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We study the fidelity and the entanglement entropy for the ground states of quantum systems that have infinite-
order quantum phase transitions. In particular, we consider the quantum O(2) model with a spin-S truncation,
where there is an infinite-order Gaussian (IOG) transition for S = 1 and there are Berezinskii-Kosterlitz-Thouless
(BKT) transitions for S � 2. We show that the height of the peak in the fidelity susceptibility (χF ) converges to
a finite thermodynamic value as a power law of 1/L for the IOG transition and as 1/ ln(L) for BKT transitions.
The peak position of χF resides inside the gapped phase for both the IOG transition and BKT transitions. On
the other hand, the derivative of the block entanglement entropy with respect to the coupling constant (S′

vN ) has
a peak height that diverges as ln2(L) for S = 1 and ln3(L) for S � 2 and can be used to locate both kinds of
transitions accurately. We include higher-order corrections for finite-size scalings and obtain the value of the
central charge consistent with c = 1 predicted by conformal field theory. The crossing point of χF between
different system sizes is at the IOG point for S = 1 but is inside the gapped phase for S � 2, while those of S′

vN

are at the phase-transition points for all S truncations. Our work elaborates on how to use the finite-size scaling
of χF or S′

vN to detect infinite-order quantum phase transitions and discusses the efficiency and accuracy of the
two methods.

DOI: 10.1103/PhysRevB.104.205112

I. INTRODUCTION

One of the main interests in condensed matter physics is to
understand quantum phase transitions (QPTs) in many-body
systems. In analogy with classical phase transitions, QPTs can
be classified by the singularities of derivatives of the ground-
state energy density: The kth order QPT is signaled by a
divergence or discontinuity in the kth derivative of the ground-
state energy density. By measuring quantities associated with
these derivatives, the first-order QPT and the second-order
QPT can be easily detected in experiments, as there are well
developed techniques to measure local order parameters and
their susceptibilities, which are associated with the first and
second derivatives of the ground-state energy density, respec-
tively. From the point of view of numerics, the ground state
energy and the local observables of systems in low dimensions
can also be calculated accurately by tensor-network algo-
rithms. However, QPTs of order three or higher are difficult
to detect using this method, as higher-order derivatives of
the ground-state energy density are hard to probe in both
experiments and computer programs. For infinite-order QPTs
(IOQPTs), measuring derivatives of the ground-state energy
density will not give us meaningful information.

Lots of concepts from quantum information theory have
been implemented in condensed matter physics. Among them,
the ground-state fidelity [1–17] and the ground-state entangle-
ment [18–32] have proven to be successful to detect QPTs in
various models. The fidelity method is based on the simple
idea that the structure of the ground-state wave functions on
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two sides of the critical point are very different, thus there
exists a drastic drop in fidelity around the critical point. This
drastic drop can be characterized by a divergent quantity,
the fidelity susceptibility (χF ) [33]. One can show that χF

has poles of one order higher than the second derivative of
the ground-state energy density [4,33], thus fidelity methods
work well for detecting QPTs of order less than four [1,3–
6,13,15,16]. Critical exponents can be extracted by finite-size
scalings (FSSs) of peak heights and peak positions, which can
be used to determine the order of QPTs [5,6]. However, χF

does not diverge for QPTs of order higher than three, espe-
cially for the IOQPTs. Although one can detect the IOQPTs
in the J1-J2 Heisenberg chain using fidelity for the first-excited
state [2] or a more general definition of fidelity [11], the
methods are specific to this model and cannot be easily gen-
eralized to other models. Making use of a pseudospontaneous
symmetry breaking in infinite matrix product states with finite
bond dimension also works for IOQPTs [8,9]. Here we are
interested in the methods based on FSS, which can be applied
to experimental realizations of analog quantum simulations.
Reference [34] shows that the scaling of the peak height of
χF does signal a BKT transition, and one can extrapolate a
value close to the BKT transition point using the standard
FSS of the peak position. But it is suspect that a nondivergent
peak is located at the BKT transition point, as it has been
shown that the finite peak of the specific heat is away from
the BKT transition point and inside the gapped phase [35,36].
In this paper, we take the truncated quantum O(2) model
and clarify this question based on accurate density-matrix-
renormalization-group (DMRG) calculations.

As the entanglement entropy is a byproduct in DMRG
calculations, it is natural to compare the fidelity methods to the
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entanglement methods. In the seminal work Ref. [18], it was
shown that the singularity of the derivative of the two-site en-
tanglement is located at the critical point of the second-order
QPTs. In later works, local measures of entanglement such
as single-site [19,20,22,23] and two-site [19,21,24,29] entan-
glement entropy were proposed for the study of finite-order
QPTs. In fact, the ground-state expectation values of local ob-
servables (the ground-state energy is the expectation value of
a sum of local operators for systems with short-range interac-
tions) are linear functions of the matrix elements of few-body
reduced density matrices residing at the same subsystem as the
local observables [21], so any local measures of entanglement
that depend on the reduced density matrix should have sin-
gularities with critical exponents for finite-order QPTs [25].
But again, the local entanglement does not have singularities
in any of its finite-order derivatives for IOQPTs so it cannot
be used to detect them. The successful example using single-
site entanglement entropy for the one-dimensional Hubbard
model is ascribed to the coincidence that the equipartition of
local states is reached at the IOQPT point [23], and the one
using two-site entanglement entropy for the J1-J2 Heisenberg
chain is due to the coincidence that the two-site entropy can
characterize the dimerized order in the gapped phase [29].
The local maximum in the block entanglement entropy of the
spin-1/2 XXZ chain [27] is found to be at the BKT point,
but this is not a universal feature for BKT transitions. The
local maxima in the estimated values of the central charge
[14,28,32] are also observed to be at IOQPTs, but they cannot
differentiate between different types of IOQPTs. We are inter-
ested in a universal entanglement method for probing IOQPTs
and extracting their critical properties. Notice that there exists
a universal scaling law for the block entanglement entropy in
one-dimensional quantum systems: The block entanglement
entropy at a critical point diverges logarithmically with the
size of the block. For gapped-to-gapped phase transitions, the
phase transition point is singled out by this divergent behavior,
and critical exponents can be extracted by analysis of parity-
oscillation corrections [37–39] and the FSS of peak positions.
For IOQPTs from a gapped phase to a gapless phase, the block
entanglement entropy may keep increasing and saturate, with
no clear signals for the phase transition point. But intuitively,
the peak of the derivative of the block entanglement entropy
(S′

vN ) should diverge and reside at the IOQPT point. We pro-
vide a detailed analysis for the FSS of S′

vN in this paper.
In this paper, we investigate the application of χF and S′

vN
to detect and differentiate between different types of IOQPTs
and accurately locate the phase-transition points. The quan-
tum O(2) model with spin-1 truncation has an IOG transition
from a gapped phase into a BKT critical line, where the phase-
transition point is a multicritical point connecting a Gaussian
critical line and two BKT critical lines [40,41]. For larger spin
truncations, the model has BKT transitions. The SU(2) sym-
metric models such as the one-dimensional Hubbard model
[42,43] and the J1-J2 Heisenberg chain [44] also have the same
type of IOG transition. The magnetic and correlation-length
critical exponents for the IOG transition are the same as BKT
transitions. A number of previous works assert that this IOG
transition belongs to BKT-type, but the essential singularity in
the correlation length at the IOG point is different from that
at the BKT point. Level spectroscopy (LS) can differentiate

between the two transitions and locate the phase-transition
points accurately [41], but it needs prior knowledge about the
critical properties of the model. Here we show that the FSS of
the peak heights and the peak positions of χF and S′

vN can
differentiate between IOG transitions and BKT transitions,
and the entanglement method can locate the values of IOQPT
points more accurately than the fidelity method.

The paper is organized as follows. Section II A introduces
the quantum O(2) model and its phase transitions. The defini-
tion of χF and its relation to QPTs are described in Sec. II B.
Section II C discusses the FSS of the peak position and the
divergent behavior of the peak height for S′

vN . Section II D
analyzes the convergence of DMRG calculations of χF and
S′

vN . We discuss the numerical results in Sec. III. We first give
general remarks in Sec. III A. In Sec. III B, we show that the
differences between IOG and BKT transitions are exhibited in
the FSS of the peak positions and the peak heights of χF and
S′

vN . In the thermodynamic limit, the peak positions of χF are
not located at IOP or BKT points, while those for S′

vN are. We
present the FSS of crossing points of χF and S′

vN to further
support our conclusions. Finally, in Sec. IV, we summarize
the main conclusions of our work.

II. MODEL AND METHODS

A. Quantum O(2) model

The two-dimensional classical O(2) model can be defined
on a Euclidean-spacetime lattice. In the dual representation
and in the time-continuum limit [41,45–47], the Hamiltonian
formulation, or the quantum O(2) model in (1 + 1) dimen-
sions, is obtained:

ĤU = D
L∑

l=1

(
Ŝz

l

)2 − J
L−1∑
l=1

(Û +
l Û −

l+1 + Û −
l Û +

l+1), (1)

where D and J are coupling constants, and L is the total
number of sites. Ŝz is an operator with its eigenvalues and
eigenstates satisfying Ŝz|n〉 = n|n〉 (n = 0,±1,±2, ...), and
Û ± = exp(±iθ̂ ) are raising and lowering operators, Û ±|n〉 =
|n ± 1〉. Open boundary conditions (OBCs) are considered
here. We set J = 1 as the energy scale for all the following
calculations. Without a truncation, the value of n can be in-
finitely large. With a truncation |n|max = S, Ŝz becomes the
z component of the spin-S operator, and Û ±| ± S〉 = 0. We
also consider the model with raising and lowering operators
replaced by spin ladder operators Ŝ±/

√
S(S + 1),

ĤS = D
L∑

l=1

(
Ŝz

l

)2 − J

S(S + 1)

L−1∑
l=1

(Ŝ+
l Ŝ−

l+1 + Ŝ−
l Ŝ+

l+1). (2)

For S = 1 or in the large-S limit, Û ± = Ŝ±/
√

S(S + 1) and
the two Hamiltonians are the same [41]. Û ± and Ŝz have the
following commutation relations

[Û +, Û −] = D̂, (3)

[Ŝz, Û ±] = ±Û ±, (4)

where D̂ only has nonzero matrix elements at the most upper-
left corner, 〈2S + 1|D̂|2S + 1〉 = 1, and the most lower-right
corner, 〈−2S − 1|D̂| − 2S − 1〉 = −1. Equation (4) is the
same as [Ŝz, Ŝ±] = ±Ŝ± for spin operators, while Eq. (3) is
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not the same as the commutation relation between spin ladder
operators, [Ŝ+, Ŝ−] = 2Ŝz except for S = 1. Both Hamiltonian
(1) and Hamiltonian (2) have an explicit global U(1) symme-
try, so the total magnetization is a conserved quantum number
for any spin truncation.

There is an IOG transition from the gapped large-D phase
into a gapless BKT critical line as we decrease D for our
Hamiltonian with S = 1, while there are BKT transitions for
both Hamiltonians with S � 2 [41]. Approaching the phase
transition point from the gapped side (D → D+

c ), the correla-
tion length diverges in the following form:

ξ ∼ (�E )−1 ∼
{

(D − Dc)−1/2eb1/(D−Dc ), S = 1

ebS/
√

D−Dc , S � 2
, (5)

where bS is a nonuniversal constant that depends on the details
of the model. Due to these essential singularities, ordinary
methods of finding the phase-transition points by judging
where the energy gap closes are not accurate, and finite-size
effects are strong and decrease slowly due to the logarithmic
scaling.

B. Ground-state fidelity susceptibility

The ground-state fidelity [1,33,48,49] between two ground
states for coupling constants D and D + δ is defined as

F (D, D + δ) = 〈�0(D)|�0(D + δ)〉, (6)

where |�0〉 is the ground state. Near the phase transition
point, a small increment in D can drive the system from one
phase to another. If the phase transition is associated with a
symmetry breaking, the structure of the ground-state wave
function changes drastically, then the fidelity has a large drop
around the phase transition. This drastic change in fidelity is
characterized by a peak in the fidelity susceptibility

χF (L) = lim
δ→0

−2 ln (〈�0(D)|�0(D + δ)〉)

Lδ2
. (7)

The scaling analysis suggests that χF (L) ∝ L1+2z−2� [48],
where z and � are the dynamical exponent and the scal-
ing dimension of the perturbation term (the D term for our
model), respectively. For BKT transitions, z = 1,� = 2, the
scaling analysis gives χF (L) ∝ 1/L. A more precise analysis
based on non-Abelian bosonization concludes that the leading
behavior contributed by the marginal operator at the BKT
point is χF (L) ∝ 1/ ln(L) [34], which can be used to detect
the existence of BKT transitions. So the height of χF is
finite in the thermodynamic limit. In fact, for IOQPTs such
as BKT transitions without symmetry breaking, the structure
of the ground-state wave function changes smoothly across
the phase transition point, thus χF should not diverge. Using
perturbation theory for the perturbation δ

∑
l (Ŝ

z
l )2, one can

obtain

χF = 1

L

∑
n 	=0

|〈�n|ĤD|�0〉|2
(En − E0)2

= − 1

2L

∂

∂E0

∂2E0

∂D2
, (8)

where |�n〉 is the eigenstate of ĤU (S) with eigenenergy En, and
ĤD = ∑

l (Ŝ
z
l )2. For second-order QPTs, the second deriva-

tive of the ground-state energy has poles of order one at the
phase transition point where the energy gap closes, and χF

has the same poles of order two. So χF is more singular
than ∂2E0/∂D2 and is likely to diverge for third-order QPTs.
However, for QPTs of order larger than three, χF is not guar-
anteed to be infinite. References [6,50] showed that χF indeed
diverges for second- and third-order QPTs but is finite for
fourth- and fifth-order QPTs.

References [17,34] assert that the peak position goes to the
BKT point as

Dp(L) − Dc ≈ A

ln2(BL)
, (9)

where A and B are constants. We should be cautious, however,
when discussing the FSS of a nondivergent peak. For example,
the specific heat, which is the second derivative of the free
energy and is divergent for second-order phase transitions, is
finite for BKT transitions and the peak position is inside the
gapped phase [35,36]. On one hand, the dominant scaling of
χF ∝ 1/ ln(L) comes from the marginal operator at the BKT
point, so the FSS in Eq. (9) deduced from the correlation
length may also dominate the scaling of the peak position
of χF . Reference [17] has employed Eq. (9) to extrapolate
accurate values of BKT points for clock models. On the other
hand, χF being finite indicates that one can formulate a scaling
hypothesis for the log fidelity as a function of correlation
lengths ξ (D), ξ (D + δ) and show that the peak of χF for
BKT transitions is shifted into the gapped phase [51], which
has been checked numerically. The only possibility to resolve
the contradiction is that the FSS in Eq. (9) is valid only for
intermediate system sizes. This is true because in the large L
limit, the finite-size effects from the marginal operator vanish
and χF converges so that the scaling hypothesis becomes
valid and determines the location of the peak. For the IOG
transition, there is no reason for the peak to be around the
phase-transition point. We will show that the peak position of
χF is indeed inside the gapped phase for our model, but the
FSS in Eq. (9) can predict approximate values of the BKT
points using data for intermediate system sizes.

C. Derivative of the block entanglement entropy

By splitting the system into two parts, A and B, the entan-
glement entropy of the ground state is

SvN = −Tr[ρ̂A ln(ρ̂A)], (10)

where ρ̂A = TrB〈�0|�0〉 is the reduced density matrix for
block A. We focus on the case where the system is cut in the
middle and A is half of the system. According to the area laws
of the entanglement entropy [52], for one-dimensional quan-
tum systems, SvN is finite in the gapped phase. At the critical
point, the entanglement entropy diverges logarithmically with
the size of the system due to conformal anomaly, which is
[53,54]

SvN = c

6
ln(L) + r (11)

for OBCs, where c is the central charge, and r is a nonuniver-
sal constant. For IOG and BKT transitions, the entanglement
entropy is finite in the gapped phase and diverges in the gap-
less phase, thus the phase-transition point is at the place where
the derivative of SvN with respect to the coupling constant
diverges. For finite-size systems, S′

vN has a peak (we take
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−dSvN/dD in this paper so S′
vN is positive) moving toward

the phase-transition point. Based on Eq. (5) and ξ ∼ L, one
can obtain the leading behavior of the scaling of the peak po-
sition: Dp(L) − Dc ≈ b1/ ln(L) for S = 1 and Dp(L) − Dc ≈
b2

S/ ln2(L) for S � 2. To obtain accurate results, we need to
consider higher-order corrections. For S = 1, the leading term
b1/ ln(L) is substituted back into Eq. (5) to find the main
correction from (D − Dc)−1/2 factor, and we add two more
higher-order terms proportional to 1/ ln2(L) and 1/ ln3(L).
Finally, the FSS of the peak position takes the form

Dp(L) − Dc = b1

ln(L)
+ b1[ln ln(L) − ln(b1)]

2 ln2(L) + ln(L)

+ d1

ln2(L)
+ e1

ln3(L)
+ · · · , (12)

where d1 and e1 are constants. For S � 2, we add two cor-
rection terms proportional to 1/ ln3(L) and 1/ ln4(L), and the
FSS is

Dp(L) − Dc = b2
S

ln2(L)
+ dS

ln3(L)
+ eS

ln4(L)
+ · · · , (13)

where dS and eS are constants depending on S. We will
show that the extrapolated phase-transition points for S =
1, 2, 3, 4, 5 based on Eqs. (12) and (13) are all close to the
results from LS with differences only of order 10−3.

The peak height of S′
vN diverges in the thermodynamic

limit. To obtain the FSS, we take the derivative of both sides
of Eq. (11) with respect to the peak position Dp, then the peak
height S′∗

vN scales as

S′∗
vN = c

6

1

L

dL

dDp
+ r′, (14)

where we have assumed that r is a linear function of Dp −
Dc, which is valid as long as |Dp − Dc| is small, thus r′ is a
constant. Combining Eqs. (12) and (14), we have the FSS of
S′∗

vN for S = 1

S′∗
vN = a1 lnp1 (L)

1 + d ′
1/ ln(L) + · · · + r′

1, (15)

where p1 = 2, and the coefficient a1 is related to b1 and the
central charge by

a1 = c

6b1
. (16)

Combining Eqs. (13) and (14), we have the result for S � 2,

S′∗
vN = aS lnpS (L)

1 + d ′
S/ ln(L) + e′

S/ ln2(L) + · · · + r′
S, (17)

where pS = 3, and aS is related to bS and the central charge
by

aS = c

12b2
S

. (18)

We only consider one correction term in the denominator in
Eq. (15) for S = 1 because the curve fit is not stable with
complicated higher-order corrections. Using Eqs. (15) and
(17) to fit the data, we can extract the values of pS to check
the expected results p1 = 2 for IOG transitions and pS = 3

FIG. 1. The dependence of the error in the fidelity (F ), the
ground-state entanglement entropy (SvN ), the ground-state energy
(E0), the fidelity susceptibility (χF ), and the derivative of SvN

with respect to D (S′
vN ) on (a) the truncation error and (b) the

bond dimension in DMRG calculations. The error is obtained by
subtracting the results for ε3 = 10−12 from those for larger truncation
errors. The results are for Hamiltonian (1) with S = 2, L =
384, D = 1.297. The best linear fitting functions for log errors
in χF and S′

vN are log10 |χF (ε) − χF | = 3.1(6) + 0.73(7) log10 ε,
log10 |S′

vN (ε) − S′
vN | = 5.8(3) + 0.91(4) log10 ε, log10 |χF (ε) −

χF | = −0.95(11) − 0.0118(9)Dbond, and log10 |S′
vN (ε) − S′

vN | =
0.61(6) − 0.0142(5)Dbond.

(S � 2) for BKT transitions. We also use Eqs. (16) and (18)
to check the values of central charge c = 1 after obtaining aS

and bS from the curve fit. These results are only based on
the renormalization-group analysis [Eq. (5)] and conformal
field theory [Eq. (11)], so they are universal features for IOG
transitions and BKT transitions.

D. Convergence of DMRG

We perform the finite-size DMRG algorithm [55–57] with
ITensor C + + Library [58], which minimizes the finite-size
ground-state energy by optimizing the matrix product state
(MPS) [59] variationally. We increase the number of Schmidt
states (bond dimension of MPS or Dbond) gradually during the
sweeping procedure until the truncation error is less than a
preset value ε. The number of sweeps is large enough for
the difference in the entanglement entropy between the last
two sweeps to be less than 10−11. We set J = 1 in all the
calculations unless otherwise specified.

Both the calculation of χF and that of S′
vN require the

determination of the ground-state wave functions at two close
couplings D and D + δ. We use δ = 5 × 10−4 for all the
calculations. The byproducts are the ground-state energy (E0),
the entanglement entropy (S), and the fidelity (F ). In Fig. 1,
we show the dependence of the errors in these quantities
on the truncation error and the bond dimension of MPS for
Hamiltonian (1) with S = 2, L = 384, and D = 1.297. The
errors are obtained by subtracting the results for a very small
truncation error ε3 = 10−12, which can be considered as ex-
act, from those for truncation errors of several orders larger.
We find that the error in F is small and close to 10−6 for
all cases considered here and decreases slowly. The error in
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FIG. 2. (a) The derivative of SvN for L = 384 and (b) the fidelity
susceptibility for L = 512 as a function of D around their peaks, re-
spectively. The results are for Hamiltonian (1) with S = 2 truncation.
Three cases with different truncation errors ε1 = 10−10, ε2 = 10−11,
and ε3 = 10−12 are presented here.

E0 decreases as a power of ε, consistent with the results in
Refs. [41,60]. The errors in SvN , χF , and S′

vN all decrease
as a power of ε or exponentially with the bond dimension,
but more than one order larger than that in E0. The value of
χF depends on the overlap of two wave functions, which is
more sensitive to the details of the MPS, thus has stronger
fluctuations than others.

In Fig. 1(a) with both axes in the logarithmic
scale, we perform linear fits for χF and S′

vN and
find that log10 |χF (ε) − χF | = 3.1(6) + 0.73(7) log10 ε,
log10 |S′

vN (ε) − S′
vN | = 5.8(3) + 0.91(4) log10 ε. Then we

can estimate the errors for smaller truncation errors. The
extrapolated errors in χF and S′

vN for ε1 = 10−10 are 10−4.2

and 10−3.3, respectively. And the extrapolated errors for
ε2 = 10−11 are 10−4.9 and 10−4.2, respectively. We perform
the same procedure in Fig. 1(b), and the extrapolated errors
are more than one order smaller.

To find the peak heights and the peak positions for χF

and S′
vN , we apply a spline interpolation on data sets with

�D = 10−3. Figure 2(a) shows that the variation of the values
of χF inside a 0.01 interval around the peak is of order 10−5

for L = 512, thus the results from DMRG with ε1 = 10−10

are not accurate enough and have fluctuations. The results for
ε2 = 10−11 and ε3 = 10−12 are smooth, and there is a small
discrepancy of order 10−6 between them. Similar behaviors
can be seen for S′

vN in Fig. 2(b), where the change in S′
vN inside

a 0.01 interval is of order 10−3. The error in S′
vN for ε1 is still

big and results in fluctuations. The discrepancy between the
results for ε2 and those for ε3 is of order 10−5 so invisible.

Because the logarithmic corrections result in slow conver-
gence of observables in finite-size systems, it is necessary to
have accurate data for finite L to avoid large error propagation
in the extrapolation procedure. We use a truncation error ε3 =
10−12 in DMRG calculations for Hamiltonian (1) with S = 1
and S = 2. Among the cases we calculated, the maximal bond
dimension of MPS is Dbond = 962 for S = 1, L = 1024, D =
0.775. In other calculations for Hamiltonian (1) with S = 3, 4
and Hamiltonian (2) with S = 2, 3, 4, 5, we use a truncation
error ε2 = 10−11, and the largest bond dimension of MPS is

TABLE I. Extrapolated values of the phase-transition points Dc

from χF for Hamiltonians (1) and (2) with different S. Data points for
intermediate system sizes 160 � L � 512 are used in the extrapola-
tions. The results from level spectroscopy (LS) [41] are also shown
for comparisons.

ĤU , χF ĤU , LS ĤS, χF ĤS , LS

S = 1 0.756(6) 0.3507 0.756(6) 0.3507
S = 2 1.129(26) 1.1013 1.02(4) 0.9322
S = 3 1.106(17) 1.1256 0.95(5) 1.0331
S = 4 1.08(18) 1.1259 1.089(8) 1.0710
S = 5 1.11(3) 1.0895

Dbond = 580 for Hamiltonian (2) with S = 2, L = 512, D =
1.148.

III. RESULTS

We discuss the numerical results in this section. We have
obtained accurate values of the phase-transition points from
LS in previous work (see Table I or Ref. [41]), which are used
as references to describe the plots and check the accuracy of
the results from χF and S′

vN .

A. General remarks

We first present the behavior of F , χF , SvN , and S′
vN as

functions of the coupling constant D. As we discussed before,
the fidelity will not have a drastic drop for our Hamiltonians
that have IOQPTs without symmetry breaking, and the en-
tanglement entropy will keep increasing as we decrease the
value of D. Figure 3 confirms our expectations. The results
are for Hamiltonian (1) with S = 1. In Fig. 3(a), we see that
the fidelity does have a drop. The magnitude of the drop is
only of order 10−7 for L � 100 and increases almost linearly
with L. Based on the definition of χF in Eq. (7), the fidelity
susceptibility will not diverge in the thermodynamic limit and
is of order 10−2, which is confirmed in Fig. 4. Figure 3(b)

FIG. 3. (a) Fidelity and (b) entanglement entropy as a function
of D for S = 1, L = 32, 64, 96, 128.
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FIG. 4. χF as a function of D for (a) S = 1, (b) S = 2, (c) S =
3, and (d) S = 4. The results are for Hamiltonian (1) with L =
32, 64, 96, 128, 192, 256.

shows that the entanglement entropy is independent with the
size of the system for large D, indicating that the large-D
phase is gapped. For small D, SvN increases as we increase L,
and one can see that the increment in SvN by doubling the size
of the system is almost the same (∼0.11), consistent with the
logarithmic scaling in Eq. (11). Note that there is a local ex-
treme in the entanglement entropy at the BKT transition of the
spin-1/2 XXZ chain [27], while there is no such phenomenon
to signal the IOQPTs in our models. Similar behaviors are
seen in Hamiltonians (1) and (2) with any S truncations (not
shown here).

Since the change in the fidelity is very small, it is diffi-
cult to measure in any quantum simulation experiment. The
expression of χF in Eq. (8), however, is related to the spec-
tral function that can be measured experimentally [50,61].
The entanglement entropy does not have a local extreme to
signal a QPT, but the derivative of SvN obviously does. We
present χF and S′

vN for Hamiltonian (1) with S = 1, 2, 3, 4
as functions of D in Fig. 4 and Fig. 5, respectively. We see
that the results for S = 1 are very different from those for
S � 2, and the difference between the results for S = 3 and

FIG. 5. Same as Fig. 4 but for S′
vN . The insets enlarge the part of

the main plots where curves cross.

FIG. 6. Extrapolation procedures for the phase transition point
Dc at (a) S = 1 truncation and (b) S = 2 truncation. The extrapo-
lations are performed with peak positions of χF (circles) and peak
positions of S′

vN (triangles). For S = 1, solid lines on the symbols
are the curve fitting C + A/ ln(L) for χF and curve fitting with
Eq. (12) for S′

vN , respectively. The dash-dot line on triangles fits
two data points for the largest L = 768, 1024 with Eq. (12) setting
d = e = 0. For S = 2, solid lines are fitting with Eq. (9) for χF

and fitting with Eq. (13) for S′
vN . The extrapolated Dc for S = 1

is 0.759(3) for χF , 0.353(7) (solid line) and 0.3523 (dash-dot line)
for S′

vN , respectively. The extrapolated Dc for S = 2 is 1.129(26)
and 1.0979(3), respectively. The dashed lines are results from level
spectroscopy in Ref. [41]. The results are for Hamiltonian (1). The
smaller red circles in (b) are results for L = 768, 1024, 1536, which
are not used in the curve fitting and are used to show that the best
fitting function is below the true values of Dp for larger L.

those for S = 4 is invisible. One can expect that both χF

and S′
vN for finite size systems converge exponentially with

S. For all the cases, the peaks of χF and S′
vN move slowly with

increasing L. According to Eq. (5), the peaks should move
to their thermodynamic positions with a leading behavior of
1/ ln(L) for S = 1 and 1/ ln2(L) for S � 2. Because 1/ ln2(L)
decreases more slowly with increasing L than 1/ ln(L) does,
so the peaks for S � 2 move slower than that for S = 1 does.
But the 1/ ln2(L) term is much smaller than the 1/ ln(L) term,
so for the same finite L, the peak position of S = 1 is farther
away from the phase-transition point than those of S � 2. We
check these scaling behaviors in Fig. 6. Then we see that the
peak height of χF (χ∗

F ) increases very slowly and is not likely
to diverge for all cases. The value of χ∗

F for S = 1 grows more
slowly than those for S � 2, indicating a different convergent
behavior. The peak height of S′

vN (S′∗
vN ) tends to diverge for

all the cases, but the one for S = 1 again diverges slower than
others.

Notice that in all plots shown here, there exists a crossing
point for curves between different system sizes. The crossing
points are all close to the phase-transition points, except for
χF at S = 1, which may be due to large finite-size effects
(discussed further in Sec. III C). Assuming both χF and S′

vN
are single-valued functions of D, the peaks will never go to
the left side of the crossing points. If the crossing point is
larger than the phase-transition point, the peak position is
also larger than the phase-transition point. This criteria can
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be used to check the FSSs of the peaks of χF and S′
vN . In the

following, we first study the FSSs of the peaks of χF and S′
vN ,

and then discuss the FSS of the crossing point to crosscheck
the results. The main conclusion is that the peak position of χF

is inside the gapped phase and larger than the IOQPT point,
while the peak position of S′

vN is at the IOQPT point for all S
truncations. But both the FSS of the peak height of χF and that
of S′

vN can be used to differentiate between the IOG transition
and BKT transitions.

B. Finite-size scaling of peaks

As shown in Fig. 2, we perform a spline interpolation
inside a 0.01 interval for an equidistant data set with �D =
10−3 to find the peak positions Dp and the peak heights χ∗

F
and S′∗

vN . We first discuss the results for Hamiltonian (1) with
S = 1, 2, where we have the most accurate data from DMRG
with truncation error ε3 = 10−12. Figure 6 depicts the results
for the peak positions and the procedures of extrapolations to
L → ∞. The minimal system size we calculated is L = 32
for all cases, and the maximal system sizes are L = 2048
for χF at S = 1, L = 1024 for S′

vN at S = 1, L = 512 for
χF at S = 2, and L = 384 for S′

vN at S = 2. In Fig. 6(a),
we see that Dp of χF at S = 1 is linear with 1/ ln(L) but
only for intermediate system sizes, where we fit the data with
a linear function of 1/ ln(L) for 160 � L � 512, and find
the extrapolated value 0.759(3), which is far from the IOG
transition point Dc = 0.35067 from LS [41]. Moreover, the
value of Dp starts to decrease slower than 1/ ln(L) for system
sizes larger than L = 512, so the peak position of χF must
be larger than 0.759 and does not signal the IOG point for
S = 1. In Fig. 6(b) for S = 2, we use Eq. (9) proposed in
Ref. [34] to fit the peak positions for 160 � L � 512 and
find the extrapolated Dc = 1.129(26), which is close to the
result Dc = 1.1013 from LS [41]. So we have confirmed our
speculation in Sec. II B that we can extrapolate approximate
values of the BKT points using data for intermediate sys-
tem sizes. However, the peak of χF is not singular, which
may be shifted by other source of contributions, thus can-
not single out the BKT point accurately. Using a smaller
truncation error ε1 = 10−10, we can determine the value of
Dp with an error less than 10−3 for larger system sizes. We
find that Dp = 1.340, 1.334, 1.325 for L = 768, 1024, 1536
from DMRG, respectively. The three data points are shown
in Fig. 6(b) as small red circles. The extrapolated values
from the curve fit are 1.3390, 1.3310, 1.3205. Although not
as pronounced as the S = 1 case, the extrapolated value is
also smaller than the true value and the error increases with L.
So the FSS [A/ ln2(BL)] deduced from the divergent behavior
of the correlation length is not true for large systems. These
observations do not contradict the results in other works. For
example, Ref. [17] applies this scaling to clock models and
successfully find the BKT points, where only system sizes
L � 144 are used. Now we use data sets for L � 512 to
extrapolate the values of BKT points for all the other cases.
In Table I, we list the extrapolated values of Dc from χF for
Hamiltonian (1) with S = 1, 2, 3, 4 and Hamiltonian (2) with
S = 1, 2, 3, 4, 5, and compare them with those from LS. We
see that all the extrapolated values of BKT points deviate from
the true Dc by an amount of order 10−2.

TABLE II. Extrapolated values of the phase-transition points Dc

from S′
vN for different S.

ĤU , S′
vN ĤS, S′

vN

S = 1 0.353(7) 0.353(7)
S = 2 1.0979(3) 0.9401(14)
S = 3 1.120(2) 1.038(3)
S = 4 1.122(3) 1.069(6)
S = 5 1.085(9)

The results for S′
vN are much more accurate. In Fig. 6(a), we

see that Dp for S = 1 becomes linear with 1/ ln(L) quickly.
We can use the leading scaling to fit the values of Dp for
the biggest two system sizes L = 768, 1024 and obtain the
extrapolated Dc = 0.357, which has a difference only of 0.006
from the result from LS. We can improve the result by adding
subleading corrections. We first consider the correction term
from (D − Dc)−1/2 in Eq. (5) and use the first line of Eq. (12)
to fit the two data points for L = 768, 1024. We obtain the
extrapolated Dc = 0.3523, much closer to the result from LS.
Higher-order corrections are complicated and make fitting
procedure unstable. We consider two more correction terms
proportional to 1/ ln2(L) and 1/ ln3(L), and use Eq. (12) to fit
data points for L = 96, 128, ..., 1024 and find Dc = 0.353(7)
and b1 = 2.49(11), which are consistent with the results
[Dc = 0.3512(10), b1 = 2.501(13)] from gap scaling [41].
The extrapolation procedure for S = 2 is shown in Fig. 6(b).
The leading term 1/ ln2(L) has not dominated the scaling
for the maximal L = 384 we calculated, but the higher-order
corrections with higher powers of 1/ ln(L) can help improve
the extrapolated results. We use Eq. (13) to fit the data points
for L = 32, 48, ..., 384 and find that Dc = 1.0979(3) and b2 =
3.597(5). In Table II, we summarize the extrapolated values of
Dc from S′

vN , where one can see that all the results are close
to those from LS with differences only of order 10−3. The
values of bS are summarized in Table III, which are close to
those from gap scaling (GS) [41]. Because the method of gap
scaling does not include higher-order corrections, we believe
the results here are more accurate, which can be crosschecked
with the value of central charge c = 1 (see below).

Before going to the discussion of the peak heights, we add a
side remark for the shift of the peak position of χF away from
the phase-transition points. Reference [51] asserts that the
shift of the peak position of χF is b2

S/36 for BKT transitions,
which is 0.36 for S = 2. But in Fig. 6(b), our Dp is smaller
than Dc + 0.36 = 1.46 for all system sizes. This is because
our bS is large, and the result in Ref. [51] is more accurate

TABLE III. Values of bS from S′
vN for different S. The results

from gap scaling (GS) [41] are also shown for comparisons.

ĤU , S′
vN ĤU , GS ĤS, S′

vN ĤS , GS

S = 1 2.49(11) 2.501(13) 2.49(11) 2.501(13)
S = 2 3.597(5) 3.2553(21) 3.767(24) 3.647(4)
S = 3 3.52(4) 3.110(5) 3.53(5) 3.367(2)
S = 4 3.49(5) 3.117(5) 3.57(10) 3.281(3)
S = 5 3.58(14) 3.25(1)
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FIG. 7. The peak height of χF as a function of (a) 1/L0.721 for
S = 1 and (b) 1/ ln(L) for S = 2, 3, 4, respectively. The solid lines
are linear fits. The markers for S = 3 and S = 4 are on top of each
other. The inset of (a) shows χ∗

F for S = 1 as a function of 1/ ln(L).
The results are for Hamiltonian (1).

for smaller bS . Following the derivations in Ref. [51], one can
obtain the shifted peak position of χF for the IOG transition
is Dc + 2b1/9 ≈ 0.91, close to the value of Dp = 0.96 for
L = 2048. Algorithms for infinite-size systems are needed to
check this, which is beyond the scope of this work.

We next discuss the scaling of the peak height of χF and
S′

vN . In Fig. 7, we present the values of χ∗
F for Hamiltonian

(1) as a function of L. For BKT transitions (S � 2), χ∗
F is

expected to scale linearly with 1/ ln(L) [34], which is con-
firmed in Fig. 7(b). However, for S = 1, the inset of Fig. 7(a)
shows that χ∗

F is not linear with 1/ ln(L). We do not think χ∗
F

scales polynomially with 1/L, either, because the coefficients
of 1/Lp (p � 2) are unreasonably large in the curve fit. We
fit the data with a power-law function of 1/L and find that
χ∗

F ∼ 1/L0.721(15) for S = 1. The results for Hamiltonian (2)
with S = 2, 3, 4, 5 are shown in Fig. 8, where the values of χ∗

F
are all linear with 1/ ln(L). So the scaling of the peak height
of χF can differentiate between IOG transitions and BKT

FIG. 8. Same as Fig. 7 but for Hamiltonian (2). The inset presents
the extrapolated thermodynamic values of χ∗

F as a function of
1/[S(S + 1)]. The results for Hamiltonian (1) from Fig. 7 are fit with
an exponential convergence function of S, while those for Hamilto-
nian (2) are fit with a polynomial function of 1/[S(S + 1)].

FIG. 9. The peak height of S′
vN as a function of L for (a) Hamil-

tonian (1) with S = 1, 2, 3, 4 and (b) Hamiltonian (2) with S =
2, 3, 4, 5. The solid lines are fits with Eq. (15) for S = 1 and with
Eq. (17) for others. The result for a true BKT transition in Hamil-
tonian 1 with S = 1 plus Jz = −0.5 term is also displayed in (b).
Markers for S = 3 and S = 4 are on top of each other in (a), and
those for S = 4 and S = 5 are on top of each other in (b).

transitions. Notice that the values of χ∗
F for Hamiltonian (1)

converge quickly with S and have invisible difference between
S = 3 and S = 4, while those for Hamiltonian (2) converge
much slower and have clear difference between S = 4 and
S = 5. These phenomena are consistent with the exponential
convergence of energy gap and phase-transition points dis-
cussed in Ref. [41]. We fit the extrapolated values of χ∗

F for
Hamiltonian (1) with an exponential convergence function of
S, and fit those for Hamiltonian (2) with a polynomial function
of 1/[S(S + 1)], and find that the values of the peak height of
χF for L → ∞, S → ∞ are 0.2423(7) and 0.2422(7), respec-
tively, which are the same within uncertainties as expected.

Figure 9 depicts the the peak height of S′
vN as a function

of L. The results for Hamiltonian (1) are shown in Fig. 9(a),
and those for Hamiltonian (2) are shown in Fig. 9(b). We
also present the result for Hamiltonian (1) with S = 1 plus a
nearest-neighbor-interaction term

∑
l Sz

l Sz
l+1 with a coupling

constant Jz = −0.5, which also has a BKT transition [40], in
Fig. 9(b). Firstly, one can also see that S′∗

vN for Hamiltonian
(1) converges faster with S than that for Hamiltonian (2) does.
More importantly, the scaling of S′∗

vN for S = 1 is slower so
obviously different from others. The plots for all the cases
that have BKT transitions, including the one with S = 1, Jz =
−0.5, are almost parallel with each other, indicating that they
have the same leading scaling. We use Eq. (15) to fit the data
for S = 1 and system sizes L = 256, 320, . . . , 1024. For BKT
cases, we take the scaling form in Eq. (17) to fit the data for
system sizes starting from L = 32. The values of the power
bS can be extracted and are summarized in Table IV. For
the IOG transition in Hamiltonian (1) with S = 1, we obtain
p1 = 2.000(16), so S′∗

vN diverges as ln2(L). For BKT cases,
the best-fit values of pS are all close to three with differences
only of order 10−2, thus we have confirmed that S′∗

vN diverges
as ln3(L) for BKT transitions.
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TABLE IV. Values of pS from S′
vN for different S.

ĤU ĤS

S = 1 2.000(16) 2.000(16)
S = 1,
Jz = −0.5 2.930(7) 2.930(7)
S = 2 3.037(4) 2.930(4)
S = 3 3.075(4) 3.011(6)
S = 4 3.076(7) 3.047(6)
S = 5 3.079(10)

To further support the validity of our results, we crosscheck
the value of the central charge c = 1. As discussed in Sec. II C,
aS , bS , and the central charge c can be related by Eq. (16)
for S = 1 and Eq. (18) for S � 2. We list the values of aS in
Table V. Using the results in Table III and V, we calculate the
values of central charge c and put them in Table VI. One can
see that all the calculated values of the central charge are close
to the expected value c = 1. In particular, for Hamiltonian
(1) with S = 2, where a truncation error ε3 = 10−12 is used
in DMRG, the result is 1.006(15), the most accurate. For
Hamiltonian (1) with S = 1, although the same truncation
error is used, the higher-order correction of the peak height
of S′

vN is hard to take into account, thus the result is 0.96(10)
with a larger uncertainty but still consistent with c = 1. For
other cases [Hamiltonian (1) with S = 3, 4 and Hamiltonian
(2) with S = 2, 3, 4, 5] that have a larger truncation error
ε2 = 10−11 in DMRG calculations, most of the results still
have consistent values of c but with a larger uncertainty
than that for Hamiltonian (1) with S = 2. The results for
Hamiltonian (1) with S = 3, 4 are a little off c = 1 even within
uncertainties. These results all meet our expectations. As the
finite-size effects are strong due to the logarithmic scaling,
the extrapolation is sensitive to the accuracy of the data. We
calculate S′

vN by taking a numeric differentiation, where lots
of significant numbers are subtracted. Thus we need a small
truncation error in DMRG to generate accurate data.

Comparing χF and S′
vN , the computational procedure for

the two quantities is the same. They both require calculations
of the ground states at two close values of D by DMRG.
For the same system size, the peak position of χF is larger
than that of S′

vN . Systems with larger D are deeper inside
the gapped phase and have lower entanglement entropy, thus
require cheaper computational resources in DMRG. We can
compute a single point for L = 2048, S = 1 around the peak
of χF within five days, while we need more than ten days to
compute a single point for L = 1024, S = 1 around the peak
of S′

vN . Because the scalings of the peak heights of χF and

TABLE V. Values of aS from S′
vN for different S.

ĤU ĤS

S = 1 0.064(4) 0.064(3)
S = 2 0.00648(8) 0.0062(9)
S = 3 0.00622(8) 0.00668(12)
S = 4 0.00621(13) 0.00631(11)
S = 5 0.00590(17)

TABLE VI. Values of central charge c from S′
vN for different S.

ĤU ĤS

S = 1 0.96(10) 0.96(10)
S = 2 1.006(15) 1.06(17)
S = 3 0.92(3) 1.00(5)
S = 4 0.91(5) 0.97(7)
S = 5 0.91(10)

S′
vN can both signal the existence of the IOG transitions or

the BKT transitions, differentiating between the two IOQPTs
can be faster by using χF than using S′

vN . But again, there is
no singularity in χF , thus the peak position is not guaranteed
to be at the IOQPT point. We can extrapolate values close
to BKT points using intermediate system sizes, but there is
no unbiased criteria to choose the proper range of L. A crude
estimation of the upper limit of L where we can rely on the ex-
trapolation is made by letting the FSS of the phase-transition
point larger than the universal shift of the peak of χF in
the thermodynamic limit. Thus we have b2

S/ ln2(L) > b2
S/36

and then L < e6 ≈ 403. This upper limit is underestimated
because of higher-order corrections of FSS and the overesti-
mation of the shift. The maximal L we used for χF is 512,
consistent with this estimation. The extrapolation from the
FSS of the peak of S′

vN is much more accurate than that of χF

and can be crosschecked with predictions by conformal field
theory. So the derivative of the block entanglement entropy
with respect to the coupling constant is in general a better
universal tool to detect IOQPTs.

C. Crossing points

The crossing points between different system sizes are
widely seen in quantities for models near BKT transitions,
such as the rescaled spin stiffness for the two-dimensional
XY model [62], the rescaled resistance in two-dimensional
Coulomb gas [63], and the rescaled energy gap for quantum
Hamiltonians [41,64,65]. There also exist crossing points in
both χF and S′

vN as shown in Fig. 4 and Fig. 5, respectively. In
Fig. 4, the crossing point of χF at S = 1 seems to be around
0.65, far from the IOG point, while those at S � 2 are all close
to the BKT points. In Fig. 5, all the crossing points of S′

vN
are close to the phase-transition points. To locate the crossing
point in the thermodynamic limit, we find the crossing point
D× between system sizes L and L + 32 and study the FSS.
The results for χF and S′

vN at S = 1 are presented in Fig. 10.
Interestingly, although the peak position of χF is far from
the IOG point, using a polynomial function of 1/ ln(L) for
the extrapolation, the thermodynamic position of the crossing
point is extrapolated to 0.355(8), consistent with the location
of the IOG point. For S′

vN , we find that the crossing point
is a power-law function of 1/L, D× ∼ 1/L1.123(15), where the
power is consistent with the value of the scaling dimension in
Gaussian CFT [66]. The extrapolated position is 0.35062(6),
which has a difference only of order 10−5 from the IOG
transition point from LS. Thus, both the crossing point of χF

and that of S′
vN can be used to locate the IOG point. If no high

precision is needed, the calculation of the crossing point of χF

in DMRG is much faster than that of S′
vN since it is at much
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FIG. 10. Extrapolations of the crossing points D× for (a) χF and
(b) S′

vN . The results are for Hamiltonian (1) with S = 1 truncation.
The data in (a) are fit with a polynomial of 1/ ln(L) and the extrapo-
lated D× = 0.355(8). The data in (b) are fit with a power law of 1/L
and the extrapolated D× = 0.35062(6). The dashed line is the result
from level spectroscopy 0.35066928 [41].

larger D (with much lower entanglement entropy) for the same
system size.

The FSS of the crossing point of χF for S = 2 is depicted
in Fig. 11(a), where it scales linearly with 1/L instead of
1/ ln2(L). This means that the crossing point is not associ-
ated with the renormalization group of the marginal operator
around the BKT point. The extrapolated location of the cross-
ing point is 1.15794(17), larger than the BKT point. In fact,
the value of D× for L = 32 is already larger than the BKT
point, and it becomes larger as we increase the system size. So
the peak position of χF , which should always be larger than
the crossing point, is also larger than the BKT point. Thus

FIG. 11. Same as Fig. 10 but for Hamiltonian (1) with S = 2
truncation. The data in (a) are fit with a linear function of 1/L and the
extrapolated D× = 1.15794(17). The data in (b) are fit with Eq. (13)
and the extrapolated D× = 1.105(5). The dashed line is the result
from level spectroscopy 1.101304 [41].

the extrapolated values of BKT points from peaks of χF for
intermediate system sizes in Table I are not the true positions
of the peaks. The results for S′

vN are shown in Fig. 11(b),
where we fit the data with the same scaling as the peak in
Eq. (13) and find that the extrapolated position of the crossing
point is 1.105(5), consistent with the value of the BKT point.
So both the crossing point and the peak of S′

vN are located at
the BKT transition points.

In a word, the FSS of the crossing point of χF for the IOG
transition and that of S′

vN for BKT transitions are the same
as the FSS of the peak positions of χF and S′

vN , respectively,
which is deduced from the divergent behavior of the correla-
tion length. The FSS of the crossing point of S′

vN for the IOG
transition is a power law of 1/L and converges to the IOG
transition point, and that of χF for BKT transitions is linear
with 1/L and does not characterize the BKT transitions.

IV. CONCLUSIONS

We have used a previously studied model, the truncated
quantum O(2) model, to test two candidates for universal
methods of detecting infinite-order quantum phase transitions
(IOQPTs): the fidelity susceptibility (χF ) and the derivative
of the block entanglement entropy with respect to the cou-
pling constant (S′

vN ). Our model has an infinite-order Gaussian
(IOG) transition from a gapped phase into a BKT critical
line for S = 1 truncation, while it has a BKT transition for
S � 2 truncations. The essential singularities in the correla-
tion length are different for the two IOQPTs, which are (D −
Dc)−1/2 exp[b1/(D − Dc)] for S = 1 and exp(bS/

√
D − Dc)

for S � 2. In Ref. [41], we applied the level spectroscopy
(LS) method and obtained accurate phase-transition points
for S = 1, 2, 3, 4, 5 truncations. In this work, we studied the
finite-size scalings (FSSs) of the peak positions and the peak
heights of χF and S′

vN . We elaborated on how to differentiate
between IOQPTs and locate the phase-transition points using
the two quantities.

We showed that the peak position of χF in the thermo-
dynamic limit is larger and far from the IOG point for the
quantum O(2) model with S = 1 truncation, consistently with
the observations in the fermionic Hubbard model [33,67] and
the J1-J2 Heisenberg chain [2] that have the same type of
IOG transition. Using a FSS [A/ ln2(BL)] deduced from the
correlation length and data for system sizes less than 512,
we extrapolated values close to the BKT points with differ-
ences of order 10−2 for S � 2 truncations. This success can
be traced back to the fact that the FSS of the peak height
[χ∗

F ∼ 1/ ln(L)] is mostly contributed by the marginal oper-
ators [34]. We confirmed this scaling by studying the FSS of
χ∗

F for S � 2 and found that χ∗
F for the untruncated quantum

O(2) model (L → ∞, S → ∞) is 0.2423(7). The value of χ∗
F

for S = 1, however, has a power-law scaling with 1/L. So
the scaling of χ∗

F can differentiate between different types of
IOQPTs. The crossing point of χF between different system
sizes being larger than the BKT point indicates that the peak
position should also be larger than the BKT point, which is
also seen in the one-dimensional Bose-Hubbard model with
integer filling [12,64] and one-dimensional SU(N) Hubbard
models [67]. We concluded that the FSS of the peak position
of nonsingular χF for BKT transitions satisfies the scaling
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deduced from the correlation length only for intermediate
system sizes, and the true peak positions are all shifted into
the gapped phase for the IOG transition and BKT transitions.
Reference [51] also showed that there is a universal shift of the
peak position of χF into the gapped phase for BKT transitions,
consistent with our findings.

We next investigated the FSS of S′
vN . We found that the

standard FSS of the peak position with several hundreds of
sites can be used to extrapolate accurate values of both the
IOG point and BKT points with differences only of order
10−3. The FSS of the crossing point of S′

vN between different
system sizes can also predict the IOG point and BKT points
accurately. The peak height of S′

vN diverges as ln2(L) for the
IOG transition at S = 1 and as ln3(L) for BKT transitions at
S � 2. Thus the scaling of the peak height can also differenti-
ate between the two types of IOQPTs. The FSSs of the peaks
are universal, thus S′

vN is a better tool to detect IOQPTs.
Although the peak position of χF is not at the IOG point

or BKT points, the crossing point of χF at S = 1 is shown to
be at the IOG point, which scales as 1/ ln(L). But the crossing
point scales linearly with 1/L for BKT transitions at S � 2
and is larger than the BKT point inside the gapped phase. The
crossing point of S′

vN at S = 1 scales as a power law of 1/L,
while it scales as 1/ ln2(L) for BKT transitions. According to
the results in other works, the crossing point of χF is seen in
the gapless phase for the spin-1/2 XXZ chain (between differ-
ent temperatures) [68], the Z6 clock model [17], and our spin-1
quantum O(2) model with periodic boundary conditions [69].
There also are crossing points moving fast with increasing

system sizes on the other side of the peak of χF for the spin-
1/2 XXZ chain [34,70], the extended Bose-Hubbard model
[14], and the Zp (p = 5, 6) clock models [17]. The crossing
point of S′

vN is also seen at the BKT point of the spin-1/2 XXZ
chain [27]. It is interesting to investigate universal scaling
behaviors of the crossing points and the boundary effects in
future work.

Finally, although χF and S′
vN can be calculated accu-

rately in one-dimensional systems with the powerful DMRG
technique, many significant digits are subtracted in numeri-
cal differentiations thus computational resources are wasted.
Calculating them accurately in higher-dimensional systems
would require formidable work, and only exact diagonaliza-
tion of small systems [71–75] is possible. We notice that there
have been algorithms developed to calculate χF without nu-
merical differentiation [68,76,77], which makes it possible for
calculations of χF in higher dimensions. It would also be great
to develop algorithms to calculate S′

vN and avoid numerical
differentiation.
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