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Under a perfect periodic potential, the electric current density induced by a constant electric field may
exhibit nontrivial oscillations, so-called Bloch oscillations, with an amplitude that remains nonzero in the large
system size limit. Such oscillations have been well studied for nearly noninteracting particles and observed
in experiments. In this work we revisit Bloch oscillations in strongly interacting systems. By analyzing the
spin- 1

2 XXZ chain, we demonstrate that the current density at special values of the anisotropy parameter
� = − cos(π/p) (p = 3, 4, 5, . . . ) in the ferromagnetic gapless regime behaves qualitatively the same as in
the noninteracting case (� = 0) even in the weak electric field limit. When � deviates from these values, the
amplitude of the oscillation under a weak electric field is suppressed by a factor of the system size. We estimate
the strength of the electric field required to observe such a behavior using the Landau-Zener formula.
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I. INTRODUCTION

Imagine a system of electrons in a one-dimensional (1D)
ring [Fig. 1(a)]. Suppose that a static and uniform electric field
E is turned on at time t = 0. When E is sufficiently weak,
the response of the electric current density j(t ) is dominated
by the contribution from the Drude weight D1 of the linear
response theory [1]. In free space, electrons keep accelerated
and the induced electric current density increases linearly as
a function of time, i.e., j(t ) � D1Et . In the presence of a
disorder-free lattice with the lattice constant a, on the other
hand, noninteracting electrons get accelerated initially but
then start to move backward [Fig. 1(b)], forming an oscillatory
motion. Such an oscillation is known as a Bloch oscillation
and has been observed in semiconductor superlattices [2–5].
The standard understanding of this phenomenon in the band
theory is through the substitution of the crystal momentum
k → k + A(t ) under the gauge field A(t ) = Et [6]. Since the
momentum space has a period 2π/a, we see the frequency
aE/(2π ) of the Bloch oscillation in noninteracting systems.
Equivalently, one may understand this periodic dependence
of the electric current on Et as a result of nonlinear responses
to higher powers of E [7].

The adiabatic transport property is known to be strongly
affected by interactions and disorders [8,9]. For interact-
ing systems, recent studies revealed that the Drude weight
DN (N � 2) of nonlinear responses tends to diverge in the
limit of large system size [7,10,11]. Similar divergence has
been observed in noninteracting systems in the presence of
a localized impurity [12]. These results imply that the Bloch
oscillations in noninteracting and imperfection-free systems
may completely disappear when interactions or disorders are
added. This is indeed the case for a tight-binding model with
a single defect in the limit of the weak electric field [12].
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In this work we study the current response of disorder-
free interacting electrons at zero temperature. By analyzing
the spin- 1

2 XXZ chain, which can be mapped to a model
of spinless electrons interacting with each other between
neighboring sites, we find that interacting systems can ex-
hibit Bloch oscillations for fine-tuned values of the interaction
� = − cos(π/p) (p = 3, 4, 5, . . . ). The frequency of the os-
cillation in the limit of weak electric field is modified to
a(p − 1)E/(2π ) by interaction (p = 2 corresponds to the
noninteracting case � = 0). When � is not exactly at these
special values, the interaction induces level repulsions to the
many-body energy levels as a function of the gauge field A. As
a result, the behavior of j(t ) becomes qualitatively different—
it still oscillates as a function of t but with an amplitude
inversely proportional to the system size. At the same time, the
frequency becomes LE/(4π ) and is proportional to the system
size. Such behaviors can be seen only when the electric field
E is sufficiently weak, and we give an estimate of the required
strength of E using the Landau-Zener formula [13–15]. Our
study is complementary to the previous work [16] which dis-
cussed a different electric field regime for the infinite system
by the generalized hydrodynamics method.

II. THE XXZ MODEL

A. Definitions

In this work we discuss the spin- 1
2 XXZ chain

Ĥ (A) = J
L∑

i=1

(
1

2
ŝ+

i+1e−iAŝ−
i + H.c. + �ŝz

i+1ŝz
i

)
, (1)

where ŝα
i (α = x, y, z) is the spin- 1

2 operator defined on the site
i and ŝ±

i = ŝx
i ± iŝy

i , L is the system size, J is the antiferromag-
netic coupling constant, � is the anisotropy parameter, and A
is the vector potential (with the sign convention opposite to the
conventional one) associated with the spin rotation symmetry
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FIG. 1. (a) One-dimensional ring pierced by a flux �(t ) =
A(t )L, which induces an electric field E (t ) = ∂t A(t ). (b) Oscilla-
tions of the energy density ε(t ) and the current density j(t ) for the
model (1) with A = 2πt/T and L = 24 in the noninteracting case
� = 0. We set T = 1 in this plot but results are identical up to T =
106, the largest period we computed. Both j(t ) and ε(t ) show a single
oscillation over the period T where A increases by 2π . Solid curves
represent the analytic expressions ε(t ) = −L−1 cos A(t )/ sin(π/L)
and j(t ) = L−1 sin A(t )/ sin(π/L). The inset shows the amplitude
jmax as a function of L, suggesting that it is of O(1) in the large L
limit.

about the z axis. The lattice constant a is set to 1. We impose
the periodic boundary condition and identify ŝα

L+1 = ŝα
1 . The

conserved current density of this model is defined by

ĵ(A) = 1

L

dĤ (A)

dA
. (2)

The spin chain (1) can be mapped to a model of spinless
electrons

Ĥ (A) =
L∑

i=1

(t0ĉ†
i+1e−iAĉi + H.c.)

+
L∑

i=1

U

(
n̂i+1 − 1

2

)(
n̂i − 1

2

)
(3)

by the Jordan-Wigner transformation [17], where t0 = J/2
and U = J�. The spin current density (2) can thus be re-
garded as the electric current density of spinless electrons. In
the following we set J = 1 and focus on the gapless regime
−1 < � < 1 at the zero temperature.

B. Periodicity of the adiabatic ground state

Let us examine the periodicity of the many-body en-
ergy levels of Ĥ (A) as a function of A. Obviously we have
Ĥ (2π ) = Ĥ (0), but �A = 2π is not the smallest period of
this model in the following sense. The gauge field A is related
to the flux � = AL piercing the hole of the 1D ring [Fig. 1(a)],
and A = 0 and A = 2π/L give the physically equivalent flux.
In fact, they are connected by a unitary transformation, called
the large gauge transformation [18]. Therefore, the entire
spectrum of Ĥ (A) has a period �A = 2π/L. This is the case
regardless of the specific choice of �.

In contrast, the “adiabatic ground state” has a longer period
that depends on � [19]. Let |�〉 be the ground state at A = 0.
Among the stroboscopic eigenstates of Ĥ (A), we keep track
of the state that is smoothly connected to |�〉 as a function of
A. This is what we call the adiabatic ground state |�AGS(A)〉.
See red curves in Fig. 2 for illustration. In the following we

FIG. 2. The many-body energy levels of Ĥ (A), obtained by the
exact diagonalization, for L = 12 as a function of the gauge field
A in the case of (a) a generic value � = +0.5 and (b) a special
value � = − cos(π/3) (p = 3). Only the states in the Sz = 0 sector
are shown. The adiabatic ground state is highlighted with red color.
Because � ↔ −� corresponds to Ĥ (A) ↔ −Ĥ (A), (b) can be seen
as the inverted version of (a) in this example.

denote by εAGS(A) the energy density of the adiabatic ground
state.

The flux-threading argument for the Lieb-Schultz-Mattis
theorem predicts a level crossing between two levels with
distinct momentum eigenvalues 0 and π for translation and
time-reversal invariant spin- 1

2 chains [18]. Hence, the smallest
possible value of the period of the adiabatic ground state is
�A = 4π/L. This is indeed the case for generic � [20,21]
[Fig. 2(a)]. In particular, the period �A vanishes in the large
L limit and the energy density εAGS(A) becomes a constant
εAGS(0) independent of A.

Exceptions occur at special values of �, i.e., � =
− cos(π/p) (p = 2, 3, . . . ), at which the adiabatic ground
state has a much longer period [22].

From numerical investigations we identify the period
�A = 2π/(p − 1) for � = − cos(π/p) [23]. This is clearly
demonstrated in the left column of Figs. 3(a)–3(c) for the
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FIG. 3. The energy density of the adiabatic ground state εAGS(A)
as a function of A for (a) � = − cos(π/3) = −0.5, (b) � =
− cos(π/4) = −0.707107, and (c) � = − cos(π/5) = −0.809017.
The black dotted curve is the analytic expression for L → ∞ up to
the A6 order in (4). The red dotted lines are the analytic expressions
for the minimum and the maximum of εAGS(A) (see the main text).

sequence of the system size L = 2(p − 1)	 (	 ∈ N). For the
system size other than L = 2(p − 1)	, the apparent period
is greater than �A = 2π/(p − 1) as long as L is finite, as
shown in the right column of Figs. 3(a)–3(c). However, the
dip of the curve εAGS(A) around A = 2π/(p − 1) develops
as L increases (indicated by gray arrows in Fig. 3), and the
actual period converges to �A = 2π/(p − 1) in the large L
limit. Therefore, the large L limit of the curve εAGS(A) is well
defined, i.e., does not depend on the sequence of L. Most
importantly, both the period �A and the amplitude of the
oscillation of εAGS(A) do not vanish in the large L limit. This
difference results in the qualitatively different behaviors of the
induced electric current in response to an infinitesimal electric
field, as we discuss in the next section.

In Fig. 3 the black dotted curve represents

εAGS(A) � ε̄GS + D̄1

2!
A2 + D̄3

4!
A4 + D̄5

6!
A6, (4)

where ε̄GS is the energy density and D̄n is the nth order
Drude weight in the large L limit. The red dotted lines are the
minimum εAGS(0) = ε̄GS and the maximum εAGS[π/(p − 1)]
of εAGS(A) in the large L limit. The analytic expressions of ε̄GS

and D̄1 have long been known [20,24] and the expressions
for higher Drude weights D̄3 and D̄5 have been obtained in
recent studies [7,10]. For the readers’ convenience, we include

these expressions in Appendix A. Following the derivation of
these quantities, we obtained the analytic expression of the
maximum

εAGS

(
π

p − 1

)
= −1

4
cos(π/p) + 1

2
sin(π/p)

×
∫ ∞

−∞
dω

sinh(πω/p) tanh(πω/p)

sinh(πω) sinh[(p − 1)πω/p]
(5)

in the limit of large L. See Appendix B for the derivation.
We see an excellent agreement between our numerics and
analytic lines and curves. Assuming that εAGS(A) converges
to a smooth function of A in the large L limit, all the nonlinear
Drude weights remain finite for the special values of � [12].

Before closing this section, let us explain how we kept
track of the adiabatic ground state |�AGS(A)〉 in our numer-
ical investigation of εAGS(A). First, we reduce the number of
candidate states by using the spin rotation symmetry about
z axis and the translation symmetry, focusing on the Sz = 0
sector and the momentum P = 0 sector. Next, we discretize
A ∈ [0, 2π ] as A(n) ≡ n δA (n = 0, 1, 2, . . . ). The increment
δA needs to be chosen sufficiently small, and in this work we
set δA = π/(160L). We start with the unique ground state of
Ĥ (A) for A = A(0) = 0 and A = A(1) = δA. Then, for n > 1,
we proceed step by step by choosing as |�AGS(A(n+1))〉 the
state whose energy density is closest to the linear interpolation

εAGS(A(n) ) + δA[εAGS(A(n) ) − εAGS(A(n−1))] (6)

among the eigenstates of Ĥ (A(n+1)) in the Sz = P = 0 sector.
We confirm the convergence by changing δA.

III. TIME EVOLUTION

A. Bloch oscillations in the weak field limit

Now, following Refs. [25,26], let us introduce a time
dependence to the Hamiltonian (1) by setting A = A(t ) =
2πt/T for t � 0 and A = 0 for t < 0. This time-dependent
gauge field induces a static and uniform electric field E =
2π/T for t � 0. We assume that the system is in the ground
state |�〉 of Ĥ (0) for t < 0. The time evolution of the state for
t � 0 is described by the Schrödinger equation

i
d

dt
|�(t )〉 = Ĥ (A(t ))|�(t )〉. (7)

The energy density ε(t ) and the induced current density j(t )
and at time t > 0 are given by

ε(t ) ≡ 1

L
〈�(t )|Ĥ (A(t ))|�(t )〉, (8)

j(t ) ≡ 〈�(t )| ĵ(A(t ))|�(t )〉 = 1

L
〈�(t )|dĤ (A)

dA
|�(t )〉

∣∣∣∣
A=A(t )

=
(

dA(t )

dt

)−1 dε(t )

dt
= 1

E

dε(t )

dt
. (9)

When T is sufficiently large for a given L and �, the adiabatic
theorem [27,28] gives [7]

ε(t ) = εAGS(A(t )), (10)

j(t ) = dεAGS(A)

dA

∣∣∣∣
A=A(t )

. (11)
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FIG. 4. Oscillations of the energy density ε(t ) and the cur-
rent density j(t ) in for (a) � = − cos(π/3) = −0.5, (b) � =
− cos(π/4), (c) � = − cos(π/5), and (d) � = +0.5. We set L = 24,
T = 106, and A(t ) = 2πt/T in these calculations. The number of
peaks is p − 1 for (a)–(c) and L/2 for (d) as predicted. The inset
shows the amplitude jmax as a function of L, which remains nonzero
in the large L limit for (a)–(c), while it is inversely proportional to L
and vanishes in the large L limit for (d).

Namely, the energy density ε(t ) and the current density j(t )
of the time-dependent problem are fully characterized by the
adiabatic ground-state energy density εAGS(A) of the time-
independent system. This immediately implies the possibility
of Bloch oscillations even under an infinitesimal electric field
for the special values � = − cos(π/p) (p = 2, 3, . . . ), where
the period �A = 2π/(p − 1) of εAGS(A) remains nonzero in
the large L limit. For the constant electric field described
by A(t ) = Et , the temporal period of the oscillation is given
by �t = �A/E = 2π/[(p − 1)E ], suggesting that the fre-
quency of the Bloch oscillation is ν = (p − 1)E/(2π ) for
� = − cos(π/p).

We demonstrate this prediction by numerically solving
the Schrödinger equation using the fourth-order Runge-Kutta
method. We set dt = 0.001. Our results are summarized in
Fig. 4. As anticipated, even for T = 106, the amplitudes of the
oscillations of the energy density ε(t ) and the current density
j(t ) are of O(1) for the special values of � = − cos(π/p) in
Figs. 4(a)–4(c). In contrast, they are O(L−1) for the generic
case in Fig. 4(d). Over the time period T , the gauge field
A(t ) increases by 2π and the number of peaks is p − 1 for
the special values in Figs. 4(a)–4(c) and is of O(L) for the
generic case in Fig. 4(d). These are all consistent with the
behavior of εAGS(A) discussed in the previous section. Sharp
drops of the electric current j(t ) around t = 2π (2 j − 1)/(LE )
( j = 1, 2, . . . ) seen in Fig. 4(d) underlie the divergence of
nonlinear Drude weights for generic �.

B. Landau-Zener formula for generic �

When � deviates from the special values, the many-body
energy spectrum opens a tiny gap �E between the adiabatic
ground state and the next level at A = 2π/L. See the orange

FIG. 5. (a) The zoom-up of the orange dashed box in Fig. 2(a),
focusing on the adiabatic ground state and the next level near A =
A0 = 2π/L. The dashed curve represents LεAGS(A) in the first line
of (12). (b) The coefficient C in (14) obtained by fitting with nu-
merical data. The dotted curve represents the analytic expression
in Appendix A. The vertical lines represent � = − cos(π/p) with
p = 3, 4, . . . , 7. (c) The power a in (14) obtained by fitting. The
dotted curve represents a = 4K − 1. In (b) and (c) the blue open
dots use data for L = 12, 14, . . . , 32 and the yellow filled dots use
data for L = 20, 22, . . . , 32 only. (d) Numerical verification of the
Landau-Zener formula for � = 0.5 and L = 12. The blue dots repre-
sent pAGS(t ) in (15) at t = 2t0 and the solid curve represents 1 − pLZ

given by (13).

dashed box in Fig. 2(a). When T is large enough, the applied
electric field is sufficiently weak and the state |�(t )〉 stays in
the adiabatic ground state. In contrast, when T gets smaller,
nonadiabatic transition starts to occur. This type of tunneling
has been studied for the Hubbard ring of spinful electrons in
Refs. [29,30]. Here we estimate the strength of the electric
field E required to avoid nonadiabatic transition in the spin- 1

2
XXZ chain (1) based on the Landau-Zener formula.

Let us first assume �E = 0. Then the energy density of
the adiabatic ground state around A = A0 ≡ 2π/L can be
approximated, to the leading order of L−1, by

εAGS(A) � ε̄GS + 1
2 D̄1A2 + O(A4)

= ε̄GS + 1
2 D̄1A2

0 + D̄1A0(A − A0) + O[(A − A0)2].
(12)

See Fig. 5(a) for comparison with the exact diagonalization
for L = 12 and � = 0.5. The error in the approximation is a
finite-size effect. Hence, when A(t ) = Et , the energy differ-
ence of the two levels that cross each other at A = A0 goes as
α|t − t0| with α ≡ 2D̄1A0LE = 4πD̄1E and t0 ≡ A0/E .

When �E > 0, the Landau-Zener formula [13–15] gives
the probability of the nonadiabatic transition

pLZ ≡ exp

[
−2π

(�E/2)2

α

]
= exp

[
− (�E )2

8D̄1E

]
. (13)

This formula was originally derived for two level systems
and �E/2 is identified with the amplitude of the off-diagonal
components of the two level Hamiltonian. Here, following
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Ref. [29], we apply it to the focused two levels in the many-
body spectrum [31].

To make use of the formula (13), we now study the system-
size dependence of the finite-size splitting �E . Here we
assume the power-law form [32]

�E = CL−a. (14)

The leading contribution to �E comes from the least irrele-
vant perturbation due to Umklapp scattering [21,33], which
gives a = 4K − 1 = 2π [arccos(−�)]−1 − 1, where K is the
Luttinger parameter [34]. We append the analytic expression
for C in Appendix A. For example, we find �E � 2

√
3πL−2

for � = 0.5. We confirm these analytic expressions by fitting
with numerical data up to L = 32. As shown in Figs. 5(b)
and 5(c), we find a good agreement.

Finally, let us verify the Landau-Zener formula (13). We
compute the probability of adiabatic process in two ways: one
by 1 − pLZ using the last expression of (13) and the other by
the overlap

pAGS(t ) ≡ |〈�AGS(A(t ))|�(t )〉|2 (15)

at t = 2t0, by numerically solving the time-dependent
Schrödinger Eq. (7). For the gap �E � CL−a, we use the
analytic expressions of C and a. As shown in Fig. 5(d) for
� = 0.5 and L = 12, they agree unexpectedly well.

These results suggest that, in order to avoid nonadiabatic
transition, the electric field must satisfy

E � (�E )2

8D̄1
= C2

8D̄1
L−2a. (16)

The right-hand side becomes small quickly as L increases,
suggesting that E must be chosen very small. In other words,
when E = 2π/T , the time interval T must be chosen quite
long. Therefore, it is actually nearly impossible to achieve the
adiabatic limit such as the one in Fig. 4(d) in a thermodynam-
ically large system.

C. Condition for adiabatic time evolution for special �

At special values of �, i.e., � = − cos(π/p) (p =
2, 3, 4, . . . ), the adiabatic ground state energy εAGS(A) has
an exceptionally long period �A = 2π/(p − 1) as discussed
in Sec. II B. Our numerical results in Sec. III A suggest that,
as long as the applied electric field E = 2π/T is sufficiently
weak, the system follows the adiabatic ground state |�AGS(A)〉
and exhibits a Bloch oscillation with temporal period T/(p −
1) as demonstrated in Figs. 4(a)–4(c). Here we estimate the
strength of the electric field required to observe this nontrivial
oscillation.

We want to study the condition for adiabatic time evolu-
tion as done in the previous section for generic �. However,
this time the Landau-Zener formula is not directly applica-
ble, since there are many level crossings in the many-body
spectrum as shown in Fig. 2(b). Here we instead evaluate the
overlap pAGS(t ) = |〈�AGS(A(t ))|�(t )〉|2 in Eq. (15) after a
single period, i.e., at time t = T/(p − 1). As an example, we
focus on the case of � = − cos(π/3) = −0.5.

FIG. 6. (a) 1 − pAGS(t ) at t = T/2 for � = 0.5 (p = 3) as a
function of T = 2π/E . Fitting lines are obtained by using data
within 0.02 < 1 − pAGS(t ) < 0.7. (b) The slope of the fitting lines
in (a) against the system size L. The dotted line represents the linear
fitting s(L) = cL−2.096.

Our numerical results are summarized in Fig. 6. We find
that the probability of nonadiabatic transition behaves as

1 − pAGS(T/2) � exp[−s(L)T ] = exp

[
−2πs(L)

E

]
. (17)

The L dependence of the slope s(L) of the fitting line in
Fig. 6(a) is plotted in Fig. 6(b). By further fitting, we find

s(L) � cL−b, b = 2.096. (18)

Combining these results, we see the condition for adiabatic
transition:

E � 2πcL−b. (19)

Observe the formal similarity between our numerical results
for � = −0.5 [Eqs. (17) and (19)] and those obtained by the
Landau-Zener formula for generic � [Eqs. (13) and (16)]. We
also note that the power b in Eq. (19) (2.096 for � = −0.5) is
much smaller than the power 2a in Eq. (16) for generic � [see
Fig. 5(c)]. Therefore, although the electric field must be very
small to realize the adiabatic process, the required smallness
of the electric field is much relaxed for special values of �.

D. Bloch oscillations under a stronger field

The subtle differences caused by � discussed above are
irrelevant under a strong electric field. Indeed, we find qual-
itatively the same behavior regardless of the value of � for
the T = 1 case as shown in Fig. 7. The corresponding electric
field E = 2π is so strong that nonadiabatic transitions occur
everywhere.

We also present the behavior of ε(t ) and j(t ) for T =
1, 10, 102, . . . , 106 for comparison in Fig. 8. These plots im-
ply that behaviors of the ε(t ) and j(t ) depend on the details of
the system except for the two limiting cases of adiabatic and
nonadiabatic transitions.

IV. DISCUSSIONS

In this work we demonstrated that interacting electrons
can in principle exhibit Bloch oscillations even under a weak
electric field when the interaction is fine tuned. This is the
case when the nonlinear Drude weights introduced in Ref. [7]
remain finite in the large L limit to all orders of response. The
expected behavior of the oscillations in the electric current
density is similar to the noninteracting limit in the sense that
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FIG. 7. Same as Fig. 4 but for T = 1, which corresponds to
a strong electric field E = 2π in the unit of J/(ea). Solid curves
represent the analytic expressions for � = 0 for comparison (see the
caption of Fig. 1).

the amplitude of the oscillation remains nonzero in the limit
of large system size. Yet, there are also some differences,
for example, in the number of peaks and the period of the
oscillations for a given adiabatic process, as one can see
by comparing Fig. 1(b) and Figs. 4(a)–4(c). In particular,
the frequency of the oscillation becomes a(p − 1)E/(2π ) for
� = − cos(π/p).

When the interaction is not exactly at the fine-tuned value,
the oscillation in the limit of the weak electric field is sup-
pressed in a large but finite system [Fig. 4(d)]. However,
even in that case, when the applied electric field is not weak
enough, nonadiabatic transitions occur and one observes non-
trivial oscillations of the electric current density, as shown
in Fig. 7. In fact, our estimate based on the Landau-Zener
formula in (16) suggests that the adiabatic limit is difficult
to be realized in a thermodynamically large system. This, in
turn, implies that pathological behaviors of nonlinear Drude
weights observed in Refs. [7,10,11] do not come into play for
a realistic strength of the applied electric field.
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APPENDIX A: ANALYTIC FORMULAS

Here we summarize the analytic expressions derived in
previous studies. We parametrize � as � = cos γ with

0 � γ < π . The ground state energy density ε̄GS and the lin-
ear Drude weight D̄1 in the large L limit are given by [20,24]

ε̄GS = 1

4
cos γ − 1

2
sin γ

∫ ∞

−∞
dx

sinh[(π − γ )x]

sinh(πx) cosh(γ x)
, (A1)

D̄1 = Kv

π
= π

4

sin γ

γ (π − γ )
. (A2)

In this work we obtain a new analytic expression for the
maximum value of εAGS(A) for γ = π − π/p:

εAGS

(
π

p − 1

)
= 1

4
cos γ + 1

2
sin γ

×
∫ ∞

−∞
dω

sinh[(π− γ )ω] tanh[(π− γ )ω]

sinh(πω) sinh(γω)
.

(A3)

This is the same expression as the one in Eq. (5) in the main
text. See Appendix B for the derivation.

The Luttinger parameter K and the velocity parameter v

are given by [17,34]

K = π

2(π − γ )
, (A4)

v = π sin γ

2γ
. (A5)

Higher-order Drude weights D̄3 [7,10] and D̄5 [10] are
given by

D̄3 = − sin γ

16γ (π − γ )

⎛
⎝ �

(
3π
2γ

)
�

(
π−γ

2γ

)3

�
( 3(π−γ )

2γ

)
�

(
π
2γ

)3 +
3π tan

(
π2

2γ

)
π − γ

⎞
⎠,

(A6)

D̄5 = 3 sin γ

64πγ (π − γ )

⎛
⎝ �

(
5π
2γ

)
�

(
π−γ

2γ

)5

�
( 5(π−γ )

2γ

)
�

(
π
2γ

)5

−
5�

(
3π
2γ

)2
�

(
π−γ

2γ

)6

3�
( 3(π−γ )

2γ

)2
�

(
π
2γ

)6 +
15π2 tan2

(
π2

2γ

)
(π − γ )2

+
5π tan

(
π2

2γ

)
π − γ

�
(

3π
2γ

)
�

(
π−γ

2γ

)3

�
( 3(π−γ )

2γ

)
�

(
π
2γ

)3

⎞
⎠. (A7)

The formulas for D̄3 and D̄5 are finite when π/3 < γ < π

and π/2 < γ < π , respectively.
The coefficient λ of the least irrelevant perturbation due to

Umklapp scattering derived in Ref. [33] reads

λ = 4�(β−2)

�(1 − β−2)

(
�

(
1 + β2

2−2β2

)
2
√

π�
(
1 + 1

2−2β2

)
)2/β2−2

=
4�

(
π

π−γ

)
�

( −γ

π−γ

)
(

�
(

π+γ

2γ

)
2
√

π�
(

π+2γ

2γ

)
)4K−2

, (A8)
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FIG. 8. The plot of the energy density ε(t ) (red) and the current density j(t ) (blue) under the electric field E = 2π/T for various values of
T and �: T = 1, 10, 102, . . . , and 106 and � = 0, − cos(π/3), − cos(π/4), − cos(π/5), 0.5, and −0.14. The system size is L = 24. While the
gap above the adiabatic ground state is maximized at � = −0.14 for � < 0 and L = 24, T = 106 is not large enough to see O(L) oscillations
as observed for � = 0.5.

where β2 = 1 − γ /π , which gives

C = |λ|π sin γ

2γ
(2π )4K−1

= 4π2 sin γ

γ

�
(

π
π−γ

)
∣∣�( −γ

π−γ

)∣∣
(

√
π

�
(

π+γ

2γ

)
�

(
π+2γ

2γ

)
)4K−2

. (A9)

APPENDIX B: DERIVATION OF Eq. (A3)

In this Appendix we present the analytic expressions re-
garding the energy density of the adiabatic ground state in the
thermodynamic limit as a function of A ∈ [0,�A/2], where
�A = 2π/(p − 1) and the range of A is halved from the
evenness of the energy density function [36]. We consider
the special values of �, i.e., γ = π − π/p (p = 3, 4, 5, . . . ).

By combining the Bethe ansatz and a generalized Wiener-
Hopf technique [24,37–39] and taking care of the string
excitations [40], the energy density of the adiabatic ground
state in the thermodynamic limit as a function of A ∈
[0, π/(p − 1)] is determined by the following integration:

εAGS(A) = 1

4
cos γ − sin γ

∫ BS (A)

BR (A)
dx′ρ(x′, A)a(x′), (B1)

where a(x) = sin γ /(cosh x − cos γ ). BS (A), BR(A), ρ(x, A)
are the solutions of the system of equations:

a(x) = 2πρ(x, A) −
∫ BS (A)

BR (A)
dx′ρ(x′, A)a(x − x′),

for x > min [BS (A), BR(A)], (B2)
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∫ ∞

BR (A)
dx′ρ(x′, A) = 1

2
− A

π
, (B3)∫ ∞

BS (A)
dx′ρ(x′, A) = A

2π
, (B4)

where min S denotes the smallest element among S. Equa-
tion (B2) is the Bethe equation in the thermodynamic limit.
Equations (B3) and (B4) reflect the conservation of the z com-
ponent of the total spin. The behaviors of BR(A) and BS (A)
are summarized as follows: as A → +0, we have BR(A) →
−∞ but BS (A) → ∞; when A is increased in the interval
(0,�A/2), BR(A) increases, whereas BS (A) decreases; at A =
π/p, BR(A) = BS (A) = 0; as A → π/(p − 1) − 0, we have
BR(A) → ∞ while BS (A) → −∞.

The energy density is obtained explicitly at three special
values of A. When A = 0, it reproduces Eq. (A1) [41]:

εAGS(0) = ε̄GS = 1

4
cos γ − 1

2
sin γ

×
∫ ∞

−∞
dω

sinh [(π − γ )ω]

sinh (πω) cosh (γω)
. (B5)

While for A = π/(p − 1), we obtain the maximum value of
the energy density:

εAGS

(
π

p − 1

)

= 1

4
cos γ + 1

2
sin γ

×
∫ ∞

−∞
dω

sinh2 [(π − γ )ω]

sinh (πω) sinh (γω) cosh [(π − γ )ω]
.

(B6)

The choice of dummy variable ω above reminds us that the
integration is done in the Fourier space of x. The energy
density is the most easily expressed at A = π/p, where

εAGS

(
π

p

)
= 1

4
cos γ . (B7)
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