaling of egs(�) can be written as

egs(�) − egs(0) =
∑

k�l�1

Ak,l

(
1

N

)2k

�2l (15)

for � ∈ Se. For example, we can obtain the exact form of
egs(�) at the free-fermion point (� = 0) [7,33,34] as

efree
gs (�) − efree

gs (0) = 2J

N sin
(

π
N

)[1 − cos

(
�

N

)]
. (16)

The large-N expansion of Eq. (16) consists of the terms
�α/Nβ with α, β integers and α � β. Thus, nonanalytic
finite-size corrections do not appear in the expansion. This is
obviously consistent with Eq.(15).
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FIG. 4. (a) The points in Se = {cos (πr/(r + 1)) | r ∈ N}. At
these points, all the NLDWs converge in the thermodynamic limit.
(b) The numerical result for D(11)

N (0) where the vertical axis is
scaled with J . The figure shows that D(11)

N (0) converges to a finite
value at � = 0 and −0.5. The green region represents a part of the
divergent region S (11)

d . (c) The numerical results for r (11)(1/N ) ≡
D(11)

N (0)/(12! B1,6,1N10−4γ /(π−γ ) ) around � = 0 and −0.5. They in-
dicate the presence of noninteger powers of 1/N in Eq. (7).

Interestingly, in the thermodynamic limit, all the NLDWs
converge at any � in Se [see Fig. 4(a)]. This can be seen by
noting that

D(2k−1)
N (�) = (2k)!Ak,k + O

(
1

N2

)
, (17)

D(2k)
N (�) = (2k + 2)!Ak+1,k+1

�

N
+ O

(
1

N3

)
, (18)

which means that the odd-order NLDWs remain finite, while
the even-order ones vanish in the thermodynamic limit (see
Table I). These convergent behaviors of all the NLDWs are
consistent with the prediction based on numerical studies of
small systems [35].

We can confirm these behaviors by numerically solving
the Bethe ansatz equations for large system sizes. The ex-
ceptional points where all the NLDWs converge are shown
in Fig. 4(a). There are infinitely many such points and they
accumulate at the ferromagnetic point � = −1. The numer-
ical result for D(11)

N (0) is shown in Fig. 4(b). As we can see
in Fig. 4(b), the two points � = 0 and −0.5 included in
S (11)

e are surrounded by the divergent region S (11)
d which is

colored in green. However, D(11)
N (0) at these points converge

unlike the divergent behaviors around the points. Since the
divergent behaviors there should be caused by noninteger
power terms of N in Eq. (7), we calculated r (11)(1/N ) ≡
D(11)

N (0)/(12! B1,6,1N10−4γ /(π−γ ) ) numerically. The result for
this quantity is shown in Fig. 4(c). This figure clearly shows
that each data is on a straight line to the value near 1 in the
large-N region as we have expected.

Some remarks are in order. First, the spin- 1
2 XXZ chain

with periodic boundary conditions has a special symmetry
related to the sl2 loop algebra [36,37] at the exceptional points
Se [38]. We speculate that this symmetry is responsible for the
convergence of all the NLDWs in the thermodynamic limit.
Second, the coefficient of the umklapp scattering term (the
cosine term) in the low-energy effective Hamiltonian of the
XXZ chain vanishes at these points (see Eq. (2.23) in [32]).
Considering that this term leads to the nonanalytic finite-size
corrections and gives the leading contribution to the power-
law divergence, we can see that its vanishing is consistent with
the convergence of all the NLDWs. Finally, the ground-state
energy egs(�) has the peculiar adiabatic period at these points.
For this case the adiabatic period of egs(�) is of the order
of the system size N , while for the other cases the period
is 4π [39]. Based on this property, numerical calculations
for small system sizes have recently revealed that the current
density exhibits nontrivial oscillations, so-called Bloch oscil-
lations, at the points in Se even under an infinitesimal external
field [35].

VII. DISCUSSION AND CONCLUSION

In this paper, we examined the fine structure of the NLDWs
at zero temperature for the spin- 1

2 XXZ chain in the criti-
cal regime (see Fig. 2). In order to calculate the NLDWs,
we investigated the finite-size corrections to the ground-state
energy of the chain with U (1) flux and revealed that its finite-
size scaling was quite distinct depending on the anisotropy
parameter �. Based on the expansions Eqs. (6), (9), and (15),
we studied the large-size asymptotic behavior of the NLDWs
both analytically and numerically. The analysis determined
the convergent and divergent regions of the NLDWs, the
boundary of which depends on the order of the response n.
We studied the behaviors of the NLDWs at the boundaries
in detail and found that they converge for n = 0, 1, 2 (mod
4), while they show the logarithmic divergence for n = 3
(mod 4) in the large system-size limit (see Table I). In ad-
dition, we numerically confirmed not only the convergence
but also the logarithmic divergence at the boundaries of the
first several orders of the NLDWs (see Fig. 3). Furthermore,
we revealed that there exist special values of � where all the
NLDWs converge in the thermodynamic limit. Since higher-
order ones have wider divergent regions, some of the special
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� are surrounded by the divergent region. We confirmed this
discontinuous behavior in the critical regime by calculating
one of the higher-order NLDWs numerically (see Fig. 4).

In order to obtain the finite-size scaling of the ground-state
energy, we employed the Wiener-Hopf method for the finite-
size system, which is based on the Euler-Maclaurin formula
[40,41]. Traditionally, when calculating the leading finite-size
corrections to the ground-state energy, higher-order terms in-
cluded in the expansion by this formula are often ignored
[23,42]. In general, there is no guarantee that these terms
are negligible to calculate the corrections in other problems
[43,44]. Thus, in our study, we took all these higher-order
terms into account and obtained the higher-order corrections
to egs(�) as well as the leading ones. Here we should note
that although this enables us to overcome the above problem,
we cannot determine the coefficients of these corrections in
closed form within this approach. Also, we assume that egs(�)
can be Taylor-expanded around � = 0 based on the symmetry
of the model and comparison with the analytical results in the
thermodynamic limit [16]. Therefore, although we have con-
firmed our results numerically for several �, a more rigorous
derivation of the results using another method is desirable and
would be an interesting future direction.

Finally, we discuss the implications of our results to the
transport phenomena. One might think that the divergent be-
haviors of NLDWs imply the divergence of a total current
density. However, this seems unlikely because contributions to
the current density from different orders can cancel each other
out. In fact, a similar situation is observed in a single-band
tight-binding chain with a defect [18]. Although the NLDWs
of this system generally diverge with system size, real-time
numerical simulation suggests that the adiabatic current den-
sity is suppressed compared to the defect-free case, in which
the NLDW remains finite at any order.
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APPENDIX A: THE FINITE-SIZE CORRECTIONS
FOR THE SPIN- 1

2 XXZ CHAIN

By using the Wiener-Hopf method, we calculate the finite-
size corrections to the ground-state energy of the spin- 1

2 XXZ
chain with periodic boundary conditions:

Ĥ(0) =
N∑

l=1

2J
[
Ŝx

l Ŝx
l+1 + Ŝy

l Ŝy
l+1 + �Ŝz

l Ŝz
l+1

]
. (A1)

Although these finite-size corrections based on the same
method had been partly discussed in Refs. [23,42], here we
expose the mathematical details and illustrate the derivation
process for readers’ convenience. This detailed analysis also
enables us to reveal that there are some cases with logarith-
mic finite-size corrections. As a result, we derive the general

expression of the finite-size corrections including logarithmic
ones. Furthermore, after calculating these finite-size correc-
tions, we introduce the U (1) flux into them and obtain the
finite-size scaling of egs(�).

1. Setup

First, we review the Bethe ansatz and derive some im-
portant relations. It is known that the ground-state energy of
the above model can be obtained by this ansatz. The Bethe
roots {v j} are determined by the following Bethe equations
for j = 1, 2, . . . , N/2:

ZN (v j ) = 2π I j

N
= π

N

(
−N

2
+ 2 j − 1

)
, (A2)

where

ZN (v) ≡ p1(v) − 1

N

N/2∑
k=1

p2(v − vk ) (A3)

with

pn(v) ≡ 2 tan−1

(
tanh γ

2 v

tan nγ

2

)
. (A4)

Note that there exists a unique set of real solutions {v j} satisfy-
ing −∞ � v1 < v2 < . . . < vN/2 � ∞ and v j = −vN/2− j+1.
Differentiating Eq. (A3) with respect to v, we get

ρN (v) ≡ 1

2π

dZN (v)

dv
= a1(v) − 1

N

N/2∑
k=1

a2(v − vk ) (A5)

= ρN (−v), (A6)

where

an(v) ≡ 1

2π

d

dv
pn(v) = γ

2π

sin nγ

cosh γ v − cos nγ
(A7)

= an(−v). (A8)

Then {v j} gives the ground-state energy density as

egs,N = −2πA

N

N/2∑
j=1

a1(v j ) + �

2
, (A9)

where A = 2J sin γ /γ . Now we introduce a new useful func-
tion SN (v) as

SN (v) ≡ 1

N

N/2∑
j=1

δ(v − v j ) − ρN (v). (A10)

This transforms Eq. (A5) into the following form:

ρN (v) = a1(v) −
∫ ∞

−∞

(
1

N

N/2∑
k=1

δ(x − v j )

)
a2(v − x)dx

= a1(v) −
∫ ∞

−∞
ρN (x)a2(v − x)dx

−
∫ ∞

−∞
SN (x)a2(v − x)dx. (A11)

205116-7



YUHI TANIKAWA AND HOSHO KATSURA PHYSICAL REVIEW B 104, 205116 (2021)

Here we define a Fourier transformation of a function f (x) as

f̃ (ω) =
∫ ∞

−∞
f (x)eiωxdx. (A12)

By using Fourier transformation on both sides of Eq. (A11),
we get

ρ̃N (ω) = ã1(ω)

1 + ã2(ω)
− S̃N (ω)

ã2(ω)

1 + ã2(ω)
, (A13)

where the Fourier transform of an(v) is

ãn(ω) =
∫ ∞

−∞
an(x)eiωxdx =

sinh
(

π
γ

− n
)
ω

sinh π
γ
ω

(A14)

= ãn(−ω). (A15)

Then by using Fourier transformation on both sides of
Eq. (A13), we obtain

ρN (v) = ρ∞(v) −
∫ ∞

−∞
SN (x)R(v − x)dx, (A16)

where ρ∞(v) and R(v) are defined as follows:

ρ∞(v) ≡ 1

2π

∫ ∞

−∞
e−iωv ã1(ω)

1 + ã2(ω)
dω

= 1

2π

∫ ∞

−∞

e−iωv

2 cosh ω
dω = 1

4 cosh π
2 v

(A17)

= ρ∞(−v), (A18)

R(v) ≡ 1

2π

∫ ∞

−∞
e−iωv ã2(ω)

1 + ã2(ω)
dω

= 1

2π

∫ ∞

−∞
e−iωv

sinh
(

π
γ

− 2
)
ω

2 cosh ω sinh
(

π
γ

− 1
)
ω

dω (A19)

= R(−v). (A20)

Note that ρ∞(v) is the exact representation of ρN (v) in the
thermodynamic limit. Similarly, Eq. (A9) leads to

egs,N = −2πA
∫ ∞

−∞

(
1

N

N/2∑
k=1

δ(v − v j )

)
a1(v)dv + �

2

= −2πA
∫ ∞

−∞
[SN (v) + ρN (v)]a1(v)dv + �

2

= −2πA
∫ ∞

−∞
ρ∞(v)a1(v)dv + �

2

− 2πA
∫ ∞

−∞
SN (v)a1(v)dv

+ 2πA
∫ ∞

−∞

(∫ ∞

−∞
SN (x)R(v − x)dx

)
a1(v)dv

= egs,∞ − 2πA
∫ ∞

−∞
SN (v)ρ∞(v)dv, (A21)

where we introduced

egs,∞ ≡ −2πA
∫ ∞

−∞
ρ∞(v)a1(v)dv + �

2
. (A22)

Note that the third line follows from Eq. (A16) and the last
from the following relation:∫ ∞

−∞

(
SN (v) −

∫ ∞

−∞
SN (x)R(v − x)dx

)
a1(v)dv

=
∫ ∞

−∞

(
1

2π

∫ ∞

−∞
e−iωv S̃N (ω)

1 + ã2(ω)
dω

)
a1(v)dv

= 1

2π

∫ ∞

−∞
S̃N (ω)

ã1(ω)

1 + ã2(ω)
dω

= 1

2π

∫ ∞

−∞
S̃N (ω)ρ̃∞(ω)dω

=
∫ ∞

−∞
SN (v)ρ∞(v)dv. (A23)

Since we can see that only the second term in Eq. (A21) is
responsible for the finite-size corrections to the ground-state
energy, we only have to evaluate the effect of SN (v) to achieve
the goal.

Next, we introduce a useful formula to treat SN (v) included
in the integral. The derivation of the formula is based on the
Euler-Maclaurin formula [40,41]:

n∑
j=m

f ( j) =
∫ n

m
f (x)dx + f (m) + f (n)

2

+
∫ n

m
f ′(x)B1(x − �x�)dx, (A24)

where f (x) is a continuous function, �x� is the floor function,
and Bk (x) is the kth Bernoulli polynomial satisfying

B0(x) = 1, (A25)

B′
k (x) = kBk−1(x) (k � 1), (A26)∫ 1

0
Bk (x)dx = 0 (k � 1). (A27)

By using the recurrence relation (A26) and integral by parts,
we naively obtain

n∑
j=m

f ( j) =
∫ n

m
f (x)dx + f (m) + f (n)

2

+
∞∑

k=1

Bk+1

(k + 1)!
[ f (k)(n) − f (k)(m)], (A28)

where Bk = Bk (0) is the kth Bernoulli number. Although we
have B2l+1 = 0 (l ∈ N ), we keep these terms explicit in the
following discussion. The above relation and the fact that
I j+1 − I j = 1 give us the following relation:

N/2∑
j=1

f (v j ) =
IN/2∑
I=I1

f

(
Z−1

N

(
2π I

N

))
(A29)

=
∫ IN/2

I1

f

(
Z−1

N

(
2πx

N

))
dx + f (v1) + f (vN/2)

2

+
∞∑

k=1

Bk+1

(k + 1)!

dk

dxk
f

(
Z−1

N

(
2πx

N

))∣∣∣∣∣
x=IN/2

x=I1

(A30)
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= N
∫ vN/2

v1

f (v)ρN (v)dv + f (v1) + f (vN/2)

2

+
∞∑

k=1

Bk+1

Nk (k + 1)!

(
1

ρN (v)

d

dv

)k

f (v)

∣∣∣∣∣
v=vN/2

v=v1

,

(A31)

where we defined v(x) ≡ Z−1
N (2πx/N ) satisfying v(I j ) =

Z−1
N (2π I j/N ) = v j and used

ZN (v(x)) = 2πx

N
⇒ dZN

dv
= 2πρN (v) = 2π

N

dx

dv
. (A32)

Therefore, we obtain∫ ∞

−∞
SN (v) f (v)dv

= 1

N

N/2∑
j=1

f (v j ) −
∫ ∞

−∞
f (v)ρN (v)dv

= −
(∫ ∞

vN/2

+
∫ v1

−∞

)
f (v)ρN (v)dv + f (v1) + f (vN/2)

2N

+ 1

N

∞∑
k=1

Bk+1

Nk (k+1)!

(
1

ρN (v)

d

dv

)k

f (v)

∣∣∣∣∣
v=vN/2

v=v1

. (A33)

It is obvious that the above relation enables us to evaluate the
finite-size corrections in Eqs. (A16) and (A21).

Finally, we introduce important relations employed in the
Wiener-Hopf method briefly. In the following discussion, we
denote vN/2(= −v1) as �. By using Eq. (A33), we get

ρN (v) − ρ∞(v)

=
(∫ ∞

�

+
∫ −�

−∞

)
R(v − u)ρN (u)du

−R(v + �) + R(v − �)

2N

− 1

N

∞∑
k=1

Bk+1

Nk (k + 1)!

(
1

ρN (u)

d

du

)k

R(v − u)

∣∣∣∣∣
u=�

u=−�

,

(A34)

egs,N − egs,∞

= 2πA

{(∫ ∞

�

+
∫ −�

−∞

)
ρ∞(v)ρN (v)dv

− ρ∞(�) + ρ∞(−�)

2N

− 1

N

∞∑
k=1

Bk+1

Nk (k + 1)!

(
1

ρN (v)

d

dv

)k

ρ∞(v)

∣∣∣∣∣
v=�

v=−�

}
.

(A35)

These are the complete representations of the finite-size
corrections using N and �. Thus, in order to obtain the correc-
tions using only N , we have to derive the relation between N
and �. (Actually, we can roughly identify e−(π/2)� with 1/N

as we will see in the following discussion.) Now we introduce
new functions

g(v) ≡ ρN (v + �) = g+(v) + g−(v), (A36)

g±(v) ≡ �(±v)g(v), (A37)

where �(v) is a Heaviside step function. Then by substituting
v + � to the argument of Eq. (A34), we have

g(v) − ρ∞(v + �)

=
∫ ∞

−∞
{R(v − u) + R(v + u + 2�)}g+(u)du

− R(v + 2�) + R(v)

2N

− 1

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
R(k)(v)

− 1

N

∞∑
k=1

Qk

(
1

N
,
{
ρ

(n)
N (�)

})
R(k)(v + 2�), (A38)

where we introduced coefficients Pk and Qk depending on
1/N and ρ

(n)
N (�) ( = g(n)(0)) for n � 0, and superscripts de-

note numbers of derivatives. Note that Eq. (A34) suggests that
all the terms included in Pk or Qk can be expressed as follows:

(const.) × 1

Nl

∏∞
n=1

(
ρ

(n)
N (�)

)Nn

(ρN (�))m , (A39)

where l, m, Nn ∈ Z�0, and each power satisfies
∑

n Nn =
m − l and

∑
n nNn = l − k. Since we have ρ

(n)
N (�) ∼

O(e−(π/2)�) ∼ O(1/N ), which can be seen in the following
discussion, Eq. (A39) implies Pk,Qk ∼ O(1).

Here we investigate behaviors of ρ∞(v + �) and R(v +
2�) for v > 0, which appear in Eq.(A38). Since Eqs. (A17)
and (A19) give

ρ∞(v + �) = 1

2π

∫ ∞

−∞

e−iω(v+�)

2 cosh ω
dω

= 1

2π

∫ ∞

−∞
ρ̃∞(ω)e−iω(v+�)dω, (A40)

R(v + 2�) = 1

2π

∫ ∞

−∞
e−iω(v+2�)

sinh
(

π
γ

− 2
)
ω

2 cosh ω sinh
(

π
γ

− 1
)
ω

dω

= 1

2π

∫ ∞

−∞
R̃(ω)e−iω(v+2�)dω, (A41)

we can see that poles of ρ̃∞(ω) or R̃(ω) in the lower half-
plane contribute to ρ∞(v + �) and R(v + 2�), respectively.
The position of the poles can be read off from the explicit
expressions for ρ̃∞(ω) and R̃(ω) as follows:

ρ̃∞(ω) → poles : ω = −iπ
(
p − 1

2

)
, (A42)

R̃(ω) → poles : ω = −iπ

(
p − 1

2

)
,−i

qπγ

π − γ
, (A43)

where p, q ∈ N. Since R̃(ω) have poles dependent on the
parameter γ , in order to obtain the finite-size corrections, we
must consider whether all the poles of R̃(ω) are distinct or
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TABLE III. Classification of the finite-size corrections.

Case Value of parameter �

(i) (−1, 1) \ (Se ∪ Sl )

(ii)
{

cos
(

πr
r+1

) ∣∣∣ r ∈ N
} ( ≡ Se

)
(iii)

{
cos

(
π (2p−1)
2p−1+2q

) ∣∣∣ p, q ∈ N
} ( ≡ Sl

)

not. Thus, we perform the following classification shown in
Table III. Actually, this classification is essential to ensure
convergence of coefficients Ak,l , Bk,l,m,Ck,l,s, and Dk,l,m,s ap-
pearing in Eqs. (A91), (A95), and (A103).

2. Case (i): � ∈ (−1, 1) \ (Se ∪ Sl )

Here we consider the case of γ �= π (2p − 1)/(2p − 1 +
2q) or πr/(r + 1) (p, q, r ∈ N ). In this case, all the poles of
ρ̃∞(ω) (R̃(ω)) are distinct simple poles. Thus, we have

ρ∞(v + �)

=
∑
p′�1

Res

(
ρ̃∞,−iπ

(
p′ − 1

2

))
e−π(p′− 1

2 )(v+�)

i
(A44)

= Res
(
ρ̃∞,−i

π

2

)e− π
2 (v+�)

i

+ Res

(
ρ̃∞,−i

3π

2

)
e− 3π

2 (v+�)

i
+ · · · , (A45)

R(v + 2�)

=
∑
p′�1

Res

(
R̃,−iπ

(
p′ − 1

2

))
e−π(p′− 1

2 )(v+2�)

i

+
∑
q′�1

Res

(
R̃,−i

q′πγ

π − γ

)
e− q′πγ

π−γ
(v+2�)

i
(A46)

= Res
(

R̃,−i
π

2

)e− π
2 (v+2�)

i

+ Res

(
R̃,−i

πγ

π − γ

)
e− πγ

π−γ
(v+2�)

i
+ · · · , (A47)

for v > 0. Here we denoted a residue of a function f (x) at
x = x0 as Res( f , x0). It is obvious that poles closer to the real
axis contribute to the smaller power of e−(π/2)�. Therefore
Eq. (A38) implies that g(v) can also be expanded as

g(v) = g[1](v) + g[2](v) + · · · , (A48)

where superscripts denote increasing powers of e−(π/2)�

or 1/N . Then by substituting Eq. (A48) into Eq. (A38)
and extracting the same order terms, we obtain, for
example,

g[1](v) − [ρ∞(v + �)][1]

=
∫ ∞

−∞
R(v − u)g[1]

+ (u)du − R(v)

2N

−
[

1

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
R(k)(v)

][1]

, (A49)

g[2](v) − [ρ∞(v + �)][2]

=
∫ ∞

−∞
R(v − u)g[2]

+ (u)du

+
[∫ ∞

−∞
R(v+u+2�)g[1]

+ (u)du

][2]

−
[

R(v+2�)

2N

][2]

−
[

1

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
R(k)(v)

][2]

−
[

1

N

∞∑
k=1

Qk

(
1

N
,
{
ρ

(n)
N (�)

})
R(k)(v + 2�)

][2]

,

(A50)

where superscripts [· · · ][n] again denote increasing powers of
e−(π/2)� or 1/N . By using Fourier transformation and integral
by parts, we get

g̃[1]
+ (ω) + g̃[1]

− (ω) − [
ρ̃∞(ω)e−iω�

][1]

= R̃(ω)g̃[1]
+ (ω) − R̃(ω)

2N

−
[

R̃(ω)

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][1]

, (A51)

g̃[2]
+ (ω) + g̃[2]

− (ω) − [
ρ̃∞(ω)e−iω�

][2]

= R̃(ω)g̃[2]
+ (ω) + [

R̃(ω)g̃[1]
+ (−ω)e−i2ω�

][2]

−
[

R̃(ω)e−i2ω�

2N

][2]

−
[

R̃(ω)

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][2]

−
[

R̃(ω)e−i2ω�

N

∞∑
k=1

Qk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][2]

.

(A52)

From the above relations, we can obtain the orders of g̃[1]
+ (ω)

and g̃[2]
+ (ω) by splitting the whole into two parts: The part

analytic in the upper half-plane and the other part analytic in
the lower half-plane. Now we recall that a Fourier transform
f̃ (ω) can be split as follows:

f̃ (ω) = f̃+(ω) + f̃−(ω), (A53)

where f̃+(ω) and f̃−(ω) are defined as

f̃±(ω) ≡ ± i

2π

∫ ∞

−∞

f̃ (ω′)
ω − ω′ ± i0

dω′ (A54)

=
∫ ∞

−∞
�(±x) f (x)eiωxdx (A55)

and are analytic in the upper and lower half-plane, respec-
tively (actually, g̃[n]

± (ω) are examples). We also introduce the
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following convenient factorization [16,20,22–24]:

1 − R̃(ω) = 1

G+(ω)G−(ω)
, (A56)

where G+(ω) and G−(ω) are written as

G+(ω) =
√

2(π − γ )	
(
1 − i ω

γ

)
	
(

1
2 − i ω

π

)
	
(
1 − iωπ−γ

πγ

)
⎛
⎝
(

π
γ

− 1
) π

γ
−1

(
π
γ

) π
γ

⎞
⎠

−i ω
π

(A57)

= G−(−ω) (A58)

and are analytic and nonzero in the upper and lower half-
plane, respectively. Here we calculate g̃[1]

+ (ω) as an example.
By using the above methods for splitting, we can transform
Eq. (A51) as

g̃[1]
+ (ω)

G+(ω)
− [

G−(ω)ρ̃∞(ω)e−iω�
][1]

+ +
[

G−(ω)
R̃(ω)

2N

][1]

+

+
[

G−(ω)
R̃(ω)

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][1]

+

= −G−(ω)g̃[1]
− (ω) + [

G−(ω)ρ̃∞(ω)e−iω�
][1]

−

−
[

G−(ω)
R̃(ω)

2N

][1]

−

−
[

G−(ω)
R̃(ω)

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][1]

−
(A59)

≡ P[1](ω). (A60)

We see that the left- and right-hand side of Eq. (A59) are
analytic in the upper and lower half-plane, respectively. Since
both of them are analytic on the real axis, the right-hand side
of Eq. (A59) is the analytic continuation of the left-hand side,
and thus there should be the entirely analytic form P[1](ω)
[23,25]. Although the form of P[1](ω) is determined so that
g̃[1]

+ (ω) → 0 (|ω| → ∞), we do not need the explicit form for
our purposes. As a result, we obtain

g̃[1]
+ (ω)

= G+(ω)

{[
G−(ω)ρ̃∞(ω)e−iω�

][1]

+ −
[

G−(ω)
R̃(ω)

2N

][1]

+

−
[

G−(ω)
R̃(ω)

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][1]

+

+ P[1](ω)

}
(A61)

= G+(ω)

{
i
2 G+

(
i π

2

)
ω + i π

2

e− π
2 � + R̃(ω)

2NG+(ω)

−
[

G−(ω)
R̃(ω)

N

∞∑
k=1

Pk

(
1

N
,
{
ρ

(n)
N (�)

})
(−iω)k

][1]

+

+ P[1](ω)

}
(A62)

= c1(ω)e− π
2 � + c2(ω)

1

N
+

[
c3

(
ω,

1

N
,
{
ρ

(n)
N (�)

}) 1

N

][1]

,

(A63)

where c1, c2, and c3 ( ∼ O(1)) are certain coefficients. The
term with e− π

2 � originally derives from the term

G+(ω)
[
G−(ω)ρ̃∞(ω)e−iω�

][1]

+ = G+(ω)
i
2 G+

(
i π

2

)
ω + i π

2

e− π
2 �,

(A64)

which is contributed by the simple pole of ρ̃∞(ω) closest
to the real axis: ω = −iπ/2. The higher-order ones can be
calculated in the same way. However, since in that case the
poles of R̃(ω) contribute to g̃[n]

+ (ω) via

G+(ω)
[
G−(ω)R̃(ω)g̃+(−ω)e−i2ω�

][n]

+ , (A65)

for example, g̃[n]
+ (ω) can contain special power terms like

(e− π
2 �)4γ /(π−γ ). Therefore we have

g̃+(ω) = g̃[1]
+ (ω) + g̃[2]

+ (ω) + g̃[3]
+ (ω) + · · ·

=
∑

k, l, m � 0
k + l = odd

Ak,l,m(ω)

(
1

N

)k(
e− π

2 �
)l+ 4mγ

π−γ

+ B
(

ω,
1

N
,
{
ρ

(n)
N (�)

}) 1

N
, (A66)

where Ak,l,m and B ( ∼ O(1)) are certain coefficients. Now
we can obtain the relation between � and N . Recalling
Eqs. (A2) and (A3),

ZN (∞) − ZN (vN/2) = π − γ − π − 2γ

2
− 2π IN/2

N
= π

N
(A67)

= 2π

∫ ∞

vN/2

ρN (v)dv = 2π g̃+(0), (A68)

we get

g̃+(0) =
∑

k, l, m � 0
k + l = odd

Ak,l,m(0)

(
1

N

)k(
e− π

2 �
)l+ 4mγ

π−γ

+B
(

0,
1

N
,
{
ρ

(n)
N (�)

}) 1

N
(A69)

= 1

2N
(A70)

⇒ 1

N
=

∑
k, l, m � 0
k + l = odd

2Ak,l,m(0)

(
1

N

)k(
e− π

2 �
)l+ 4mγ

π−γ

+2B
(

0,
1

N
,
{
ρ

(n)
N (�)

}) 1

N
. (A71)
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Then by substituting Eq. (A71) into its right-hand side succes-
sively, we obtain

1

N
=

∑
k,l�0

[
Ck,l + Dk,l

(
e− π

2 �,
{
ρ

(n)
N (�)

})](
e− π

2 �
)2k+1+ 4lγ

π−γ ,

(A72)

where Ck,l and Dk,l ( ∼ O(1)) are certain coefficients. Note
that all the terms included in Dk,l are expressed as follows:

(const.) × (
e− π

2 �
)s

∏∞
n=1

(
ρ

(n)
N (�)

)Nn

(ρN (�))m , (A73)

where s, m, Nn ∈ Z�0, and each power satisfies
∑

n Nn =
m − s. Here since we have

ρN (�) = g(0) = 2g+(0) = 1

π

∫ ∞

−∞
g̃+(ω)dω (A74)

=
∑

k, l, m � 0
k + l = odd

Ek,l,m

[(
1

N

)k(
e− π

2 �
)l+ 4mγ

π−γ

]

+ F
(

1

N
,
{
ρ

(n′ )
N (�)

}) 1

N
, (A75)

ρ
(n)
N (�) can be expressed as

ρ
(n)
N (�) = dn

d�n
ρN (�) = 1

π

dn

d�

∫ ∞

−∞
g̃+(ω)dω (A76)

=
∑

k, l, m � 0
k + l = odd

Ek,l,m
dn

d�n

[(
1

N

)k(
e− π

2 �
)l+ 4mγ

π−γ

]

+ dn

d�n

[
F
(

1

N
,
{
ρ

(n′ )
N (�)

}) 1

N

]
, (A77)

where we introduced coefficients Ek,l,m and F as the integral
values of Ak,l,m and B, respectively. Thus by substituting
Eqs. (A72) and (A77) into the right-hand side of Eq. (A77)
successively and using the Maclaurin expansion with respect
to e− π

2 � (� 1), we obtain

ρ
(n)
N (�) =

∑
k,l�0

Hn,k,l
(
e− π

2 �
)2k+1+ 4lγ

π−γ , (A78)

where Hn,k,l is a certain coefficient. Since Eqs. (A66), (A72),
and (A78) give us

g̃+(ω) =
∑
k,l�0

Ik,l (ω)
(
e− π

2 �
)2k+1+ 4lγ

π−γ , (A79)

we finally get the following relation between N and � from
Eq. (A70):

1

2N
=

∑
k,l�0

Ik,l (0)
(
e− π

2 �
)2k+1+ 4lγ

π−γ , (A80)

⇔ e− π
2 � = 1

I0,0(0)

[
1

2N
−

∑
k+l�1

Ik,l (0)
(
e− π

2 �
)2k+1+ 4lγ

π−γ

]
,

(A81)

where Ik,l (ω) is a certain coefficient. Then the sequential
substitution of its right-hand side into e− π

2 � yields

e− π
2 � =

∑
k,l�0

Jk,l

(
1

N

)2k+1+ 4lγ
π−γ

, (A82)

where Jk,l is a certain coefficient.
Now we can express egs,N by using only N . In order to

obtain this expression, we use the following relations:∫ ∞

−∞
ρ∞(v + �)g+(v)dv

=
∫ ∞

−∞

g+(v)

4 cosh π
2 (v + �)

dv

= 1

2

∫ ∞

−∞
g+(v)e− π

2 (v+�)
∞∑

k=0

(−e−π (v+�)
)k

dv

= e− π�
2

2

∞∑
k=0

g̃+

(
i
π (2k + 1)

2

)
(−e−π�)k, (A83)

ρ∞(�) = 1

4 cosh π
2 �

= e− π
2 �

2

∞∑
k=0

(−e−π�)k, (A84)

(
1

ρN (v)

d

dv

)k

ρ∞(v)

∣∣∣∣∣
v=�

v=−�

=
(

1

ρN (�)

d

d�

)k

ρ∞(�)−
(

1

ρN (−�)

d

d (−�)

)k

ρ∞(−�)

= {1 − (−1)k}
(

1

ρN (�)

d

d�

)k 1

4 cosh π
2 �

(A85)

= (
e− π

2 �
)−k ∑

m,l�0

Km,l
(
e− π

2 �
)2m+1+ 4lγ

π−γ , (A86)

where Km,l is a certain coefficient. Therefore Eqs. (A35) and
(A82) yield

egs,N − egs,∞

= 2πA

{
2
∫ ∞

−∞
ρ∞(v + �)g+(v)dv − ρ∞(�)

N

− 1

N

∞∑
k=1

(−1)k+1Bk+1

Nk (k + 1)

(
1

ρN (v)

d

dv

)k

ρ∞(v)

∣∣∣∣∣
v=�

v=−�

}

(A87)

=
∑

k�1,m�0

Lk,m

(
1

N

)2k+ 4mγ

π−γ

, (A88)

where Lk,m is a certain coefficient. This is the finite-size
correction to the ground-state energy density of H(0). By
introducing the effect of U (1) flux � into the coefficients in
Eq. (A88), we get

egs,N (�) = egs,∞ +
∑

k�1,m�0

Lk,m(�)

(
1

N

)2k+ 4mγ

π−γ

. (A89)

Note that egs,∞ is independent of � because this is the value in
the thermodynamic limit. Then since the inversion symmetry
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of the model guarantees that egs,∞ is an even function of �, we
naturally expect that the difference egs,N (�) − egs,N (0) obeys
the following finite-size scaling:

egs,N (�) − egs,N (0) =
∑
k,l�1

Ak,l

(
1

N

)2k

�2l

+
∑

k,l,m�1

Bk,l,m

(
1

N

)2k+ 4mγ

π−γ

�2l ,

(A90)

where we introduced certain coefficients Ak,l and Bk,l,m.
The above expression is intentionally split into two parts
based on whether terms are including contribution from
the poles of R̃(ω) dependent on the parameter γ , namely
ω = −iqπγ /(π − γ ) (q ∈ N ), or not. Although we cannot
find any constraint on the summations within this analysis,
comparison of the results for the NLDWs calculated from
Eq. (A90) in the thermodynamic limit and the analytical ones
[16] yields

egs,N (�) − egs,N (0) =
∑

k�l�1

Ak,l

(
1

N

)2k

�2l

+
∑

k,l,m�1

Bk,l,m

(
1

N

)2k+ 4mγ

π−γ

�2l ,

(A91)

where a new constraint on the summation appears in the first
term.

3. Case (ii): � ∈ Se

Here we consider the case of γ = πr/(r + 1) (r ∈ N ).
Since all the values of (A43) are still distinct in this case,
the same analysis that we have seen in case (i) is applicable.
However, there is a significant difference between case (i)
and (ii), i.e., the asymptotic behavior of R(v + 2�). When
γ = πr/(r + 1), the residues of R̃(ω) at ω = −iqπγ /(π −
γ ) (q ∈ N ) are

Res

(
R̃,−i

qπγ

π − γ

)
=

−i sin
((

π
γ

− 2
)( qπγ

π−γ

))
2 cos

( qπγ

π−γ

)(
π
γ

− 1
)

cos (qπ )

(A92)

= i sin [(r − 1)qπ ]

2 cos (rqπ )
(

π
γ

− 1
)

cos (qπ )

= 0, (A93)

which means they are no longer poles of R̃(ω). The above fact
suggests the second term in Eq. (A46) vanishes, and thus we
have

R(v + 2�) =
∑
p′�1

Res

(
R̃,−iπ

(
p′ − 1

2

))
e−π(p′− 1

2 )(v+2�)

i

(A94)

for v > 0. Since this results in vanishing of all the terms
related to the poles ω = −iqπγ /(π − γ ) (q ∈ N ), all the

coefficients Bk,l,m vanish in Eq. (A91). Thus we naturally
obtain the following finite-size scaling:

egs,N (�) − egs,N (0) =
∑

k�l�1

Ak,l

(
1

N

)2k

�2l . (A95)

This can be understood from the perspective of the c = 1
conformal field theory perturbed by irrelevant operators. For
examples, the above discussion is consistent with the fact that
the coefficient of the umklapp term (the cosine term) vanishes
at these points (see Eq. (2.23) in [32]).

4. Case (iii): � ∈ Sl

Here we consider the case of γ = π (2p − 1)/(2p − 1 +
2q) (p, q ∈ N ). Unlike the other cases we have seen so
far, some of (A43) take the same values, which can be
written as

ωl = − iqπγ

π − γ
(2l − 1) = −iπ

(
p − 1

2

)
(2l − 1) (A96)

for l ∈ N. Since this means that R̃(ω) have double poles at
the above points, we have to use the following asymptotic
expansion for v > 0 instead of Eq. (A46):

R(v + 2�) =
∑′

p′�1

Res

(
R̃,−iπ

(
p′ − 1

2

))
e−π(p′− 1

2 )(v+2�)

i

+
∑′

q′�1

Res

(
R̃,−i

q′πγ

π − γ

)
e− q′πγ

π−γ
(v+2�)

i

+
∑
l�1

Res
(
R̃e−iω(v+2�), ωl

)1

i
, (A97)

where
∑′ represent the summation over simple poles, namely

poles excluding ω = ωl . The most different point from the
other cases is the third term in Eq. (A97). For example, we
can see

Res(R̃e−iω(v+2�), ω1)

= Res

(
R̃e−iω(v+2�),−iπ

(
p − 1

2

))

= −i(v + 2�)e−π(p− 1
2 )(v+2�) sin

(
π
(−p + 1

2 + q
))

2 sin
(
π
(
p − 1

2

))(
π
γ

− 1
)

cos (qπ )

(A98)

= i
(
p − 1

2

)
(v + 2�)

2q
e−π(p− 1

2 )(v+2�), (A99)

which reveals that a term proportional to �e−π (2p−1)� newly
appears in R(v + 2�). This fact suggests that the previ-
ous relations (A80), (A82), and (A88) are modified as
follows:

1

2N
=

∑
k,l,m�0

Mk,l,m
(
e− π

2 �
)2k+1+ 4lγ

π−γ
(
�e−π (2p−1)�

)m

=
∑

k,l,m�0

Mk,l,m
(
e− π

2 �
)2k+1+ 4lγ

π−γ
+2m(2p−1)

�m (A100)
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⇔ e− π
2 � =

∑
k,l,m�0

Nk,l,m

(
1

N

)2k+1+ 4lγ
π−γ

+2m(2p−1)

(log N )m,

(A101)

egs,N − egs,∞

=
∑

k�1, m,s�0

Ok,m,s

(
1

N

)2k+ 4mγ

π−γ
+2s(2p−1)

(log N )s,

(A102)

where Mk,l,m, Nk,l,m, and Ok,m,s are certain coefficients.
Therefore by referring to Eq. (A91), we naturally expect that
the difference egs,N (�) − egs,N (0) obeys the following finite-
size scaling:

egs,N (�) − egs,N (0)

=
∑

k � 1, s � 0
k + s(2p − 1) � l � 1

Ck,l,s

(
1

N

)2k+2s(2p−1)

(log N )s�2l

+
∑

k, l, m � 1
s � 0

Dk,l,m,s

(
1

N

)2k+ 4mγ

π−γ
+2s(2p−1)

(log N )s�2l ,

(A103)

where we introduced certain coefficients Ck,l,s and Dk,l,m,s.

APPENDIX B: DETAILED ANALYSIS OF CASE (III): � ∈ Sl

Here we examine the NLDWs in the case (iii). From
Eq. (A103), they can be calculated as

D(2k−1)
N (�)

= (2k)!
[
Ck,k,0 + χ [k − 2p + 1 � 1]Ck−2p+1,k,1 log N

+ D1,k,1,0N2k−2− 4γ

π−γ + · · ·
]
, (B1)

D(2k)
N (�) = (2k + 2)!

[
Ck+1,k+1,0

�

N

+χ [k − 2p + 2 � 1]Ck−2p+2,k+1,1
�

N
log N

]

+Yk (�)N2k−1− 4γ

π−γ + · · ·, (B2)

where Yk (�) ≡ ∑
l>k (2l )!/(2l − 2k − 1)!D1,l,1,0�

2l−2k−1

and χ [E ] takes the value 1 if E is true and 0 otherwise. The
greatest benefit of this analysis is that Eqs. (B1) and (B2)
enable us to identify the large-N asymptotic behavior of
the NLDWs at their boundaries between the convergent and
divergent regions (see the main text).

Now we consider the behavior of the NLDWs at the points
of case (iii) other than the boundary, namely � ∈ (S (n)

c ∪
S (n)

d ) ∩ Sl . Since Eqs. (B1) and (B2) suggest that the effect
of the logarithmic correction can appear in the NLDWs, we
investigate their effect in detail. Here we express the region
with logarithmic corrections to D(n)

N (�) as 0 < γ � γ
(n)

log , i.e.,

�
(n)
log � � < 1. Since Eqs. (B1) and (B2) imply that logarith-

mic corrections to D(2k−1)
N (�) and D(2k)

N (�) can appear only
when 1 � p � �k/2� and 1 � p � �(k + 1)/2�, respectively,
the value of �

(2k−1)
log and �

(2k)
log can be evaluated as follows:

γ
(2k−1)

log = π
(
2
⌊

k
2

⌋ − 1
)

2
⌊

k
2

⌋ + 1
� π (k − 1)

k + 1
= γ

(2k−1)
B (B3)

⇔ �
(2k−1)
log � �

(2k−1)
B , (B4)

γ
(2k)

log = π
(
2� k+1

2 � − 1
)

2� k+1
2 � + 1

(B5)

=
{

π (k−1)
k+1 < π (2k−1)

2k+3 = γ
(2k)

B if k = 0 (mod 2),
πk

k+2 > π (2k−1)
2k+3 = γ

(2k)
B if k = 1 (mod 2),

(B6)

⇔
{

�
(2k)
log > �

(2k)
B if k = 0 (mod 2),

�
(2k)
log < �

(2k)
B if k = 1 (mod 2),

(B7)

where γ
(n)

B = arccos �
(n)
B and �x� is the floor function. The

equal sign in Eq. (B4) holds when k is even. Note that γ
(2k−1)

log

and γ
(2k)

log correspond to the cases when p = �k/2�, q = 1
and p = �(k + 1)/2�, q = 1, respectively, as γ = π (2p −
1)/(2p − 1 + 2q) is monotonically increasing for p and de-
creasing for q.

Based on the above results, we can specify the large-N
asymptotic behaviors of D(n)

N (�) at � ∈ (S (n)
c ∪ S (n)

d ) ∩ Sl .
From Eq. (B4), we can see that logarithmic corrections to
D(2k−1)

N (�) can appear only in the divergent region S (2k−1)
d .

Nevertheless, the leading term of D(2k−1)
N (�) in this region

is N2k−2−4γ /(π−γ ) as can be seen from Eq. (B1). Thus in
the large-N limit D(2k−1)

N (�) shows the power-law diver-
gence after all. In the convergent region S (2k−1)

c , the absence
of the logarithmic corrections reproduces the same behav-
ior as Eq. (7), and thus D(2k−1)

N (�) shows the convergence
to a finite value in the thermodynamic limit (see Table I).
Similarly, although there exist the logarithmic corrections,
D(2k)

N (�) shows, in the large-N limit, the power-law diver-
gence of the form D(2k)

N (�) ∼ N2k−1−4γ /(π−γ ) in the divergent
region S (2k)

d as well. In the convergent region S (2k)
c , when

k = 0 (mod 2), the absence of the logarithmic corrections
reproduces the same behavior as Eq. (8), and thus D(2k)

N (�)
vanishes in the thermodynamic limit. On the other hand,
when k = 1 (mod 2), Eq. (B7) suggests that the logarithmic
corrections to D(2k)

N (�) can appear even in the convergent
region S (2k)

c , namely in �
(2k)
log � � < �

(2k)
B [see Eq. (C7) for

example]. However, since the leading order of D(2k)
N (�) can be

written as O(N−1 log N, 1/N−2k+1+ 4γ

π−γ ) in this case, D(2k)
N (�)

still vanishes in the thermodynamic limit as we have seen in
the other case (see Table I).

APPENDIX C: NUMERICAL RESULTS
FOR THE FINITE-SIZE CORRECTIONS

We show some numerical results for the finite-size cor-
rections with the U (1) flux. Since the expansion (A90) was
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FIG. 5. Numerical results for N dependence of the quantities related to the NLDWs. They have been studied for system sizes ranging from
N = 300 up to N = 3500. All the vertical axes are scaled with J . Note that the data shown in red are related to the leading terms and those
in blue (green) related to the subleading (sub-subleading) terms. We can see that the data for each quantity fall on an almost straight line to a
finite value in the large-N region. The extrapolated values are (a-1) [red] −0.08451 . . . and [blue] −0.6446 . . ., (a-2) [red] −0.09226 . . . and
[blue] −0.6666 . . ., (a-3) [red] −0.01414 . . ., (b) [red] −0.02918 . . . and [blue] 0.01983 . . ., and (c) [red] −0.08650 . . ., [blue] −2.604 . . ., and
[green] −4.488 . . .. The orange dotted lines indicate the analytical values in the thermodynamic limit.

studied in our previous paper [16], here we focus only on the
new result (A103). In order to confirm the finite-size scaling
of egs,N (�), it is better to calculate the NLDWs instead of
egs,N (�) itself. Below we discuss several dominant terms of
the NLDWs in certain cases.

1. At γ = π
3 (p = q = 1)

We show the results for three examples: the second-order,
fifth-order, and seventh-order ones.

First, we consider the fifth-order and seventh-order ones,
which diverge in the thermodynamic limit at this point. From
Eq. (B1), they can be calculated as

D(5)
N (0) = 6!D1,3,1,0N2 + 6!C1,3,2(log N )2 + O(log N ), (C1)

D(7)
N (0) = 8!D1,4,1,0N4 + 8!D1,4,1,1N2 log N + O

(
(log N )3).

(C2)

Since both of their leading behaviors are the power-law diver-
gence, the coefficients can be estimated through

N−2D(5)
N (0) = 6!D1,3,1,0 + O

((
log N

N

)2
)

, (C3)

N−4D(7)
N (0) = 8!D1,4,1,0 + O

(
log N

N2

)
. (C4)

On the other hand, in order to obtain their subleading be-
haviors, it is useful to differentiate them with respect to N .

Therefore we introduce the following quantities:

N∂N
{
N∂N

[
N3∂N

(
N−2D(5)

N (0)
)]}

= −4 × 6!C1,3,2 + O
(

(log N )3

N2

)
, (C5)

N∂N
[
N3∂N

(
N−4D(7)

N (0)
)] = − 2×8!D1,4,1,1+O

(
(log N )3

N2

)
.

(C6)

The numerical results for the above quantities are shown
in Figs. 5(a-1) and 5(a-2). Note that, from Eq. (4.1) in
Ref. [32], the analytical values at γ = π/3 can be cal-
culated as 6!D1,3,1,0/J = −0.08360 . . . and 8!D1,4,1,0/J =
−0.08968 . . ., which are indicated by the orange dotted lines.
These figures obviously show that the data fall on straight
lines to finite values in the large-N region, which confirms
Eqs. (C1) and (C2).

Finally, we consider the second-order one, which con-
verges in the thermodynamic limit at this point. From
Eq. (B2), this can be calculated as

D(2)
N (�) = 4!C1,2,1

�

N
log N + O

(
1

N

)
(C7)

= −81
√

3J

32π3

�

N
log N + O

(
1

N

)
, (C8)

where we obtained C1,2,1 at γ = π/3 from Eq. (4.1) in
Ref. [32]. Then, in order to evaluate the leading behavior, we
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introduce the following quantity:

N∂N
(
ND(2)

N (�)
) = −81

√
3J

32π3
� + O

((
log N

N

)2)
. (C9)

The numerical results for the above quantity are shown in
Fig. 5(a-3). This figure clearly shows that, in the large-N
region, the data fall on a straight line to the analytical value
−81

√
3/(32π3)� = −0.01414 . . . indicated by the orange

dotted line, which confirms Eq. (C7).

2. At γ = π
5 (p = 1, q = 2)

We consider the fifth-order one. From Eq. (B1), this can be
calculated as

D(5)
N (0) = 6!D1,3,1,0N3 + 6!D1,3,2,0N2 + O(N log N ). (C10)

As in the previous case, we introduce the following quantities:

N−3D(5)
N (0) = 6!D1,3,1,0 + O

(
1

N

)
, (C11)

N2∂N

(
N−3D(5)

N (0)
)

= −6!D1,3,2,0 + O
(

log N

N

)
. (C12)

The numerical results for the above quantities are shown in
Fig. 5(b). Since the analytical form of D1,k,1,0 can be obtained
as

D1,k,1,0

= −
16πJ sin γ sin

( 2πγ

π−γ

)
(2k)! γ

	2
(

π
π−γ

)
	2

( − 2π
π−γ

)
	2

( − π
π−γ

)

×
[

(π − γ ) 	
(

π−γ

2γ

)
√

π 	
(

π
2γ

)
] 4γ

π−γ d2k

d�2k

	
(

�+2π
2(π−γ )

)
	
(−�+2π

2(π−γ )

)
	
(

�−2γ

2(π−γ )

)
	
(−�−2γ

2(π−γ )

)
∣∣∣∣∣
�=0

(C13)

from Eq. (4.1) in Ref. [32], we have 6!D1,3,1,0/J =
−0.02881 . . . at γ = π/5 which is indicated by the orange
dotted line. This figure obviously shows that the data fall on
straight lines to finite values in the large-N region, which
confirms Eq. (C10).

3. At γ = 3π
7 (p = 2, q = 2)

We consider the seventh-order one. Here we focus not
only on the leading and subleading term but also on the sub-
subleading term. From Eq. (B1), this can be calculated as

D(7)
N (0) = 8!D1,4,1,0N3 + 8!D2,4,1,0N

+ 8!C1,4,1 log N + O
(

1

N

)
. (C14)

As in the previous case, we introduce the following
quantities:

N−3D(7)
N (0) = 8!D1,4,1,0 + O

(
1

N2

)
, (C15)

N3∂N
(
N−3D(7)

N (0)
) = −2 × 8!D2,4,1,0 + O

(
log N

N

)
,

(C16)

N∂N
{
N2∂N

[
N3∂N

(
N−3D(7)

N (0)
)]} = 3 × 8!C1,4,1 + O

(
1

N

)
.

(C17)

The numerical results for the above quantities are shown
in Fig. 5(c). From Eq. (C13), we have 8!D1,4,1,0/J =
−0.08433 . . . at γ = 3π/7 which is indicated by the orange
dotted line. The figure obviously shows that the data fall on
straight lines to finite values in the large-N region, which
confirms Eq. (C14).
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