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Effects of reduced dimensionality, crystal field, electron-lattice coupling,
and strain on the ground state of a rare-earth nickelate monolayer
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Motivated by the potential for cupratelike superconductivity in monolayer rare-earth nickelate superlattices,
we study the effects of crystal field splitting, lattice distortions, and strain on the charge, magnetic, and
orbital order in undoped two-dimensional (2D) nickelate monolayers RNiO3. We use a two-band Hubbard
model to describe the low-energy electron states, with correlations controlled by an effective Hubbard U and
Hund’s J . The electrons are coupled to the octahedral breathing-mode lattice distortions. Treating the lattice
semiclassically, we apply the Hartree-Fock approximation to obtain the phase diagram for the ground state as
a function of the various parameters. We find that the 2D confinement leads to strong preference for the planar
dx2−y2 orbital even in the absence of a crystal-field splitting. The dx2−y2 polarization is enhanced by adding a
crystal field splitting, whereas coupling to breathing-mode lattice distortions weakens it. However, the former
effect is stronger, leading to dx2−y2 orbital and antiferromagnetic order at reasonable values of U, J and thus to
the possibility to realize cupratelike superconductivity in this 2D material upon doping. We also find that the
application of tensile strain enhances the cupratelike phase and phases with orbital polarization in general, by
reducing the t2/t1 ratio of next-nearest to nearest neighbor hopping. On the contrary, systems with compressive
stress have an increased hopping ratio and consequently show a preference for ferromagnetic (FM) phases,
including, unexpectedly, the out-of-plane d3z2−r2 FM phase.
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I. INTRODUCTION

The origin of the high-temperature superconductivity in the
cuprate family remains an open question, despite over three
decades of intense efforts to find the answer [1,2]. Given the
inherent difficulties both in identifying the proper minimal
model for such complex materials, and in dealing with the
resulting strongly correlated problem, it has long been rec-
ognized that it would be valuable to have access to other
classes of materials that contain similar “building blocks”
with those believed to be key for cuprate physics. As a mini-
mal starting point, this would require layers hosting a square
lattice of spins 1

2 that are antiferromagnetically coupled in
the stoichiometric (undoped) material, and the ability to dope
them.

In this context, given the proximity of Ni and Cu in the
table of elements, Anisimov et al. [3] investigated the pos-
sibility of finding nickelate analogs to the cuprates. They
concluded that if the Ni+ oxidation state can be stabilized into
the appropriate planar coordination with oxygen, as would be
expected in infinite layer compounds such as LaNiO2, the
electronic structure of the undoped NiO2 layers should be
similar to that of CuO2 layers, and presumably superconduc-

*These authors contributed equally to this work.
†rodrigo.chavezzavaleta@mail.mcgill.ca
‡fomichev@phas.ubc.ca

tivity would appear upon hole doping. This prediction was
confirmed very recently, when it was revealed that NdNiO2

indeed becomes superconducting upon doping, albeit with
a rather moderate Tc ∼ 15 K [4–6]. Given the identical 3d9

electronic configurations of the Ni+ and Cu2+ oxidation states
in the corresponding undoped compounds, at first this may
appear as a foregone conclusion. However, the bigger charge-
transfer energy in the d9 nickelates should lower the degree of
hybridization between 3d and 2p orbitals, suggesting that Ni
3d9–O 2p bonds are not as strongly covalent as those in the
CuO2 layer. Because of this and other complications related
to the existence of Nd bands crossing the Fermi energy [7],
the mechanism of this new superconducting state is likely to
remain controversial for some time [8–15].

The other scenario that might lead to a nickelate analog
for cuprates is based on the Ni3+(3d7) oxidation state [16,17].
Unlike the cuprates, it has one electron instead of one hole in
the eg manifold, but the two situations are formally equivalent
if eg degeneracy is lifted and the dx2−y2 orbital becomes half
filled. The increased oxidation leads to a significantly de-
creased charge-transfer energy, and thus a much higher degree
of covalency between the 3dx2−y2 and the 2p orbitals than in
the infinite-layer d9 nickelates—and likely also more than in
the cuprates.

On one hand, a large pd covalency in d7 nickelates is
a positive factor in favor of Zhang-Rice singlet physics,
believed to be essential in cuprates. However, it also sup-
ports charge-ordering tendencies, which are well observed in
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the rare-earth nickelates RNiO3. In these three-dimensional
perovskites, wide pdσ bands of eg symmetry are formed,
containing finite density of holes on the oxygen sites which
strongly couple to Ni spins to form the Zhang-Rice singlets.
At low temperatures, charge order sets in, which can be
viewed as a condensation of “self-doped” Zhang-Rice singlets
on every second Ni ion; plus, the order is strongly supported
by breathing-type lattice distortion. This discourages Jahn-
Teller physics and related orbital order in three-dimensional
d7 nickelates.

In cuprates, a large orbital polarization in favor of a
planar dx2−y2 state is due to their layered structure, with
quasi-two-dimensional hopping geometry and large eg orbital
splitting in such lattices. Along these lines, it was proposed to
achieve a single band of dx2−y2 symmetry in d7 nickelate het-
erostructures. Such heterostructures would consist of LaNiO3

monolayers, separated from each other by insulating block
layers such as SrTiO3 or LaAlO3 [16,17]. This would inhibit
c-axis hopping, thus discouraging the occupancy of the d3z2−r2

orbital; meanwhile, tensile strain from lattice mismatch would
compress the NiO2 octahedra along the c axis and lower
the energy of the dx2−y2 orbital, which would become half
filled like in the undoped cuprates. Subsequent DFT+DMFT
calculations predicted orbital polarization as large as 30% in
such structures, provided the insulating block layer is tuned
appropriately [18,19].

It is important to note that, to date, such single-layer,
disorder-free superlattices have proved difficult to grow,
so their magnetic, charge, and lattice properties are still
unknown. To the best of our knowledge, the only such het-
erostructures have been reported in Ref. [20], with monolayers
of NdNiO3 embedded in a matrix of NdAlO3. The authors
found very different behavior of these heterostructures when
compared to even those with double layers of NdNiO3. In par-
ticular, the ground state was found to be insulating and without
signs of either magnetic or charge order, whereas double-layer
and thicker layer samples showed both antiferromagnetic and
charge order reminiscent of the bulk properties of NdNiO3. In
these samples, the strain is compressive and a negative crystal
field splitting favors the occupation of the 3d3z2−r2 orbital, so
they are not a good candidate for a cuprate analog. Neverthe-
less, the fact that the monolayer physics is so different from
that of multilayer/bulk samples suggests that similar findings
might be expected in heterostructures more suitable to pro-
duce cuprate analogs. In fact, numerous multilayer LaNiO3

heterostructures have been successfully synthesized, and were
found to have orbital polarizations ranging from 0 up to ∼50%
[21–24], depending on the specifics of interlayer spacers and
tensile/compressive stress.

Another important ingredient in these materials is the
presence of strong electron-lattice coupling. Its role for the
rare-earth nickelates is well established [25–33]: it is respon-
sible for the breathing-mode alternation of compressed and
expanded oxygen octahedra in the ground state of most bulk
nickelates. Whether such distortions are present in the ground
state of the proposed 2D monolayer heterostructure is an open
question and an important one given that this might interfere
with cupratelike physics.

There are, however, clues that lattice coupling does play
a big role in the multilayer heterostructures. One such clue

is the peculiar effect of strain on orbital polarization and
occupancy. The leading effect of applied volume-preserving
strain is that it can tune the energies of the various or-
bitals by altering the crystal field symmetry [the so-called
strain-induced orbital polarization (SIOP) model [34]]—in the
case of nickelates, the symmetry of the oxygen octahedral
cage around the nickel atom. In particular, xy plane com-
pressive strain should inhibit the in-plane orbital in favor of
the out-of-plane d3z2−r2 , and tensile xy plane strain should
do the opposite. While ultrathin (∼10 unit cells) films of
LaNiO3 under compressive strain (on LaAlO3 substrates) in-
deed show a lowering of d3z2−r2 energy [35], tensile strain
in the same material (from SrTiO3 substrates) yields the
breathing-mode distortion and little-to-no orbital polariza-
tion. Similarly, in LaNiO3/LaAlO3 superlattices, compressive
strain gives rise to the peculiar behavior where the eg doublet
has an energy splitting on the order of 100 meV, but no or-
bital polarization has been detected [21]. Meanwhile, tensile
strain gives the opposite—equal energies, but a mild (5%)
polarization were observed. All this hints at strong lattice
involvement.

In this paper we investigate the effects of reduced dimen-
sionality, crystal field, strain, and electron-lattice coupling
on the ground state of a nickelate monolayer to see in what
circumstances these may favor a cupratelike ground state.
Following Lee et al. [36] and Subedi et al. [37], we adopt
a phenomenological two-band (eg) Hubbard-Kanamori model
to describe the electronic structure of the monolayer. We also
include the coupling to breathing-mode distortions, which
are treated semiclassically and coupled to electrons via a
Holstein-like term [33]. Using this model, we show that the
reduction from 3D to 2D promotes orbital occupancy of the
dx2−y2 orbitals, as they lower their energy through in-plane
hopping relative to the d3z2−r2 , which cannot hop as freely.
This effect alone, even in the absence of favorable crystal-
field splitting, is enough to give a cupratelike phase, ensuring
the preferential occupancy of dx2−y2 and antiferromagnetic
(AFM) order for reasonable values of Hubbard repulsion U
and Hund’s coupling J . This cupratelike phase could not
be stabilized in 3D [33], but appears naturally in nickelate
monolayers.

We then analyze the interplay between crystal field
splitting (which favors orbital polarization), electron-lattice
coupling (which favors “cuprate-competitor” phases that ex-
hibit breathing-mode distortion), and strain on the stability of
this cupratelike phase. Our findings indicate that the negative
influence of the electron-phonon coupling is relatively weak
and can be easily compensated by the crystal-field splittings
expected in such heterostructures. The role of strain is quite
intricate, but in qualitative agreement with the surprising
experimental findings in the multilayer heterostructures dis-
cussed above.

The remainder of this paper is structured as follows. In
Sec. II, we introduce our Hamiltonian and comment on its
suitability to describe these complex materials. In Sec. III,
we briefly describe the mean-field approximation we use to
study this model. Our results are presented in Sec. IV and
the conclusions and outlook are discussed in Sec. V. The
Appendixes contain additional information about our model
and its numerical solution.
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II. MODEL

We consider a 2D square lattice with the lattice constant a
set to 1. We define the Hamiltonian as follows:

Ĥ = T̂ + Ĥe−e + Ĥe−l + Ĥl , (1)

which comprises the band energy of eg electrons T̂ , their
mutual interactions Ĥe−e, lattice energy Hl , and the electron-
lattice coupling Ĥe−l . Like in the bulk case [33,36,37], the
two active orbitals per site are taken to have the symme-
tries of the Ni eg doublet; we discuss this more at the end
of this section, where we comment on the applicability of
this simple model to nickelates. We focus on a two-site unit
cell that allows for (simple) magnetic and orbital order: the
unit cell is coordinated through the rocksalt-type wave vector
Qc = π (1, 1) to represent the symmetry of the charge order
and of the breathing-mode distortion experimentally observed
in ultrathin films and superlattices [38]. We note that a gen-
eralization to a four-site unit cell is possible and was used in
Ref. [33] for the study of four-site magnetic order in 3D bulk
systems. However, here our main interest is the appearance of
cupratelike physics, and this can be addressed using a two-site
unit cell.

For the two orbitals we introduce the shorthand notation
|z〉 = |3z2 − r2〉 , |z̄〉 = |x2 − y2〉, with the associated opera-
tors d†

iaσ creating an electron at site i in the orbital a = z, z̄
with spin σ . All hopping in the lattice then proceeds through
these orbitals, as shown elsewhere [39]: we include hop-
ping for the first, second, and third nearest neighbors, with
corresponding “unstrained” hopping integrals t (0)

1 , t (0)
2 , t (0)

3 re-
stricted to the 2D plane. (Note that third nearest neighbor
hopping on a 2D lattice corresponds to fourth nearest neighbor
coupling on a 3D lattice. This accounts for some differences
between the work here and the 3D expressions in Ref. [33]).
The energy difference between the active orbitals, due to
Jahn-Teller c axis symmetry breaking, is modeled through a
crystal field splitting term �CF. The noninteracting part of the
electronic Hamiltonian is thus

T̂ = −
∑

〈i j〉abσ

tia, jb(d†
iaσ d jbσ + H.c.)

+ �CF

2

∑
iσ

(d†
izσ dizσ − d†

iz̄σ diz̄σ ). (2)

Making use of crystal symmetry together with periodic
boundary conditions, this tight-binding contribution can be
Fourier transformed according to

d†
k+ζQc,aσ

= 1√
N

∑
i

ei(k+ζQc )Ri d†
iaσ , (3)

where N is the number of unit cells, i is the lattice site
index, and the momentum k is inside the diamond-shaped
Brillouin zone with corners at (0,±π ), (±π, 0). The Qc =
(π, π ) wave vector (together with ζ = 0, 1) serves to distin-
guish two types of momentum operators obtained by folding
the square Brillouin zone into the diamond shape. This Bril-
louin zone is chosen due to the breathing-mode symmetry of
both charge order and lattice distortions in the nickelates, as
given by the ordering wave vector Qc found experimentally.
As shown elsewhere [39], the tight-binding part of the Hamil-

tonian then may be written as

T̂ =
∑
kζab

tab(k + ζQc)d†
k+ζ ,aσ dk+ζ ,bσ

+ �CF

2

∑
kζσ

(d†
k+ζ ,zσ dk+ζ ,zσ − d†

k+ζ ,z̄σ dk+ζ z̄σ ), (4)

where the tab(k) expressions are listed in Appendix A.
A key feature of thin nickelate films grown on different

substrates is the strain induced in the film by the lattice con-
stant mismatch. A standard approach to incorporate strain into
a model of this type is through a parametrization of the hop-
ping integrals (see, for example, Pereira et al. in Ref. [40]). We
choose to model the effects of biaxial physical strain through
exponential decay

ti = t (0)
i e−ετλi , (5)

where ε is the strain. On geometric grounds, the distance fac-
tor λ is 1 for the nearest neighbor,

√
2 for the second nearest

neighbor, and 2 for the third nearest neighbor. We set the free
parameter τ , which controls the rate of hopping integral decay
with strain, to 1 and treat strain ε as a free (dimensionless)
parameter.

To model the electron-electron interactions, we use the
two-band Hubbard-Kanamori Hamiltonian:

Ĥe−e = U
∑

ia

n̂ia↑n̂ia↓ + (U − 2J )
∑
i,σ

n̂izσ n̂iz̄σ̄

+ (U − 3J )
∑

iσ

n̂izσ n̂iz̄σ − J
∑

iσ

d†
izσ dizσ̄ d†

iz̄σ̄ diz̄σ

+ J
∑

ia

d†
ia↑dia↑d†

iā↓diā↓. (6)

Here n̂iaσ is the electron number operator, measuring the elec-
tron density at site i, in orbital a with spin σ .

The electron-lattice on-site interaction is described using
the Holstein model

Ĥe−l = −2εb

∑
j

u j

(∑
aσ

n̂ jaσ − 1

)
. (7)

The dimensionless uj = Ujk/g characterizes the isotropic dis-
tortion Uj of the octahedral oxygen cage around the Ni site j,
treated semiclassically [33], when the electron number differs
from the average electron number of 1. (This corresponds to
a quarter-filled eg doublet, i.e., the 3d7 configuration.) Here,
k is the lattice spring constant (see below), g is the Holstein
coupling, and εb = g2/(2k).

Finally, the lattice energy in the semiclassical approxima-
tion is [33]

Hl = εb

∑
j

(
u2

j + α

2
u4

j

)
, (8)

where α represents lattice anharmonicity. This form is ob-
tained from the standard semiclassical lattice energy Hl =∑

j (
k
2U 2

j + A
4 U 4

j ) upon rewriting it in terms of the dimen-
sionless u j = Ujk/g. Our results are in the |u| � 1 limit,
so the anharmonicity parameter α ∝ A has little effect. For
simplicity, we set it to α = 1 in what follows.

A natural question is whether this relatively simple two-
band model captures the complex electron behavior in
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nickelates. Specifically, there is a growing consensus that
the nickelates are a negative charge-transfer (NCT) material
in the Zaanen-Sawatzky-Allen classification scheme [25–31].
Instead of full O 2p6 bands and Ni in the 3d7 configuration (or
perhaps a charge-disproportionated option [32,41,42] where
3d7 3d7 → 3d7+δ 3d7−δ), the relevant electronic structure is
3d8L, with a ligand hole L on the oxygens for each Ni site.
This scenario is supported by some ab initio calculations
[25,28,29,43] as well as experimental findings [26], and seems
to present a difficulty for our two-band model, which does not
explicitly include O 2p orbitals.

However, Lee et al. [36] and Subedi et al. [37] have shown
that such a phenomenological two-band description of the
nickelates is indeed reasonable, and gives good agreement
with available angle-resolved photoemission spectroscopy
measurements [44,45]. The molecular orbitals of type 3d8L
(formed through strong Ni-O hybridization) adopt the eg-like
symmetries because such symmetries maximize pd overlap
and allow holes to move into the oxygen p band. Thus, in
our model, the two eg orbitals should be identified with these
Ni-O molecular states. Because of this identification, the in-
teractions U, J do not take atomiclike values: they are instead
strongly renormalized and we treat them as free parameters
(for a more detailed discussion, see Ref. [33]).

III. HARTREE-FOCK APPROXIMATION

We treat our Hamiltonian in Eq. (1) in the mean-field
approximation. We are interested in the T = 0 phase dia-
gram; therefore, we minimize the Hartree-Fock energy EHF =
〈�e| Ĥ (u j ) |�e〉 (hereafter we define 〈Ô〉e = 〈�e| Ô |�e〉 for
brevity, where Ô is any electronic operator) by choosing the
most optimal Slater determinant |�e〉 to approximate the elec-
tron wave function and uj’s to describe the lattice distortions.
We now briefly review the relevant details.

A. Lattice contributions

Due to the semiclassical treatment of the lattice, it is easiest
to start by minimizing the energy with respect to the lattice
distortions u j . As shown in detail elsewhere [33], this can be
done with the help of Hellmann-Feynman theorem to yield a
self-consistency equation

u j + u3
j = 〈n̂ j〉e − 1. (9)

The dominant lattice mode is the breathing-mode distortion,
described by u j = ueiQc·Ri , with the ordering wave vector in
2D being Qc = π (1, 1). Charge order is expected to have the
same breathing-mode symmetry 〈n̂ j〉=1+δeiQc·Ri , leading to

u + u3 = δ. (10)

This equation links the presence of extra electronic charge on
a site and that site’s lattice distortion. Its exact solution

u = δ
3

2β
1
3

⎡
⎣(√

1 + 1

β
+ 1

) 1
3

−
(√

1 + 1

β
− 1

) 1
3
⎤
⎦ (11)

with β = 27
4 δ2, allows us to eliminate the lattice degrees of

freedom from the problem entirely, by expressing them in
terms of the electronic charge modulation δ.

Incidentally, we note that Jahn-Teller (JT) phonon modes
could also be activated by the presence of the interlayers in
the heterostructure (weak apical oxygen). If treated semiclas-
sically, the impact of a JT lattice distortion would mostly
renormalize the explicit crystal field term �CF, as it would
produce an equation similar to Eq. (9), with orbital polariza-
tion OFO playing the role of charge disproportionation δ. As
such, we do not explicitly include the JT mode, and instead
vary the value of �CF to represent various strengths of the
Jahn-Teller coupling.

B. Electronic contributions

The Hartree-Fock Slater determinant has the form

|�e〉 =
∏

n

c†
n|0〉, (12)

and is built up of a priori unknown occupied electron orbitals
n with electron creation operator c†

n, in terms of which the
effective Hartree-Fock Hamiltonian is diagonal. A unitary
transformation connects the c†

n orbitals to the original orbitals
d†

iaσ identified in Sec. II by

d†
iaσ =

∑
n

φ∗
n (iaσ )c†

n. (13)

By minimizing the total energy EHF = 〈Ĥ〉e, we obtain a set
of self-consistency equations for the unknown coefficients
φn(iaσ ) of the unitary transformation. More specifically,
when the expectation value is evaluated by means of
Wick’s theorem, various mean-field parameters 〈d†

iaσ dibτ 〉e

arise (only on-site terms are nonzero because only local
electron-electron and electron-lattice interactions are included
in the model). They correspond to physical observables,
such as the on-site charge density 〈n̂ j〉e = ∑

aσ 〈d†
jaσ d jaσ 〉e =∑

naσ φ∗
n ( jaσ )φn( jaσ ), where the latter sum includes only the

states n occupied at T = 0.
In this study we choose a two-site unit cell coordinated in

a breathing-mode manner, so we constrain the values of the
mean-field parameters as follows:

〈d†
iaσ diaσ 〉e = 1

4
[1 + δ eiQc·Ri ] + a

2
[OFO + OAFeiQc·Ri ]

+ σ

2
[SFM + SAFeiQc·Ri ], (14)

〈d†
iaσ diaσ̄ 〉e = 〈d†

iaσ diāσ 〉e = 〈d†
iaσ diāσ̄ 〉e = 0. (15)

We neglected a large number of potential mean fields lying
in the off-diagonal spin-orbital sectors, as experimental evi-
dence indicates that orbital order beyond simple polarization
is unlikely.

In contrast with our previous 3D study [33], explicit orbital
polarization OFO (and its breathing-mode-like modulations,
OAF) are now allowed. This is because, whereas orbital po-
larization has not been observed in bulk nickelates, thin-film
nickelates and superlattices routinely display orbital energy
shifts and occupancy differences.

Equations (14) and (15) represent a strong constraint on the
possible spin, charge, orbital, and magnetic orders, while at
the same time wrapping the difficult-to-parse matrix elements
like 〈d†

iaσ dibτ 〉e into physical observables with readily under-
stood meaning. For example, OFO and OAF together describe
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orbital polarization:

Pi =
∑

σ

(〈d†
izσ dizσ 〉e − 〈d†

iz̄σ diz̄σ 〉e) = OFO + OAFeiQc·Ri .

(16)

Using these prescriptions for 〈d†
iaσ dibτ 〉e, and minimiz-

ing the total energy with respect to φn(iaσ ), we derive the
Hartree-Fock equations, which will depend on the mean-field
parameters δ, SFM, OFO, etc. These equations can be equiv-
alently seen as arising from a noninteracting Hartree-Fock
Hamiltonian

Heff =
∑
kabσ

tab(k)c†
kaσ ckbσ +

∑
kaσ

[
3U − 5J

4
− σ

2
(U + J )SFM + a

−U + 5J

2
OFO + a

�CF

2

]
c†

kaσ ckaσ

+
∑
kaσ

[
3U − 5J

4
δ − 2εbu − σ

2
(U + J )SAF + a

−U + 5J

2
OAF

]
c†

k+Qc,aσ
ckaσ . (17)

By defining ψ
†
k = (ψ†

kz↑, ψ
†
kz̄↑, ψ

†
kz↓, ψ

†
kz̄↓) and ψ

†
kaσ =

(c†
kaσ , c†

k+Qc,aσ
), we represent the Hamiltonian in Eq. (17) as

a matrix Heff = ∑
k ψ

†
kh(k)ψk whose eigenvalues we seek.

Note that this Hamiltonian is already block diagonal, with the
spin sectors completely decoupled, while the orbital sectors
are only connected by the hopping matrix elements tzz̄(k).

We solve these equations using an iterative approach: we
make an initial guess for the mean-field parameters w(0) =
(δ, SFM, OFO, . . .), solve the Hartree-Fock equations, con-
struct the ground state, and compute the resulting mean-field
parameters v(0). The simplest choice is to then set w(1) =
v(0) and to iterate until convergence is achieved, i.e., the
residual ε (n) = |w(n) − v(n)| becomes smaller than a speci-
fied tolerance ε0. For mean-field problems such as this, with
many mean-field parameters, this simplest choice w(n+1) =
v(n) turns out to be very poor. In Appendix B we present a very
efficient choice, inspired by machine learning optimization,
together with other salient computational details.

One final step is required, because the Hartree-Fock equa-
tions usually have multiple self-consistent solutions for the
same set of parameters. We evaluate the total energy EHF for
all these self-consistent solutions and choose the one with
lowest energy as the best approximation for the ground state.
For our model,

EHF

N
= 1

N

∑
occupp

Ep − 1

N
〈Ĥe−e〉 + εb

(
u2 + u4

2

)
, (18)

where Ep are the occupied eigenvalues of the Hartree-Fock
Hamiltonian (17), and the Hubbard-Kanamori part of the en-
ergy is

1

N
〈Ĥe−e〉 = 3U − 5J

8
(1 + δ2) − U + J

2

(
S2

FM + S2
AF

)

+ (−U + 5J )

2

(
O2

FO + O2
AF

)
. (19)

IV. RESULTS

A. Effects of reduced dimensionality

We start by presenting in Fig. 1 the phase diagram of the
2D system when both the lattice coupling and crystal-field
splitting are set to zero, εb = �CF = 0, and there is no strain.

We set t (0)
1 = 1, t (0)

2 = 0.15, t (0)
3 = 0.05, so that we can mean-

ingfully compare the 2D results with the counterpart 3D bulk
results [33,36]. This comparison will allow us to infer the
effects of the reduced dimensionality.

Figure 1 shows a rich phase diagram. At small U and J ,
the system is a paramagnetic metal with no charge dispropor-
tionation, and with z̄ orbitals preferentially occupied (phase
labeled 00, z̄z̄ in the figure legend). The degree of z̄ polariza-
tion is indicated by the dashed contour lines. It is relatively
low for larger J values but increases as J decreases. Such a
paramagnetic metallic state without magnetic or charge order
is expected when the correlation parameters U, J are small.
The orbital polarization is a direct consequence of the reduced
dimensionality, which favors hopping amongst the in-plane, z̄
orbitals. It decreases with increasing J because Hund’s cou-
pling favors occupation of both orbitals (when U is small)
to maximize the spin. We note that the “red square” features

FIG. 1. T = 0 phase diagram of the 2D layer when εb =�CF =0.
U and J are scaled by W , the bandwidth of the noninteracting system.
Solid (red) contours show the CD δ. Dashed (purple) contours show
the orbital polarization OFO. Resolution is 30×30. The four black
symbols indicate the cases analyzed in more detail in Figs. 2–5.
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FIG. 2. (a) Total density of states (DOS) per Ni site (in units of
1/t (0)

1 ), plotted against energy E (in units of t (0)
1 ), and (b) partial DOS

per Ni site, projected onto the two orbitals, for the paramagnetic
metallic phase 00, z̄z̄ at U/W = 0.2, J/W = 0.1 (marked with a solid
black circle in Fig. 1). The vertical red line marks the Fermi energy.
In panel (b), the histograms’ colors are labeled in the legend. Where
they overlap, their transparency allows both histograms to be seen.

that appear on the diagonal in the upper-right corner of Fig. 1,
and in several subsequent figures, are merely artifacts of the
contour plotting algorithm. There are a few points along that
diagonal which have a value of charge disproportionation very
different from their immediate neighbors (it is near zero).
This could be due to imperfect convergence near a magnetic
phase boundary (if the true ground state was not identified), or
possibly there is another kind of phase that is not well resolved
by the two-site model used in this study. Because of this
stark difference in charge disproportionation, the automatic
contour plotting algorithm chooses to place a contour around
the points, which, being one one pixel in size, appear as little
red squares. These features do not affect the main results of
this work and we ignore them in the following discussion.

Figure 2 shows the density of states (DOS) per Ni site
in this metallic phase (in units of 1/t (0)

1 ), plotted against the
energy (in units of t (0)

1 ), at the point marked by a black circle in
Fig. 1. Panel (a) presents the total DOS and confirms that this
is indeed a metal. Panel (b) shows the partial DOS projected
onto the two orbitals. While the orbital polarization is not very
large at this point, there are clearly more states with z̄ than
with z character below the Fermi energy (a clear orbital band
asymmetry driven by the 2D confinement). There is neither
magnetic nor charge order in this phase.

Returning to the phase diagram of Fig. 1, at large U/W >

0.5 and small J we find an antiferromagnetic (AFM) insulator,
with very strong z̄ orbital polarization (phase labeled ↑↓, z̄z̄).
These characteristics are verified in Fig. 3, which shows the
DOS with a gap at the Fermi energy in panel (a), the par-
tial DOS per Ni site projected on the two orbitals in panel
(b), demonstrating nearly 100% z̄ orbital polarization (second
panel), and the AFM spin ordering across the two inequivalent
Ni sites in panels (c) and (d). There is no charge order in this
phase. These particular results are for the point indicated by a
black star in Fig. 1.

This is the cupratelike phase that we are primarily in-
terested in. It can be thought of as the Mott insulator that

FIG. 3. For the cupratelike, insulating AFM phase labeled ↑↓, z̄z̄
in Fig. 1, we show (a) the total DOS per Ni site, (b) the partial DOS
projected onto the two orbitals, and (c), (d) the partial DOS projected
by spin component, for the two inequivalent Ni sites. Both orbital
contributions are included in the spin-resolved PDOS histograms,
but one can infer the orbital character of the various bands from the
results in panel (b). The vertical red line marks the Fermi energy.
Histogram colors are labeled in the respective legends. There is no
charge order in this phase, and the AFM order is clear from panels
(c) and (d) as each site preferentially has either ↑ or ↓ occupied states
below the Fermi energy. The parameters are U/W = 0.8, J/W =
0.05 (black star in Fig. 1).

emerges from the metallic phase when U is increased, given
that the reduced dimensionality and the low J essentially turn
this into a half-filled one-band problem. Its appearance in the
2D nickelate phase diagram even in the absence of favorable
crystal field splitting and/or strain is one of the main results of
this work. It is important to note that the Hartree-Fock approx-
imation underestimates the effect of electronic correlations,
when compared with more accurate techniques, for instance,
the Gutzwiller approximation [16]. Thus the cupratelike phase
can be expected to be even more robust than is shown here.

For these larger U values, further increasing J favors the
intraorbital spin “aligning” tendency and results in the fer-
romagnetic (FM) half-metal phase labeled ↑↑, z̄z̄, stable at
moderate J . Figure 4 shows its metal-like DOS in panel (a), a
small degree of orbital polarization in panel (b), and complete
FM polarization in panel (c). There is no charge order in this
phase. These particular results are for the point indicated by a
black square in Fig. 1.
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FIG. 4. For the half-metal phase ↑↑, z̄z̄: (a) total DOS per Ni
site, (b) partial DOS with orbital projections, and (c) partial DOS
with spin projections. Parameters are U/W = 0.8, J/W = 0.1 (black
square in Fig. 1). The orbital polarization already seen in the metallic
phase in Fig. 2 is joined by FM polarization, as seen in panel (c).

Approaching large J values in the phase diagram favors
the appearance of finite charge disproportionation δ �= 0 (the
solid red lines show δ = 0, 0.1, 0.3, 0.5 contours), in order to
maximize the on-site spin at one of the two sites of the unit
cell. This phase is labeled ↑↑, CD in the phase diagram. This
is confirmed by the results of Fig. 5, which correspond to the
black diamond shown in Fig. 1. Panel (a) of the figure con-
firms that this is an insulator. Panel (b) shows that the reduced
dimensionality continues to be reflected in the different partial
DOS for the two orbitals, although there is only a very small
z̄ orbital polarization after summing over all occupied states.
Panels (c) and (d) verify that this is an FM state with unequal
charge density on the two sites of the unit cell, reflecting the
CD δ �= 0. In the limit J → ∞, this evolves smoothly towards
full CD δ = 1, with spins S = 1 and S = 0 for the doubly
occupied and for the empty site of the unit cell, respectively. In
this limit, the magnetic order would be more properly labeled
as ↑ 0.

Finally, close to the diagonal U = 5J , the phase diagram
hosts a phase labeled ↑↑, 00. This is an FM with very little
CD and very little orbital polarization. As further results will
show, this phase becomes unstable when other ingredients are
added to the model, so its appearance in a realistic system is
rather unlikely.

Before moving on, it is worth comparing this 2D phase
diagram to its 3D counterpart presented in Ref. [33]. The key
difference is the strong orbital polarization in 2D for small-
to-moderate J , because the reduced dimensionality favors the
occupancy of the in-plane orbital dx2−y2 . In particular, this
allows for the appearance of the cupratelike phase in the 2D
phase diagram. By contrast, in 3D the hopping between the

FIG. 5. (a) Total DOS per Ni site (averaged over two inequivalent
sites) in the charge-disproportionated insulator ↑↑, CD. Parameters
are U/W = 0.5, J/W = 0.2 (black diamond in Fig. 1). (b) Site-
averaged orbital DOS and (c), (d) spin-projected DOS for two
inequivalent sites. Note that, due to charge disproportionation, at site
1 the portion of the DOS below the Fermi level is larger, as electron
density is shifted from site 2 to 1 for δ > 0.

z and z̄ orbitals is symmetric; thus no orbital polarization is
expected—and none was found.

Higher J favors CD and reduces the orbital polarization in
2D; thus one expects more similarities in this region of the
phase diagram. At first sight this appears to be false, because
in 3D the large J region with CD adopts the ↑ 0 ↓ 0 magnetic
order. The difference in magnetic order is because the two-site
unit cell of the 2D calculation cannot reproduce such a four-
site order, so instead it “does the best it can” by approximating
it with the two-site ⇑↑ “slice” (⇑ means larger spin magnitude
due to partial CD). We expect that using a four-site unit cell in
2D would restore here the ↑ 0 ↓ 0 magnetic order like in 3D.
However, the larger unit cell would not affect the cupratelike
phase that is our main focus, so we continue with the two-site
unit cell.

B. Effect of crystal field splitting and of electron-lattice coupling

Figure 1 confirmed the existence of a cupratelike phase for
the 2D monolayer, even in the absence of favorable crystal
field splitting �CF, or of coupling to the lattice εb. We now
examine the effects of these parameters on the phase diagram.
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FIG. 6. Combined effect on the T = 0 2D phase diagram of the crystal field splitting �CF/W [increasing vertically from 0 (bottom row) to
0.05 (middle row) and 0.1 (top row)] and of the electron-lattice coupling εb/W [increasing horizontally from 0 (left column) to 0.05 (middle
column) to 0.1 (right column)]. Solid contours and corresponding red numbers indicate the magnitude of charge disproportionation; dashed
contours with purple numbers indicate the magnitude of orbital polarization. The cupratelike phase with nearly complete orbital order is
favored by increasing �CF and suppressed by increasing εb.

The results are shown in Fig. 6, with �CF/W increasing
vertically from 0 (bottom row) to 0.1 (top row), while εb/W
increases along the horizontal from 0 (left column) to 0.1
(right column).

As expected, adding even a moderate crystal field splitting
�CF > 0 leads to a substantial shift of the phase boundaries in
favor of those with planar orbital (dx2−y2 ≡ z̄) order, resulting
in orbital polarization across a wider region. In particular, the
cupratelike phase expands its area significantly with increas-
ing �CF.

On the other hand, turning on the coupling to the lattice
promotes the breathing-mode distortion that favors CD to the
detriment of phases with orbital polarization. In particular,
the area occupied by the cupratelike phase is reduced, being
partially pushed down by the ↑↑, z̄z̄ phase, and partially re-
placed by a new ↑↑, zz phase which has the opposite orbital
polarization. The paramagnetic metal is also partially replaced
by a paramagnetic CD phase at vanishing U (labeled 00, CD).

Clearly, �CF and εb have opposing effects on the stability
of the cupratelike phase. To illustrate this in a more quan-
titative way, we generate a meta phase diagram, shown in
Fig. 7. For each pair (�CF, εb) shown in Fig. 7, we generate
the corresponding U -J phase diagram, and compute the area
Ac occupied by the cupratelike phase. We compare this to the

area A it occupies when εb = �CF = 0. The quantity rc =
(Ac/A − 1)×100%, giving the percentage area increase with

FIG. 7. Change (in %) of the area occupied by the cupratelike
phase in the U -J diagram for the specified (�CF, εb) values vs that
of Fig. 1 (i.e., for �CF = εb = 0). See text for more details. The red
contour marks an unchanged area and the black diagonal shows the
line of equal strengths �CF = εb.
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FIG. 8. Combined effect on the T = 0 2D phase diagram of the crystal field splitting �CF and electron-lattice coupling εb when a very
large tensile strain ε = +1 is applied. Note that here the noninteracting bandwidth Wc is roughly e times smaller than in Fig. 6, according to
Eq. (5). Contours are as in Fig. 6.

respect to the �CF = εb = 0 point, is color plotted in Fig. 7.
It confirms that, when �CF = εb, the crystal field splitting
increases the area occupied by the cupratelike phase more effi-
ciently than electron-lattice coupling suppresses it. However,
we note that the ratio of the actual energy contributions to
the ground-state energy coming from these two terms can be
a rather complicated and not necessarily monotonic function
of �CF/εb, given that the orbital polarization and the lattice
distortion, respectively, are also involved in their expressions.
However, these variations are limited to factors of at most 1

2
and would not change our fundamental conclusion.

C. Effect of strain

Thin film nickelates and heterostructures are grown on
a variety of substrates, leading to lattice mismatch. The re-
sulting biaxial strain state affects the electronic and orbital
properties, as numerous experiments have demonstrated (see
discussion in Sec. I). Strain is expected to be an important
control variable for nickelate monolayers; we now analyze its
effect.

According to the SIOP model (see Sec. I), strain controls
the energy balance between the in-plane and the out-of-plane
orbitals in the Ni octahedra, favoring z̄ polarization for tensile
strain and z polarization for compressive strain. In this view,
the strain’s impact on the phase diagram is analogous to that
of a crystal field splitting, which has already been discussed.

However, this ignores another important factor: applying
compressive (tensile) strain also changes the relative magni-
tude of the hopping integrals t1, t2, t3. As found in the 3D bulk
study [33], the ratio t2/t1 is very important in determining the
physics in the moderate U , moderate J region of the phase
diagram—for two reasons.

One is that bipartite lattices (i.e., ones with pure t1 hopping,
t2 = t3 = 0) have the strongest Fermi surface nesting tendency
and are thus susceptible to π (1, 1) order of some kind. On the
other hand, a robust value of t2 has been shown to benefit FM
states due to a Stoner-like effect, wherein a concentration of
density near the Fermi surface benefits FM ordering. This is
because the Stoner criterion is D(EF )U ∼ 1, where D(EF ) is
the density of states at the Fermi energy, so a strong enhance-
ment of the density of states (which is exactly what a relatively
larger t2 is found to promote) reduces the interaction strength
at which FM ordering is expected. These two mechanisms
lead to an intense competition in the moderate U moderate
J sector of the phase diagram between various FM and AFM
phases.

This argument, however, assumes that the other parameters
(apart from �CF; see above) are not significantly affected by
the strain. This is not true because hopping integrals also
influence the wave functions of the “molecular orbitals” rep-
resented by our effective model, and thus the effective U, J, εb

values. Without detailed modeling that goes well beyond the
scope of this work, it is hard to know how U/W, J/W, εb/W
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FIG. 9. Combined effect on the T = 0 2D phase diagram of the crystal field splitting �CF and electron-lattice coupling εb when a very
large compressive strain ε = −1 is applied. Note that here the noninteracting bandwidth Wc is roughly e times larger than in Fig. 6, according
to Eq. (5). Contours are as in Fig. 6.

evolve as strain changes the bandwidth W of the free electron
band. We therefore analyze the effect of the strain on the phase
diagram by varying the hopping integrals with the strain, as
defined in Eq. (5), while the ratios of the other parameters
cover the same ranges as before (e.g., U/W ∈ [0, 1] for each
strain-modified value of W ).

We begin by analyzing the effect of tensile strain on the
U -J phase diagram, at various strengths of electron-lattice
coupling and crystal field splittings. We use a very large strain
value ε = 1 for illustrative purposes. The results are shown
in Fig. 8, with panels organized like in Fig. 6. Note that the
noninteracting bandwidth, which we call Wc, is now roughly
e ≈ 2.7 times smaller than its value W in the absence of
tensile strain.

The main change in the �CF = εb = 0 phase diagram is
the expansion of the pure FM phase at the expense of the
z̄ polarized FM phase (compare bottom leftmost panels in
Figs. 8 and 6); the other phases are roughly unaffected. At
first one may expect that no change should occur, given that
we scaled U, J with the new bandwidth Wc. However, as just
mentioned, the ratios between t1, t2, and t3 hoppings change
significantly, see Eq. (5), revealing that it is such details of the
band structure which decide which phases are stable in the
central region of the phase diagram. The cupratelike phase
of interest to us is little affected, proving that it is robust
against such variations. The phase diagrams corresponding

to finite �CF and/or εb are fairly similar to their strain-free
counterparts.

Overall, we find that the z̄-polarized phases are more stable
under tensile stress, and in particular the cupratelike phase
increases its area in all cases studied. This occurs largely at
the expense of the middle FM phases due to the competition
mentioned earlier.

The corresponding results in the presence of a very sig-
nificant compressive strain ε = −1 are shown in Fig. 9. The
cupratelike phase is more suppressed here than in the absence
of strain, although it still survives even in the least favorable
circumstances of large εb and vanishing �CF. In exchange,
the FM z-polarized phase becomes more robust and appears
even in the �CF = εb = 0 phase diagram. This ties in with
experimental observations and the SIOP model which find
preferential z orbital occupation under compressive strain. For
completeness, we mention the appearance of a phase labeled
↑ 0, CD, which is the δ → 1 limit of the ↑↑, CD phase, as
discussed before. Despite the smooth evolution between the
two, we mark them with different colors to indicate where full
CD has been reached.

These results show that, so long as all the other parameters
scale with the bandwidth and J, εb are not so large as to
drive CD, the effect of strain coming from variations of the
relative strengths of various hopping integrals are so as to
favor z̄ polarization for tensile strain and z polarization for
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compressive strain. This is roughly consistent with the SIOP
model, although clearly the situation is much more complex
than predicted by the latter due to details of the density of
states. Our results show the appearance of a z-polarized phase
even for strong tensile strain if the coupling to the lattice is
strong enough; we also expect that the z̄-polarized cupratelike
phase will survive on the �CF < 0 side of the phase diagram
with compressive strain applied if εb is not too large and �CF

is not too negative. Neither of these results are predicted by
the SIOP model, but they may begin to qualitatively explain
the unusual relationship between strain and degree of orbital
polarization found in some thin films (mentioned in the Intro-
duction).

V. CONCLUSIONS

We used an effective two-band Hubbard-Kanamori model
coupled to lattice distortions to investigate the complex in-
terplay of orbital, charge, spin, and lattice behavior in a 2D
monolayer of rare-earth nickelates, with a focus on under-
standing whether/when a cupratelike phase becomes stable
[16].

We find that the reduced dimensionality indeed favors
such a phase, which becomes more robust in the presence of
tensile strain and/or positive crystal field splitting �CF > 0.
The cupratelike phase would likely be further enhanced if the
electron correlations were treated more accurately by going
beyond the Hartree-Fock approximation, because correlations
tend to favor insulating AFM behavior, as is often seen with
the orbitally selective Mott transition.

On the other hand, strong coupling to the lattice (favoring
lattice distortions and charge disproportionation) and/or com-
pressive strain (favoring z-orbital polarization) are detrimental
to the stability of this phase. Of course, so is a negative crystal
field splitting.

Crucially, the 2D phase diagram is qualitatively differ-
ent from its 3D counterpart [33] in the region where this
cupratelike phase appears. This is reminiscent of the recent
experimental observation that a 2D monolayer has a ground
state different from that found in thin films or in bulk [20],
although that monolayer is apparently on the �CF < 0 side,
which is less favorable to a cupratelike ground state.

To conclude, this work offers further support to the idea
that a cupratelike phase might be stabilized in a 2D monolayer
in favorable conditions, as well as some guidance as to what
those conditions are. We therefore hope that it will stimulate
both further, more detailed theoretical work to identify the
specific heterostructures that host this cupratelike phase and
experimental work searching for it.
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APPENDIX A: HOPPING MATRIX ELEMENTS

In this Appendix we provide the expressions for the
Fourier-transformed hopping matrix elements tab(k) for
first, second, and fourth nearest neighbor hopping in 2D
(cf. Ref. [39] for bulk nickelates hopping). They are given by

tzz(k) = − t1
2

[cos(kxa) + cos(kya)] − t3
2

[cos(2kxa)

+ cos(2kya)] − 2t2 cos(kxa) cos(kya),

tz̄z̄(k) = −3t1
2

[cos(kxa) + cos(kya)] − 3t3
2

[cos(2kxa)

+ cos(2kya)] + 6t2 cos(kxa) cos(kya),

tzz̄(k) =
√

3t1
2

[cos(kxa) − cos(kya)]

+
√

3t3
2

[cos(2kxa) − cos(2kya)].

APPENDIX B: NUMERICAL METHODS

Once equipped with our Hamiltonian matrix, self-
consistency equations, and mean-field parameters, we are
ready to solve for the model’s ground state. As in Ref. [33], we
start by guessing an initial set of mean-field parameters, com-
pute the eigenvectors of the Hamiltonian at all lattice points,
evaluate the mean-field parameters from the self-consistency
equations using all occupied energies, and compare the new
mean-field parameters to the initial ones. We then iterate up-
dating the guesses until self-consistency is attained.

In all calculations, we compute and store all matrix vari-
ables that are independent of the mean-field parameters, such
as the hopping terms, to avoid repeating calculations over iter-
ations. In every diagonalization, we then access the computed
values by their momentum index.

The next approximation is to select a finite grid of mo-
mentum points to approximate the crystal’s Brillouin zone.
We let N = Nx = Ny be the number of momentum points in
each dimension such that there are N2 momentum points. To
choose an appropriate N , we perform a preliminary study and
choose the smallest N such that the mean-field solution and
ground state energy converge up to our desired limit of 10−3.
Figure 10 shows the change in ground state energy per site
d|E | = |E (n)

HF − E (n−1)
HF |/N and the residual ε (n) = |w(n) − v(n)|

as a function of N (here n is the final iteration upon which con-
vergence has been achieved and w, v are defined in Sec. III).

After finding the occupied energies and the new mean-field
parameters, we now have to choose the new mean-field Ansatz
for the next iteration. The standard approach is to take the
previous answer as the new input. Otherwise, as done in
Ref. [33] or Ref. [46], one can take the new Ansatz to be some
linear combination of previous iteration steps, with so-called
mixing rates α

(i)
mix controlling the relative contributions from

previous steps.
Instead, we suggest a new method, inspired by techniques

in the field of machine learning optimization, where it is
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FIG. 10. Euclidean distance between mean-field solutions (solid
black line) and difference in ground state energies per site (dashed
blue line) shows convergence as a function of N , the number
of momentum points per dimension. The hopping parameters are
t (0)
1 = 1, t (0)

2 = 0.15, t (0)
3 = 0.05, and the remaining model parame-

ters were chosen to be U = J = �CF = εb = 0.

common to control learning steps by a scheduled learning
rate. In this field, to ensure convergence of model training,
it is common to “schedule” the learning rate to approach zero,
taking smaller steps as the iterative sequence goes on.

We apply this idea of scheduling to the mixing rates αmix

of the Hartree-Fock iteration, defining the next iteration’s
original guess w(n) to be

w(n) = [1 − αmix(n)]v(n−1) + αmix(n)w(n−1), (B1)

where w(n) is the initial guess for the mean-field parameter
vector for iteration n, αmix(n) is the mixing rate at iteration
n, and v(n−1) is the mean-field parameter vector obtained from
the guess w(n−1). The choice αmix(n) = 0 would correspond to
the simple rule w(n) = v(n−1) referenced in Sec. III. We choose
the scheduled mixing rate αmix(n) such that it is bounded
by 0.5 and asymptotically approaches zero. In this study we
use a sigmoid function αmix(n) = 1/[1 + exp(−nβ/T )] for
the mixing rate, where n is the current iteration, β = 3, and
T = 250 is the maximum iteration limit. This choice was
found to yield fast convergence for most parameter values.

With this choice for the Hartree-Fock iterations, we found
that convergence was reached with many fewer iterations.
Moreover, many iteration sequences that would not converge
with the fixed mixing rate could now easily converge with
the scheduled mixing rate. One example of this improvement
is shown in Fig. 11: in panel (a) a fixed mixing rate αmix =
0.5 is used, and no convergence is achieved, as the mean-
field parameters keep oscillating between two fixed points.
Meanwhile, in panel (b) a scheduled mixing rate is used [its
dependence on the iteration is shown in panel (c)]: conver-
gence to the ground state is achieved within 15 iterations.
Overall, with this method we find that convergence improves
from about 80% to 99.9% across the studied phase diagrams
within the chosen maximum iteration limit of 150.

With this procedure, we first perform an exhaustive search.
Using equally spaced points in the mean-field parameter

FIG. 11. Comparing the mean-field parameters during the itera-
tive process obtained from (a) using a fixed mixing rate αmix = 0.5
vs (b) using the scheduled mixing rate. The iteration dependence of
the scheduled mixing rate used in panel (b) is shown in panel (c).
As can be seen from panel (a), using a fixed mixing rate results
in the iteration “cycling” between the same few points, until the
iteration sequence is aborted upon reaching the maximum iteration
limit. By comparison, panel (b) shows that the scheduled mixing rate
at the same value of parameters leads to rapid convergence in merely
15 iterations. Model parameters are the same as in Fig. 10, except
J = 1.2. The number of momentum points per dimension N is set to
100.

space, we find that the number of different solutions is much
smaller than the numbers of guesses. We then use those found
states as the only guesses and confirm they yield the same
results as the exhaustive search. We then restrict our search to
these unique vectors in further calculations for time efficiency,
by avoiding redundant solutions. Thus equipped with a robust
iteration procedure, we then compute the iteration across all
points in the concerned phase diagrams.

By the nature of Hartree-Fock calculations, one cannot
ever be sure that all consistent solutions have been found. We
gain confidence in our solution’s validity by noting that the
identified ground state energy is a smooth function of the

FIG. 12. Ground state energy of the noninteracting model, with
the same model parameters as in Fig. 10. The number of momentum
points per dimension N is set to 120.
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studied phase diagram axes, as shown in Fig. 12. If some of
these states were metastable, that would show as a discontin-
uous jump in their energy.

At this stage, calculations can be parallelized across four
levels, namely momentum points, input Ansatz, phase dia-
gram points, and even entire phase diagrams. We vectorize
calculations over all momenta, distribute phase diagram points
across multiple processes, try different Ansätze serially (no
parallelization), and parallelize complete phase diagrams such
as Fig. 1 across computing nodes. All our calculations were
carried out on the University of British Columbia’s Advanced

Research Computing cluster Sockeye. To produce a diagram
as in Fig. 1, we use a typical Sockeye node with 32 Dell EMC
R440 CPU cores and 12GB of RAM for around 20 min. Given
enough computer nodes, computing the 100 phase diagrams
(90 000 individual phase diagram points, each with 5–10 start-
ing Ansätze, 10–100 iterations per Ansatz, and 14 400 16×16
matrix diagonalizations per iteration) required to produce the
metaphase diagram in Fig. 7 took under 4 h, whereas without
any parallelization this would require on the order of 1000
hours. All code used to produce the results for this paper can
be found on GitHub [47].
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