
PHYSICAL REVIEW B 104, 205109 (2021)
Editors’ Suggestion

Multiphonon diffuse scattering in solids from first principles:
Application to layered crystals and two-dimensional materials

Marios Zacharias ,1,* Hélène Seiler ,2 Fabio Caruso ,3 Daniela Zahn ,2 Feliciano Giustino ,4,5

Pantelis C. Kelires ,1 and Ralph Ernstorfer 2,6,†

1Department of Mechanical and Materials Science Engineering, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus
2Fritz-Haber-Institut, Physical Chemistry Department, Berlin, 14195, Germany

3Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
4Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA

5Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
6Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany

(Received 18 March 2021; revised 20 July 2021; accepted 22 September 2021; published 9 November 2021)

Time-resolved diffuse scattering experiments have gained increasing attention due to their potential to reveal
nonequilibrium dynamics of crystal lattice vibrations with full momentum resolution. Although progress has
been made in interpreting experimental data on the basis of one-phonon scattering, understanding the role of
individual phonons can be sometimes hindered by multiphonon excitations. In Ref. [M. Zacharias, H. Seiler,
F. Caruso, D. Zahn, F. Giustino, P. C. Kelires, and R. Ernstorfer, Phys. Rev. Lett. 127, 207401 (2021)], we
have introduced a rigorous approach for the calculation of the all-phonon inelastic scattering intensity of solids
from first-principles. In the present work, we describe our implementation in detail and show that multiphonon
interactions are captured efficiently by exploiting translational and time-reversal symmetries of the crystal. We
demonstrate its predictive power by calculating the scattering patterns of monolayer molybdenum disulfide
(MoS2), bulk MoS2, and black phosphorus (bP), and we obtain excellent agreement with our measurements
of thermal electron diffuse scattering. Remarkably, our results show that multiphonon excitations dominate
in bP across multiple Brillouin zones, while in MoS2 they play a less pronounced role. We expand our
analysis for each system and examine the effect of individual atomic and interatomic vibrational motion on the
diffuse scattering signals. We further demonstrate the high-throughput capability of our approach by reporting
all-phonon scattering maps of two-dimensional MoSe2, WSe2, WS2, graphene, and CdI2, rationalizing in each
case the effect of multiphonon processes. As a side point, we show that the special displacement method
reproduces the thermally distorted configuration that generates precisely the all-phonon diffuse pattern. The
present methodology opens the way for systematic calculations of the scattering intensity in crystals and the
accurate interpretation of static and time-resolved inelastic scattering experiments.

DOI: 10.1103/PhysRevB.104.205109

I. INTRODUCTION

Nonequilibrium phenomena as diverse as phase transitions,
polaron formation, and electrical and thermal management
in semiconductor devices all derive from microscopic inter-
actions between electrons and phonons, spins and phonons,
as well as phonons with phonons [1–4]. Our understand-
ing of such phenomena hinges on the development of joint
experimental and theoretical tools which can access these
interactions at the mode-resolved level with sufficient tem-
poral resolution. Towards this goal, exciting methodological
developments were recently achieved on the experimental
side with structural probes, either using femtosecond x-ray
diffuse scattering or femtosecond electron diffuse scattering
(FEDS) [5–14]. These methods yield access to nonequi-
librium phonon populations in momentum space, beyond
the zone-center modes traditionally accessible with optical
spectroscopies.

*marios.zacharias@cut.ac.cy
†ernstorfer@fhi-berlin.mpg.de

In these experiments, the observable depends on the tempo-
ral evolution of the scattering intensity I (Q, t ), where Q is an
arbitrary scattering wave vector determined by the difference
in momentum of the incident and scattered radiation. The key
information obtained is the changes in the diffracted intensi-
ties, as they reflect how different phonons get populated as a
function of time t . In FEDS, these changes are visualized by
computing the difference scattering pattern �I (Q, t ) [13,15].
In Figs. 1(a) and 1(b) we present a schematic illustration of
FEDS and a typical �I (Q, t ) of bulk molybdenum disulfide
(MoS2). The left subplot in Fig. 1(b) simply shows the inten-
sity as collected on the detector. Each Q on this pattern can be
expressed as a summation of a Bragg peak vector G (centers
of the Brillouin zones) and reduced phonon wave vectors q.
The right subplot shows �I (Q, 100 ps) and displays a hot
but quasithermalized distribution of phonons in the MoS2

sample. The blue/red features represent a decrease/increase
in the signal due to Bragg/diffuse scattering. The higher
intensity of the red features indicates regions of the recipro-
cal space with higher phonon scattering probability. Recent
works have shown that �I (Q, t ) can change profoundly and

2469-9950/2021/104(20)/205109(16) 205109-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7052-5684
https://orcid.org/0000-0003-1521-4418
https://orcid.org/0000-0001-9989-3512
https://orcid.org/0000-0002-7606-0961
https://orcid.org/0000-0001-9293-1176
https://orcid.org/0000-0002-0268-259X
https://orcid.org/0000-0001-6665-3520
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.205109&domain=pdf&date_stamp=2021-11-09
https://doi.org/10.1103/PhysRevLett.127.207401
https://doi.org/10.1103/PhysRevB.104.205109


MARIOS ZACHARIAS et al. PHYSICAL REVIEW B 104, 205109 (2021)

FIG. 1. (a) Schematic illustration of FEDS experiment on bulk
MoS2. More details about the setup can be found in Sec. III A
and Ref. [16]. (b) Typical scattering pattern of bulk MoS2. The
left subplot shows the raw pattern as collected on the detector.
G indicates the Bragg peak vector (110), q the reduced phonon
wave vector, and Q = G + q the scattering vector. A hexagonal
Brillouin zone with the high-symmetry points �, K , and M is also
shown. The right subplot shows the difference scattering pattern
�I (Q, 100 ps) = I (Q, 100 ps) − I (Q, t < t0 ), where I (Q, t < t0) is
the average intensity prior to photoexcitation.

qualitatively as time evolves, reflecting nonthermal lattice
dynamics [7,9,13]. Phonon populations typically evolve to-
wards a hot but thermal distribution [see, e.g., the right subplot
of Fig. 1(b)] with a highly material-specific timescale.

Although FEDS measurements possess a wealth of in-
formation, data interpretation is rather complex due to the
energy-integrated nature of the experiment and the multiple
scattering phenomena involved. Therefore, before analyzing
the highly nonequilibrium phonon distributions, it is nec-
essary to fully understand thermal diffuse scattering, i.e.,
inelastic scattering induced by phonons, using first-principles
calculations. Recent first-principles calculations of phonon-
diffuse scattering [10,12–14,17–19] rely on the quantum
theory of the one-phonon structure factor [20,21]. Despite
their great success in explaining some of the main features
in the diffuse pattern, one-phonon interactions are considered
inadequate to explain scattering signals at large |Q| and/or
high temperatures [21,22]. In these cases, the intensity con-
tributed by multiphonon scattering can become comparable
with, and even larger than, that of one-phonon excitations.
A multiphonon process occurs when the momentum trans-
fer to the beam in a single scattering event is specified by
more than one phonon. This principle is well described in
the literature [23–28]. Other mechanisms that contribute to
diffuse signals are multiple interactions (i.e., more than one
electron scattering event [21]), inelastic scattering on plas-
mons and defects, or surface imperfections, making the role
of multiphonon scattering inconclusive [29]. This situation
highlights the need for computational tools that directly probe
multiphonon contributions and, in essence, go a step forward
to extract phonon population dynamics across the entire Bril-
louin zone [12].

In the parallel paper, Ref. [22], we have introduced a
methodology for the calculation of the all-phonon scattering
in solids, which enables us to single out the contribu-
tion of phonon interactions, and thus isolate their scattering
signatures. In the present work, we further validate our
implementation by first calculating one-phonon and multi-

phonon scattering patterns of monolayer MoS2. Using the
same system, we also demonstrate that the special displace-
ment method (SDM) [30,31] can provide an alternative route
for the assessment of all-phonon contributions. We then ap-
ply our technique for the calculation of bulk MoS2 and
black phosphorus (bP) scattering patterns and obtain excellent
agreement with experiment. Importantly, our results reveal
that multiphonon interactions are more manifested in bP than
in MoS2. We also demonstrate the efficiency of our technique
by evaluating phonon-induced scattering patterns of several
two-dimensional (2D) materials. Although this work focuses
on a comparison between theory and FEDS measurements,
we emphasize that the developments presented here are fully
applicable to x-ray, or neutron, diffuse scattering.

The organization of the manuscript is as follows: In
Secs. II A and II B we describe the theory of quantum-
mechanical scattering in solids, and we derive the main equa-
tions used to evaluate the respective phonon contributions. In
Sec. II C and Appendix we demonstrate that SDM can serve
as an equivalent, but different, approach for calculating the
all-phonon scattering intensity. In Sec. II D we describe the
Einstein model for diffuse scattering. Sections III A and III B
report all the experimental and computational details of the
measurements and calculations performed in this work. In
Sec. IV we present our results for several 2D materials, bulk
MoS2, and bP. Specifically, in Sec. IV A we report scattering
intensity calculations of 2D MoS2 using the exact theory,
special displacements, and the Einstein model. In Secs. IV C
and IV D we report the phonon scattering intensities of bulk
MoS2 and bP, respectively, and we compare our calculations
of the difference patterns with experiment. The results are
accompanied by an analysis of the multiphonon contribution
across multiple Brillouin zones, as well as of the scatter-
ing signatures of individual atomic and interatomic thermal
motion. In Sec. IV E we further validate our approach on
monolayers MoSe2, WSe2, WS2, graphene, and CdI2. Our
conclusions and outlook are presented in Sec. V.

II. THEORY

In this section we present the theoretical framework un-
derpinning the evaluation of multiphonon scattering intensity.
Starting from the Laval-Born-James [32–34] theory, we derive
the zero-phonon, one-phonon, and all-phonon scattering in-
tensities in the harmonic approximation. We also demonstrate
that exact phonon-diffuse patterns can be evaluated using
SDM in the limit of dense Brillouin sampling.

We stress that all subsequent expressions apply for
electron, x-ray, and neutron diffuse scattering under the as-
sumption of the kinematic limit [21]. In this limit, also known
as the Born-approximation, the Lippmann-Schwinger quan-
tum formulation for particle scattering [35] is truncated up
to the first order in the interaction potential, thus neglecting
multiple scattering events. That amounts to assume weak in-
teractions where the incident beam is scattered only once by
the crystal.

In the following, we adopt a similar notation as in Ref. [36].

205109-2



MULTIPHONON DIFFUSE SCATTERING IN SOLIDS FROM … PHYSICAL REVIEW B 104, 205109 (2021)

A. Scattering intensity

In the adiabatic formulation and kinematic limit of the
quantum-mechanical scattering theory, originally developed
by Laval [32], Born [33], and James [34] (LBJ), the intensity
of the wave scattered by the atoms in a crystal is given by [37]

Iαn,βm(Q) =
∣∣∣∣∣〈Xαn|

∑
pκ

fκ (Q)eiQ·[Rp+τκ+�τ pκ ] |Xβm〉
∣∣∣∣∣
2

. (1)

Here the many-body electron-nuclear system is described in
terms of the Born-Huang expansion [38], with |Xαn〉 and |Xβm〉
representing the initial n and final m Born-Oppenheimer vi-
brational states, which are associated with electronic states
denoted by the Greek indices α and β. The summations run
over all atoms κ in the unit cell and over all p indices of the
direct lattice vectors Rp. The lattice vectors define a Born–von
Kármán supercell, which contains Np unit cells. The atomic
scattering amplitude is denoted by fκ (Q) and is evaluated at
the scattering vector Q. The displacement vector of the atom
κ from its equilibrium position vector τκ is represented by
�τ pκ . For generality and brevity reasons, the intensity I (Q) is
expressed in scattering units depending on the probe-sample
interaction [37].

If we set the initial and final electrons in their Born-
Oppenheimer ground state, i.e., α = β = 0, perform the
summation over all final vibrational states of the scatterer in
Eq. (1), and use the closure relationship

∑
m |X0m〉 〈X0m| = I,

we obtain

I0n(Q) = 〈X0n| I {τ }(Q) |X0n〉 , (2)

where

I {τ }(Q) =
∣∣∣∣∣
∑

pκ

fκ (Q)eiQ·[Rp+τκ+�τ pκ ]

∣∣∣∣∣
2

(3)

represents the scattering intensity arising from an instan-
taneous atomic configuration defined by the set of atomic
displacements {�τ pκ}. We note that setting the electronic
states at their ground level is justified for a system at thermal
equilibrium before, and after, diffraction [33].

The LBJ scattering intensity at finite temperature T is
obtained from Eq. (2) by taking the ensemble average over
all possible configurations of the nuclei. That is,

I (Q, T ) = 1

Z

∑
n

exp(−E0n/kBT ) I0n(Q), (4)

where E0n stands for the energy of the nuclear state |X0n〉,
Z = ∑

n exp(−E0n/kBT ) is the canonical partition function,
and kB is the Boltzmann constant. The above relation can also
be recognized as the Williams-Lax [39,40] thermal average
of the scattering intensity. This can be understood by writing
the scattering intensity as a Fermi Golden Rule [similar to
Eq. (3) of Ref. [31], considering no electronic excitations,
and integrating over the energy transfer to the crystal [20]. An
alternative interpretation is that Eq. (4) represents, essentially,
the static limit of the dynamic structure factor [27], accounting
for an average of all initial and final vibrational states accessi-
ble at thermal equilibrium.

B. Exact evaluation: Zero-phonon, one-phonon, and all-phonon
scattering intensities

Now, starting from Eq. (4) and employing the harmonic
approximation, we derive the formulas of the zero-phonon
(elastic scattering), one-phonon, and multiphonon (inelastic
scattering) contributions. To this aim, we adopt the normal
mode coordinate formalism and first write the atomic dis-
placement vector as

�τ pκ =
(

M0

NpMκ

)1/2 ∑
qν

eiq·Rpeκ,ν (q)zqν, (5)

where zqν are the complex-valued normal coordinates associ-
ated with the mode of reduced wave vector q and branch index
ν, Mκ is the mass of the κth atom, and M0 is the atomic mass
unit. The phonon polarization vector of the normal mode is
denoted as eκ,ν (q) with Cartesian components eκα,ν (q).

In the framework of the harmonic approximation, the nu-
clear wave function |X0n〉 is expressed as a Hartree product
of uncoupled quantum harmonic oscillators and the nuclear
energy E0n as a summation over the associated energy quanta.
Writing the harmonic oscillators in terms of Hermite poly-
nomials and employing Mehler’s sum rule [41] leads to
the following integral form for the LBJ scattering inten-
sity [31,42]:

I (Q, T ) = 〈I {τ }(Q)〉T =
∏
qν

∫
dzqν

πu2
qν

e−|zqν |2/u2
qν I {τ }(Q). (6)

Here 〈.〉T represents the ensemble thermal average which
is taken as a multidimensional Gaussian integral over the
normal coordinates in the same way as a Williams-Lax ob-
servable in the harmonic approximation [43]. The widths of
the Gaussians are determined by the mode-resolved mean-
square displacement of the atoms at temperature T :

u2
qν = h̄

2M0ωqν

[2nqν (T ) + 1], (7)

where nqν (T ) represents the Bose-Einstein occupation of the
phonon with frequency ωqν at thermal equilibrium, but can
depart significantly from this value under nonequilibrium
conditions [4,13]. We note that Eq. (7) is indefinite for the
zero-frequency translational modes (acoustic modes at �).
These modes do not impose any change on the properties of
the lattice, and thus the associated mean-square displacement
can be set to zero.

The exact expression for the calculation of the temperature-
dependent scattering intensity is obtained with the aid of the
Bloch identity [20]:

〈eiQ·�τ pκ 〉T = e− 1
2 〈(Q·�τ pκ )2〉T . (8)

Hence, combining Eqs. (3) and (6) yields

I (Q, T ) =
∑
pp′

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)eiQ·[Rp−Rp′+τκ−τκ′ ]

×e− 1
2 〈{Q·(�τ pκ−�τ p′κ′ )}2〉T . (9)

By replacing now �τ pκ with the normal-coordinate trans-
formation of Eq. (5), considering translational invariance of
the lattice, and using the identity 〈zqνz∗

q′ν ′ 〉T = u2
qν δqq′,νν ′ , we

205109-3



MARIOS ZACHARIAS et al. PHYSICAL REVIEW B 104, 205109 (2021)

obtain the following compact form for the LBJ (or all-phonon)
scattering intensity [44]:

Iall(Q, T ) = Np

∑
p

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)eiQ·[Rp+τκ−τκ′ ]

×e−Wκ (Q,T ) e−Wκ′ (Q,T ) ePp,κκ′ (Q,T ). (10)

We emphasize that this formula is identical to Van Hove’s
dynamical structure factor for inelastic scattering [45] when
integrated over phonon energies, thus accounting precisely

for all phonon absorption and emission processes. Here, the
exponent of the Debye-Waller factor is defined as

−Wκ (Q, T ) = − M0

NpMκ

∑
q∈B,ν

|Q · eκ,ν (q)|2u2
qν

− M0

2NpMκ

∑
q∈A,ν

∣∣Q · eκ,ν (q)
∣∣2

u2
qν, (11)

and the exponent of the phononic factor is defined as

Pp,κκ ′ (Q, T ) = 2M0N−1
p√

MκMκ ′

∑
q∈B,ν

u2
qνRe[Q · eκ,ν (q)Q · e∗

κ ′,ν (q)eiq·Rp] + M0N−1
p√

MκMκ ′

∑
q∈A,ν

u2
qνQ · eκ,ν (q)Q · eκ ′,ν (q) cos(q · Rp). (12)

The summations are restricted to (i) the group B containing
phonons with wave vectors that lie in the Brillouin zone and
are not time-reversal partners, and (ii) the group A containing
phonons that remain invariant under time-reversal [31]. Re[.]
represents the function that returns the real part of the argu-
ment inside the square brackets. Combining the partitioning
of phonons in groups A and B with the use of translational
symmetry of the crystal enables the efficient calculation of
the all-phonon diffuse scattering intensity. This aspect is cen-
tral in this manuscript and allows for the rapid assessment
of multiphonon excitations. The summations over different
pairs of atoms in Eq. (10) can be conveniently partitioned
into different parts to examine individual (κ = κ ′) and distinct
(κ �= κ ′) scattering contributions [45].

Physically, the Debye-Waller factor, e−Wκ , determines the
attenuation of the scattering intensity at temperature T due
to the vibrational motion of atom κ . The phononic factor,
ePp,κκ′ , includes all-phonon contributions to diffuse scattering
associated with the individual or combined thermal motion
of atoms κ and κ ′ in unit cell p. For example, the zero-
phonon, I0, and one-phonon, I1, contributions are obtained by
retaining the zeroth- and first-order terms in the Taylor expan-
sion of ePp,κκ′ [20]. Hence, if we use the standard sum rule∑

p exp(iQ · Rp) = Np δQ,G, where G is a reciprocal-lattice
vector, and we observe that I0(G, T ) = I0(−G, T ), we can
write the zero-phonon, or Bragg scattering, term as

I0(Q, T ) = N2
p

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q) cos[Q · (τκ − τκ ′ )]

×e−Wκ (Q,T )e−Wκ′ (Q,T )δQ,G. (13)

This expression is directly related to Laue’s interference con-
dition and has very sharp maxima whenever Q = G, and it
reduces to zero otherwise.

Similarly to the zero-phonon term, one can obtain a com-
pact formula for the one-phonon contribution to the scattering
intensity by following a straightforward, but more lengthy,
derivation. The final result is

I1(Q, T ) = M0Np

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)

e−Wκ (Q,T )e−Wκ′ (Q,T )

√
MκMκ ′

×
∑

ν

Re[Q · eκ,ν (Q)Q · e∗
κ ′,ν (Q)eiQ·[τκ′ −τκ ]]u2

Qν .

(14)

One can continue the analysis and derive explicit expressions
for the intensity of each higher-order process. Notably, each
expression is positive-definite, and thus multiphonon scatter-
ing contributes constructively so that Iall(Q, T ) � I0(Q, T ) +
I1(Q, T ).

C. All-phonon scattering intensity using the special
displacement method

Recently, it has been shown that any Williams-Lax thermal
average in the form of Eq. (6) can be evaluated using the
special displacement method (SDM) developed by Zacharias
and Giustino (ZG) [30,31]. SDM amounts to applying ZG
displacements on the nuclei away from their equilibrium po-
sitions given by [31]

�τZG
pκ =

√
M0

NpMκ

[ ∑
q∈B,ν

Sqνuqν2 Re[eiq·Rpeκ,ν (q)]

+
∑

q∈A,ν

Sqνuqν cos(q · Rp)eκ,ν (q)

]
. (15)

In the above relation, the amplitudes of the normal coordinates
entering Eq. (5) are set to |zqν | = uqν , and their signs are set
to Sqν . For practical calculations, the choice of signs is made
such that the following function is minimized:

E ({Sqν}, T ) =
∑
κα

κ ′α′

∣∣∣∣∣∣
∑
q ∈ B
ν < ν ′

Re[eκα,ν (q)e∗
κ ′α′,ν ′ (q)]uqνuqν ′SqνSqν ′

+
∑
q ∈ A
ν < ν ′

eκα,ν (q)e∗
κ ′α′,ν ′ (q)uqνuqν ′SqνSqν ′

∣∣∣∣∣∣ (16)

The above formula reduces exactly to zero in the limit of
dense Brillouin zone sampling, since all summands inside
the modulus remain nearly the same and have opposite sign
for adjacent q-points [31]. More details about the allocation
of the signs Sqν , as well as the ordering of phonons for the
construction of ZG displacements, are given in Sec. III B.
Minimization of Eq. (16) guarantees that (i) the nonpertur-
bative error in the calculation of the temperature-dependent
observable is eliminated, and (ii) the quantum-mechanical
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anisotropic displacement tensor of the atoms, defined as [46]

Uκ,αα′ (T ) = 2M0

NpMκ

∑
q∈B,ν

Re[eκα,ν (q)e∗
κα′,ν (q)] u2

qν

+ M0

NpMκ

∑
q∈A,ν

eκα,ν (q)eκα′,ν (q) u2
qν, (17)

is recovered. This quantity also determines the thermal el-
lipsoids of the crystal, and its diagonal elements are closely
related to the exponent of the Debye-Waller factor given by
Eq. (11).

The calculation of the scattering intensity at finite temper-
atures using SDM requires us to simply set �τ pκ = �τZG

pκ
in Eq. (3), and thus calculate Eq. (4) for a single distorted
configuration. That is,

IZG(Q, T ) =
∣∣∣∣∣
∑

pκ

fκ (Q)eiQ·[Rp+τκ+�τZG
pκ ]

∣∣∣∣∣
2

. (18)

The proof that the Williams-Lax thermal average of a generic
observable can be evaluated using the ZG displacements is
provided in Ref. [31]. In Appendix, we demonstrate, using
a different approach, that Eq. (18) is equivalent to Eq. (10),
as long as Eq. (16) is minimized. This finding reinforces the
concept that nuclei positions defined by ZG displacements
can describe accurately thermal disorder in solids, and here
they can be viewed as the collection of scatterers that best
reproduce the diffuse scattering intensity.

D. Scattering intensity using the Einstein model

For an Einstein solid, the scattering intensity can be
evaluated by assuming that all atoms vibrate independently
and with the same frequency [47]. These approxima-
tions allow one to replace (i) the mode-resolved mean-
square displacement of the atoms u2

qν by a constant u2
E =

h̄/(2M0ωE)[2nE(T ) + 1], where ωE is the average phonon
frequency of the crystal and nE is the associated Bose-Einstein
occupation, and (ii) the phonon polarization vectors eκ,ν (q)
with a normalized isotropic eigenvector [48]. Applying (i) and
(ii) to Eq. (10), the scattering intensity within the Einstein
model reads

IE(Q, T ) = N2
p

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q) cos[Q · (τκ − τκ ′ )]

× e−Cκκ (Q,T ) e−Cκ′κ′ (Q,T )δQ,G

+Np

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q) cos[Q · (τκ − τκ ′ )]

×e−Cκκ (Q,T ) e−Cκ′κ′ (Q,T ) [e2Cκκ′ (Q,T ) − 1], (19)

where Cκκ ′ (Q, T ) = M0u2
E Q2/

√
4MκMκ ′ . The first and sec-

ond summations represent the elastic and inelastic terms,
respectively. The above oversimplified expression provides a
quick estimate of the contribution of the first- and higher-order
excitations based on the power series expansion of e2Cκκ′ (Q,T ).
For example, keeping terms up to first order in Cκκ ′ (Q, T )
yields the Einstein model’s analog of Eq. (14).

III. METHODS

A. Experiment

The FEDS measurements are performed in transmission
using the compact diffractometer described in detail else-
where [16]. Briefly, the output of a femtosecond laser system
(Astrella, Coherent, 4 kHz, pulse duration 50 fs) is split into a
pump arm and a probe arm. A commercial optical paramet-
ric amplifier is used to generate pump pulses with tunable
wavelength. The electron probe is generated from two-photon
absorption of around 500 nm photons obtained from a home-
built noncollinear optical parametric amplifier (NOPA) and
subsequent photoemission from a gold photocathode. The
photoemitted electron bunches are accelerated towards the
anode to reach 60–90 keV as they exit the gun. Each elec-
tron bunch is estimated to contain 	103 electrons. Scattering
patterns are recorded with a phosphor screen fiber-coupled to
a CMOS detector (brand TVIPS, model TemCam-F416).

For sample preparation, bulk black phosphorus and MoS2

crystals were purchased from HQ Graphene. Free-standing
thin films were obtained in both cases by mechanical exfolia-
tion and subsequent transfer to TEM grids using the floating
technique [49]. Due to their air-sensitivity, the bP flakes were
transferred to vacuum immediately after preparation to pre-
vent degradation of the bulk film.

The bP data were acquired at a base temperature of T =
100 K, whereas the MoS2 data were acquired at a base temper-
ature of T = 300 K. All data were processed using the open-
source python module scikit-ued [50]. In particular, a sixfold
(twofold) symmetrization operation was performed on the raw
MoS2 (bP) scattering patterns. The symmetrization operations
were carried out for visualization purposes only. Prior to sym-
metrization, it was verified that the signals in corresponding
Bragg orders (Friedel pairs) match in intensity within error,
defined as the standard error of the mean signal over multi-
ple independent acquisitions of the scattering pattern. In the
symmetrized experimental patterns, we observe double peaks
at large scattering vectors. These double peaks are artefactual
and arise from magnetic field distortions of the electrons lens,
which induce aberrations at large scattering vectors.

B. Computational details

Ab initio calculations were performed using plane wave ba-
sis sets and the PBE generalized gradient approximation [51]
to density-functional theory (DFT), as implemented in the
QUANTUM ESPRESSO software package [52,53]. We used the
primitive cells of 2D transition-metal dichalcogenides (MoS2,
MoSe2, WSe2, and WS2 with space group P6̄m2), CdI2

(P3̄m1), graphene (P6/mmm), bulk MoS2 (P63/mmc), and bP
(Cmce), which contain three, three, two, six, and 4 atoms, re-
spectively. We employed Goedecker-Hartwigsen-Hutter-Teter
norm-conserving pseudopotentials [54,55] for all monolayers,
and bulk MoS2, and Troullier-Martins [56] norm-conserving
pseudopotentials for bP. The plane-wave kinetic energy cutoff
was set to 80 Ry for graphene, 90 Ry for bP, 100 Ry for CdI2,
120 Ry for MoS2, 130 Ry for MoSe2, WSe2, and WS2. Self-
consistent-field calculations were performed using Brillouin
zone k-grids of 10×10×1 (monolayers MoS2 MoSe2, WSe2,
WS2, and graphene), 14×14×1 (monolayer CdI2), 10×10×
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FIG. 2. (a) Zero-plus-one-phonon, (b) all-phonon, (c) multiphonon, and (d) Einstein model scattering intensity of monolayer MoS2

calculated for T = 300 K. In plot (a) we show the fundamental Brillouin zone together with the high-symmetry points �, K , and M. We
also show the (1 0) and (0 1) Bragg peaks. The blue circle indicates a rapid decrease in the diffuse scattering intensity. The sampling of the
Brillouin zone was performed using a 50 × 50 q-grid. For all plots, the scattering intensity is divided by the maximum Bragg intensity, i.e.,
with I0(Q = 0, T ).

3 (bulk MoS2), and 12×10×10 (bP) points. To avoid in-
teractions between periodic replicas of the monolayers, we
used an interlayer vacuum larger than 15 Å and a truncated
Coulomb interaction [57]. The optimized lattice parameters
for monolayers are a = 3.17 Å (MoS2), 3.32 Å (MoSe2), 3.31
Å (WSe2), 3.18 Å (WS2), 2.47 Å (graphene), 4.33 Å (CdI2);
a = 3.191 Å and c = 12.43 Å for bulk MoS2; and a = 3.307
Å, b = 4.554 Å, and c = 11.256 Å for bP. We determined the
interatomic force constants by means of density-functional
perturbation theory [58] using Brillouin zone q-grids of 8×
8×1 (monolayers), 8×8×2 (bulk MoS2), and 5×5×5 (bP)
points.

The zero (I0), one (I1), and all (Iall) -phonon scattering in-
tensities were calculated employing Eqs. (13), (14), and (10),
respectively. For the calculation of the exponent of the Debye-
Waller [Eq. (11)] and phononic [Eq. (12)] factors, the full sets
of phonon eigenmodes and eigenfrequencies were obtained
by using standard Fourier interpolation of dynamical matrices
on q-grids of 50×50×1 (monolayers) and 50×50×50 (bulk
systems) points, unless specified otherwise. Q-grids of the
same size were employed to sample the scattering pattern
per Brillouin zone of each system. We must emphasize that
it is erroneous to compute the all-phonon scattering intensity
using Q- and q-grids of different density, since this violates
the momentum selection rule and gives rise to artefacts in the
phonon-diffuse pattern. For MoS2 systems we show patterns
calculated in the Qx-Qy planes at Qz = 0, where Qx, Qy,
and Qz are the Cartesian components of Q. bP patterns are
obtained as the average of the scattering intensities at Qz = 0
and Qz = 2π/c = 0.56 Å−1 planes. Simulating the zero-order
Laue zone (Qz = 0 plane) and the first-order Laue zone (Qz =
2π/c plane) reproduces more Bragg peaks observed in the
experiment, which we attribute to stacking faults in the sam-
ple [59–61]. The atomic scattering amplitudes fκ (Q) for each
atom were obtained analytically as a sum of Gaussians [62]
using the parameters in Ref. [63]. For the calculation of the
full maps of hexagonal (monolayers and bulk MoS2) and
orthorhombic (bP) systems, we applied a sixfold and fourfold
rotation symmetry around the �-point.

The set of special displacements [Eq. (15)] were generated
via the ZG executable (ZG.X) of the EPW software package [64].

The general procedure for applying SDM is described in
Ref. [31]. In short, here we (i) used the same q-grid as
for the Debye-Waller and phononic factors, (ii) ordered the
phonon eigenmodes and frequencies along a simple space-
filling curve that passes through all q-points, (iii) ensured
similarity by enforcing a smooth Berry connection between
the phonon eigenmodes at adjacent q-points, and (iv) as-
signed 2n−1 unique combinations of n signs {Sqν, . . . , Sqν ′ }
to every 2n−1 q-point, where n, here, is equal to the number
of phonon branches. These choices together with the dense
grids employed guarantee fast minimization of Eq. (16). The
ZG scattering intensity was calculated with Eq. (18) using
the same Q-grid as for the LBJ scattering intensity. Notably,
implementing Eq. (18) is much more straightforward than
Eq. (10). Hence, SDM serves as a guide for validating our
calculations of the LBJ diffuse scattering intensity.

The code (disca.x) used for the calculation of all phonon
contributions to diffuse scattering is available at the EPW/ZG

tree. The ZG scattering intensity was computed with ZG.x. It
is worth noting that the fine grids employed for the purposes of
this work do not have high computational requirements since
they do not involve extra DFT steps. In fact, these codes act as
postprocessing steps and allow for the rapid evaluation of the
(ZG or LBJ) scattering intensity of any material, provided that
the interatomic force constants have already been computed.
No restrictions are imposed on the methodology followed for
the evaluation of interatomic force constants; this can be by
means, for example, of density-functional perturbation the-
ory [58], the frozen-phonon method [65], the self-consistent
harmonic approximation [66], or ab initio molecular
dynamics [67].

IV. RESULTS

A. 2D MoS2

Figures 2(a), 2(b), and 2(c) show the zero-plus-one-
phonon, multiphonon, and all-phonon scattering intensities at
T = 300 K in the reciprocal space of monolayer MoS2. All-
phonon and zero-plus-one-phonon excitations were accounted
for via Eq. (10) and combining Eqs. (11) and (12), respec-
tively; full computational details are provided in Sec. III B.
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FIG. 3. Percentage contribution of multiphonon interactions to diffuse scattering of (a),(b) monolayer MoS2, (c) bulk MoS2, and (d) bulk
black phosphorus (bP) calculated as P = Imulti/(I1 + Imulti ) × 100 at T = 300 K. Parts (a), (c), and (d) represent calculations within the LBJ
theory and (b) using ZG displacements. Maps are separated into Brillouin zones to highlight the extent of multiphonon interactions.

Both sets of data have been normalized such that the scattering
intensity at the zone center is equal to 1. The multiphonon
scattering intensity was obtained from Imulti = Iall − I0 − I1.
Our results show that the diffuse pattern of monolayer MoS2

is determined to a large extent by one-phonon scattering,
while multiphonon interactions play a secondary role without
introducing new features. To quantitatively assess the effect
of multiphonon processes on the diffuse pattern, we report
in Fig. 3(a) the percentage P = Imulti/(I1 + Imulti ) × 100 as a
function of Q. The response of the scattering intensity to mul-
tiphonon excitations increases as we move radially outwards
from the center, exceeding 50% for |Q| � 12 Å−1. However,
when Q ∼ G (centers of Brillouin zones), we find that single-
phonon contributions dominate and P reduces significantly.

In Fig. 2(d), we present the total scattering intensity in the
Einstein model calculated using Eq. (19) and setting ωE =
287.4 cm−1. Not surprisingly, the Einstein model fails com-
pletely to explain diffuse scattering in 2D MoS2 resembling
scattering patterns calculated for isotropic systems [68]. How-
ever, this approximation can provide a rough prediction of the
multiphonon contributions to diffuse scattering by evaluating
the total energy transfer to the crystal, �E , as defined in the
parallel paper, Ref. [22]. For the range presented in Fig. 2, the
Einstein model yields �EE = 10%, in very close agreement
with the exact value �E = 11% obtained within the LBJ
theory. It is worth noting that a corresponding calculation
of the percentage P will miss the reduced contribution of
multiphonon interactions at the Bragg peaks [22].

To understand the main features in the scattering pattern of
monolayer MoS2, we examine the individual atomic (κ = κ ′)
and interatomic (κ �= κ ′) terms entering Eq. (14). Figures 4(a)
and 4(b) show our calculations for the Mo and S individual
contributions to the all-phonon scattering intensity. In both
cases, the Bragg scattering amplitude decreases gradually
with the distance from the zone center. In view of Eq. (13),
this gradual decrease is attributed solely to the attenuation
coming from the Debye-Waller and atomic form factors, since
the modulation factor cos[Q · (τκ − τκ ′ )] simplifies to 1 for
the individual terms. The same holds for the strong diffuse
scattering concentrated in the vicinity of the Bragg peaks.
Within the first Brillouin zone, the patterns exhibit a rel-
atively weak intensity as a result of the small transferred
momenta.

Figures 4(c) and 4(d) show the response of the all-phonon
scattering intensity to each inequivalent distinct pairing: MoS
and S1S2. It is evident that MoS collective displacements tend
to decrease, or increase, the Bragg scattering intensity depend-
ing on the factor cos[Q · (τκ − τκ ′ )] and the symmetry of the
structure. In particular, our analysis shows that for a Bragg
scattering vector Q = (h k), the MoS pairs enhance (suppress)
the total intensity when |h − k| = 3n ( �= 3n), where h, k, and
n are integers. MoS paired thermal fluctuations also con-
tribute to the diffuse scattering constructively, or destructively,
explaining the rapid decrease in the scattering probability
between adjacent Bragg peaks, as indicated by the blue circle

FIG. 4. Individual and distinct atomic contributions to the all-
phonon scattering intensity of monolayer MoS2 calculated for T =
300 K. Parts (a) and (b) are for the Mo and S individual scattering
terms. Parts (c) and (d) are for the MoS and S1S2 distinct scattering
terms. The Brillouin zone sampling was performed using a 50 × 50
q-grid. Data are divided by the Bragg intensity at the center of the
Brillouin zone, i.e., with I0(Q = 0, T ).
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FIG. 5. (a)–(d) Convergence of the ZG scattering intensity of monolayer MoS2 at T = 300 K with respect to the Brillouin zone sampling.
(e) Exact all-phonon scattering intensity calculated using Eq. (10). All data are divided by the Bragg peak at the center of the Brillouin zone,
i.e., with I0(Q = 0, T ).

in Fig. 2(a). For S1S2 distinct terms, the cosine modulation
factor simplifies to 1 due to the trigonal prismatic coordination
of the S atoms, thereby enhancing Bragg scattering. The corre-
lated vibrational motion between sulfide atoms tends to reduce
phonon-induced scattering in such a way that the intensity of
the starlike domain formed within the first- and second-order
Brillouin zones of monolayer MoS2 is enhanced.

B. Evaluation of the all-phonon scattering intensity
using the ZG displacement

As described in Secs. II C and III B, SDM constitutes an
alternative way to evaluate the scattering intensity, and it can
be used as a tool to further verify our implementation of
Eq. (10). Here we provide a detailed convergence test, using
the example of monolayer MoS2, and we demonstrate that
the two approaches give identical results in the limit of dense
Brillouin zone sampling.

To analyze the convergence behavior of the SDM, in
Figs. 5(a)–5(d) we plot the dependence of the ZG scattering
intensity on the q-grid used to generate special displacements.
For comparison purposes, in Fig. 5(e) we also present the
data obtained using the exact expression in Eq. (10). The ZG
scattering intensity calculated for a 15 × 15 q-grid, commen-
surate with the supercell size of realistic ZG DFT-calculations,
compares well with the exact result and reveals all the main
features in the patterns. Deviations from the Bragg and inelas-
tic scattering appear as statistical background noise and are
explained by the error in the evaluation of the ZG observable.
We remark that calculations of the difference images be-
tween ZG and exact patterns show that discrepancies are more
prominent at the Bragg peaks, as a result of the two extra terms
entering the function �κκ ′ (Q, T ) when Q = G [Eq. (A7) of
the Appendix]. As shown in Figs. 5(b)–5(d), the error is allevi-
ated by using finer q-grids, and it vanishes in the limit of dense
Brillouin sampling, i.e., for a 300 × 300 q-grid. The agree-
ment between the two methods is further substantiated in the
Appendix (Fig. 11), where the multiphonon contribution to
the all-phonon scattering intensity is identical when calculated
with ZG displacements, or with Eq. (10). A similar conclusion
can be drawn by comparing P in Figs. 3(a) and 3(b). This
successful comparison provides a rigorous numerical proof
that SDM can seamlessly capture higher-order terms in the
Taylor expansion of the observable.

Following the above analysis, it becomes apparent that
ZG displacements lead precisely to the thermally distorted
structure that reproduces the all-phonon diffuse scattering.
Although thermal diffuse scattering is fundamentally related
to the phonon properties of the crystal, this concept rein-
forces the use of ZG displacements for the evaluation of
temperature-dependent electronic and optical properties of
solids, as attested to in Refs. [30,31,69–83]. It is also evi-
dent that ZG calculations can capture accurately all terms in
the Taylor expansion of the observable of interest, and thus
can serve as a tool for the assessment of multiphonon ef-
fects, including carrier-multiphonon coupling. On top of that,
SDM can be upgraded straightforwardly for the calculation of
ultrafast phonon-diffuse data [13] and other nonequilibrium
electron-phonon mediated properties. In particular, nonequi-
librium phonon occupations computed by the Boltzmann
transport equation [4] can enter directly Eq. (7), and hence
allow for the generation of time-resolved ZG displacements
via Eq. (15). This will, in turn, significantly simplify the inter-
pretation of ultrafast phenomena, providing a physical picture
with respect to real-space displacements.

C. Bulk MoS2

Figures 6(a)–6(c) show the zero-plus-one phonon, all-
phonon, and ZG scattering patterns of bulk MoS2 at T =
300 K. All sets of data have been normalized such that the
intensity at the zone-center is equal to 1. The scattering pattern
of bulk MoS2 is qualitatively identical to that of its mono-
layer counterpart, shown in Fig. 2. Quantitatively, the major
difference is that the intensity of Bragg scattering in bulk
MoS2 is about two orders of magnitude higher. These findings
suggest that collective displacements between any two atoms
that lie in separate MoS2 layers do not participate actively in
diffuse scattering. Indeed, our analysis (not shown) confirms
that these distinct pairs contribute predominantly to Bragg
scattering and very little to diffuse scattering. Similarly to
the monolayer MoS2, the main characteristics in the diffuse
pattern arise from the MoS correlated displacements.

In Fig. 6(d) we present the multiphonon structure fac-
tor map of bulk MoS2, obtained as the difference between
the all-phonon and zero-plus-one-phonon diffuse patterns,
i.e., Imulti = Iall − I0 − I1. Our results reveal that scattering
beyond one phonon does not smear out the fundamental
information enhancing slightly the scattering signal. This
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FIG. 6. (a) Zero-plus-one-phonon, (b) all-phonon, (c) ZG (all-phonon), and (d) multiphonon scattering intensity of bulk MoS2 calculated
for T = 300 K. The calculated intensities are divided by the Bragg intensity at the center of the Brillouin zone, i.e., with I0(Q = 0, T ). In plot
(a) we show the fundamental Brillouin zone together with the high-symmetry points �, K , and M. We also show the (1 0) and (0 1) Bragg
peaks. In plot (a) we indicate the (1 0) and (0 1) Bragg peaks, as well as regions of diffuse and Bragg scattering. (e) Zero-plus-one-phonon, (f)
all-phonon, and (g) ZG (all-phonon) diffuse maps of bulk MoS2 calculated as �I (Q, 500 K) = I (Q, 500 K) − I (Q, 300 K), corresponding to
the temperature difference estimated from the experiments. (h) Experimental scattering signals of bulk MoS2 measured at 100 ps. Signals are
divided by the maximum count due to elastic scattering. For comparison purposes, the simulated data are multiplied by 500 000 to match the
experiment. The sampling of the Brillouin zone was performed using a 50 × 50 × 50 q-grid.

observation is further supported by Fig. 3(c), which shows that
the multiphonon contribution to inelastic scattering, P , never
dominates over one-phonon processes for any |Q| � 14 Å−1.

In Figs. 6(e)–6(h) we compare the zero-plus-one-phonon,
all-phonon, and ZG difference scattering patterns of bulk
MoS2 with the experimental signals measured at a pump-
probe delay of 100 ps, �I (Q, t = 100 ps). At this time
delay, we assume that phonon thermalization is reached [13].
Blue and red represent a decrease and an increase in the
relative scattering intensity, respectively. Bragg peaks ap-
pear as blue dots since the exponent of the Debye-Waller
factor, −Wκ (Q, T ), is reduced with increasing temperature.
The agreement between theory and experiment is excellent,
except that we underestimate the background diffuse scat-
tering. This discrepancy is diminished when multiphonon
interactions via Eq. (10), or ZG displacements, are accounted
for. Despite multiphonon scattering, the background observed
experimentally can be due to many others factors, such as
multiple scattering events and inelastic scattering on plas-
mons [15,21,84].

D. Bulk black phosphorus

Figures 7(a) and 7(b) show the scattering patterns of bulk
bP at T = 300 K calculated using the zero-plus-one-phonon
and all-phonon expressions, respectively. For completeness,
we also report the ZG scattering intensity at the same tem-

perature in Fig. 7(c). In Fig. 7(d), we show the multiphonon
scattering pattern of bulk bP. Unlike 2D and bulk MoS2,
multiphonon processes in bP strongly enhance diffuse scat-
tering away from the zone center, revealing, essentially, new
diamondlike patterns. In Fig. 3(d), we also disclose the per-
centage contribution of multiphonon excitations to diffuse
scattering intensity, P . We find that higher-order processes
play the primary role in diffuse scattering for |Q| � 8 Å−1

reaching a maximum of 83% at |Q| = 13 Å−1. It is also evi-
dent from Fig. 3 that P is much more prominent in bP than in
MoS2 crystals. Using our toy model developed in the parallel
paper, Ref. [22], and observing that the mean frequencies
of the three crystals are similar, we can then attribute this
different behavior to the lighter mass of phosphorus.

For completeness, in Figs. 6(e)–6(h) we reproduce the
results of the parallel paper, Ref. [22], and compare the zero-
plus-one-phonon, all-phonon, and ZG difference scattering
patterns of bulk bP with the experimental thermalized sig-
nals measured at a pump-probe delay of 50 ps, �I (Q, t =
50 ps) [13]. Blue/red areas represent a decrease/increase in
the relative scattering signal. Bragg peaks appear as blue dots
as a result of the Debye-Waller effect. The zero intensity
Bragg peaks, present in both calculations and measurements,
are connected with the symmetry of the structure and can
be explained by analyzing the interatomic correlations (see
below). In the experimental diffraction pattern of bP, however,
we observe the presence of additional forbidden reflections
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FIG. 7. (a) Zero-plus-one-phonon, (b) all-phonon, (c) ZG (all-phonon), and (d) multiphonon scattering intensity of bulk black phosphorus
(bP) calculated for T = 300 K. The calculated intensities are divided by the elastic scattering at the central Bragg peak, I0(Q = 0, T ). In plot
(a) we show the fundamental Brillouin zone together with the high-symmetry points �, A, and X . We also show the (2 0) and (0 2) Bragg
peaks. (e) Zero-plus-one-phonon, (f) all-phonon, and (g) ZG (all-phonon) difference scattering maps of bulk black phosphorus calculated
as �I (Q, 300 K) = I (Q, 300 K) − I (Q, 100 K), compatible with experimental conditions. (h) Experimental difference scattering signals
measured at 50 ps. Signals are divided by the maximum count due to elastic scattering. Simulations are multiplied by 400 000 to match the
experimental maximum intensity [22]. The sampling of the Brillouin zone was performed using a 50 × 50 × 50 q-grid.

for h + k = 2n + 1. Such reflections were also observed in
previous works [61]. They may be caused by stacking faults
or structural deviations at the surface, as bP is well-known
to oxidize rapidly. These additional reflections do not al-
ter the overall picture. In fact, the agreement between the
all-phonon theory and experiment is striking, confirming
that multiphonon excitations change diffuse signals qualita-
tively and quantitatively [22]. In essence, scattering beyond
one-phonon is the main mechanism of the formation of
the outer diamondlike domains. These features are also
present in the ZG scattering difference pattern, validating
once again the physical meaning of the ZG distorted struc-
ture. Given the unprecedent agreement between our sets
of calculated all-phonon data and measurements [22], we
exclude a large redistribution of diffuse intensity from lower-
order into higher-order Brillouin zones due to Bragg-Bragg
and Bragg-diffuse multiple scattering [85]. Our additional
analysis, based on the method described in Ref. [86], also
guarantees that multiple scattering is not a critical issue in our
measurements.

In Figs. 8(a) and 8(b) we report the all-phonon scattering
intensity coming from the displacements of individual phos-
phorus atoms. The diffuse pattern is mostly structureless, and
the total signal fades out with the distance from the cen-
tral Bragg peak due to the Debye-Waller and atomic form
factors. As expected, all Bragg peaks are reproduced since
scattered waves by individual atoms will undergo constructive
interference.

Figures 8(c)–8(f) show the response of the all-phonon scat-
tering intensity to displacements between pairs of P atoms.
The ball and stick model shows the geometric arrangement of
atoms in bP. It is evident that electrons scattered by the col-
lective motion between atoms that lie in the same basal plane,
i.e., P1P3 and P2P4, interfere constructively, or destructively,
forming diamond-like domains which explain the characteris-
tic diffuse pattern observed in the experiment. Regarding other
pairs of bP atoms, diffuse scattering is rather insensitive to
their collective motion. This result demonstrates the potential
of diffuse scattering experiments to probe microscopic phe-
nomena that occur in specific chemical bonds in solids.

E. 2D materials

In this section, we evaluate the diffuse scattering patterns
of five more 2D materials in order to gain further insight into
the role of multiphonon processes, and we demonstrate the
high-throughput capability of our method.

Figure 9 shows the zero-plus-one-phonon, all-phonon, and
multiphonon scattering intensities of (a) MoS2, (b) MoSe2, (c)
WSe2, (d) WS2, (e) graphene, and (f) CdI2 all calculated at
T = 300 K within the LBJ theory. We also show the percent-
age P = Imulti/(I1 + Imulti ) × 100 to provide a quantitative
hierarchy between one-phonon and multiphonon processes.
To support our subsequent analysis, we report the calculated
energy transfer from multiphonon processes, �E [22], the
total atomic mass per unit cell, MT = ∑

κ Mκ , and the Einstein
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FIG. 8. Individual and distinct atomic contributions to the all-
phonon scattering intensity of bulk black phosphorus calculated for
T = 300 K. Plots (a) and (b) are for the individual P1, P2, P3,
and P4 contributions. Plots (c), (d), (e), and (f) are for the distinct
(and inequivalent) PiP j contributions. We also report a ball-and-stick
model of bP. The Brillouin zone sampling was performed using a
50 × 50 × 50 q-grid, and data are divided by the Bragg intensity at
the center of the Brillouin zone, i.e., with I0(Q = 0, T ).

phonon frequency ωE of each 2D material. At this point, we
recall that �E scales inversely proportional with the atomic
masses and phonon frequencies of the system. All transition-
metal dichalcogenides (MoS2, MoSe2, WSe2, and WS2) share
the same space group (P6̄m2) and exhibit similar diffraction
and phonon-diffuse patterns. Importantly, when the sulfide
atoms are replaced by the heavier selenium in WX 2 and MoX 2

(where X indicates the chalcogen atom), we obtain a subtle
enhancement of the phonon-induced scattering intensities and
�E by 2%. In both cases, MT becomes larger by more than
35%, but ωE is reduced by ∼33%, indicating that the change
in the phonon frequencies is the primary measure for estimat-
ing the extent of multiphonon processes.

This conclusion can be further justified by our analysis
for graphene, shown in Fig. 9(e). Our results reveal almost
identical one-phonon and all-phonon diffuse patterns, as well
as a small percentage P across the reciprocal space. We find
the energy transfer due to multiphonon excitations �E to
be as low as 5%. Our value comes as no surprise, despite

the light mass of carbon atoms. In particular, the small �E
is driven by the relatively large Einstein phonon frequency
(ωE = 917.4 cm−1) of graphene, being three to four times
larger than ωE reported for transition-metal dichalcogenides.
It is also evident that employing the one-phonon structure
factor is an accurate and reliable practice for investigating
diffuse scattering signals in materials exhibiting large mean
phonon frequencies [12].

At variance with graphene, multiphonon processes have a
prominent impact on the diffuse pattern of 2D CdI2 (space
group P3̄m1), as shown in Fig. 9(f). We can readily see that
the one-phonon scattering theory reveals negligible diffuse
scattering for |Q| > 5 Å−1, missing important features of
the all-phonon scattering map. It is also striking that multi-
phonon excitations dominate inelastic scattering beyond the
fundamental Brillouin zone, giving �E = 63%. Based on our
previous discussion, this value is consistent with the relatively
small mean phonon frequency of CdI2, ωE = 70.6 cm−1. The
value of ωE also explains the rapid Debye-Waller damping
of the Bragg intensities at large scattering wave vectors [see
Eq. (11)]. Unlike the diffraction patterns of transition-metal
dichalcogenides, we observe that for a Bragg scattering vector
Q = (h k), the total intensity is reduced when |h − k| �= 3n.
To shed light on this result, we report the individual and dis-
tinct atomic contributions to the all-phonon scattering pattern
of monolayer CdI2, as shown in Fig. 10. Apart from the pro-
nounced Debye-Waller damping in CdI2, the main difference
between the diffraction patterns of MoS2 and CdI2 is due
to the distinct contributions from S1S2 [Fig. 4(d)] and I1I2

[Fig. 10(d)] pairs. In fact, electrons scattered by the collective
motion between I atoms will interfere destructively, instead
of constructively, when |h − k| �= 3n. This different response
is attributed to the fact that CdI2 (space group P3̄m1) lacks
mirror symmetry with respect to the plane containing Cd
atoms.

V. CONCLUSIONS

In this manuscript, we have benchmarked a first-principles
theory for the calculation of diffuse scattering in solids, as
introduced in the parallel paper, Ref. [22]. In a nutshell, we
have demonstrated that our method can calculate efficiently
and accurately multiphonon scattering processes using as test
cases bulk MoS2 and bP, as well as several 2D materials.

Starting from 2D MoS2, we have validated our methodol-
ogy by comparing successfully our results obtained within the
LBJ and SDM theories. These theories enable one to calculate
scattering patterns in a different fashion and at the same time
justify the accuracy of each other. For completeness, we have
explored in detail the formal mathematical link between the
two theories. We emphasize that SDM is a broad approach
with several applications in DFT and beyond [31] which can
be extended to study nonequilibrium dynamics [13]; here we
have simply demonstrated the physical significance of SDM in
reproducing all-phonon diffuse patterns. We have also shown
that the Einstein model fails completely at describing diffuse
scattering, but it can provide a good estimate for the contribu-
tion of multiphonon interactions.

We further demonstrate our implementation of the all-
phonon LBJ theory by evaluating scattering patterns of 2D
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FIG. 9. Zero-plus-one-phonon, all-phonon, and multiphonon scattering intensities, and percentage contribution of multiphonon processes
to diffuse scattering intensity P calculated for 2D (a) MoS2, (b) MoSe2, (c) WSe2, (d) WS2, (e) graphene, and (f) CdI2 all at T = 300 K. The
energy transfer to the crystal from multiphonon scattering, �E , the total atomic mass per unit cell in atomic mass units (amu), MT , and the
mean phonon frequency, ωE, are indicated on each plot. The sampling of the Brillouin zone was performed using a 50 × 50 q-grid, and data
are divided by the maximum Bragg intensity, i.e., with I0(Q = 0, T ). We also provide the ball and stick model, primitive-cell, and optimized
lattice parameter a of each structure.

transition-metal dichalcogenides (MoSe2, WSe2, and WS2),
graphene, and 2D CdI2. Remarkably, for 2D CdI2 we find
that multiphonon processes contribute above 60% to diffuse
scattering. We clarify that this result should not be viewed
as a limiting case, but rather a plausible outcome expected
for several 2D materials sharing similar Einstein phonon
frequencies [87].

The present work helps to understand the quality of
experimental measurements and investigate primary, or sec-
ondary, features in the scattering patterns of solids. For
example, our results for bulk MoS2 reveal that the mea-
sured diffuse background signals can be mainly explained
by multiphonon interactions. Furthermore, our multiphonon
calculations for bP demonstrate clearly the emergence of
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FIG. 10. Individual and distinct atomic contributions to the all-
phonon scattering intensity of monolayer CdI2 calculated for T =
300 K. Parts (a) and (b) are for the Cd and I individual contributions.
Parts (c) and (d) are for the CdI and I1I2 distinct terms. The Brillouin
zone was sampled using a 50 × 50 q-grid. Data are divided by the
maximum Bragg intensity, i.e., with I0(Q = 0, T ).

new primary features. Importantly, our finding suggests that
extracting band-resolved phonon populations from the exper-
imental data of bP by relying only on the one-phonon theory
would be inaccurate.

Beyond studying the various phonon contributions to the
diffuse patterns, we examine the scattering signatures arising
from individual atomic and interatomic vibrational motions.
Our analysis reveals that the collective displacement between
specific pairs of atoms is responsible for the main fine struc-
tures observed experimentally. Clarifying the origin of these
distinct features may help to interpret the data from a bonds
perspective [2], especially in materials with multiple atom
species and/or multiple atoms per unit cell.

We emphasize that our methodology creates a new frame-
work in the interpretation of time-resolved electron, or x-ray,
experiments allowing for a reverse-engineering analysis to
uncover transient phonon populations. In particular, one could
combine the all-phonon scattering intensity with experimental
data to single out multiphonon contributions, and then extract
phonon population dynamics using the strategy described in
Ref. [12]. This approach requires experimental data across
multiple Brillouin zones extending to regions in reciprocal
space where multiphonon excitations can be dominant. We
clarify that even if the occupancy of a single phonon mode is
affected by photoexcitation in pump-probe experiments, the
multiphonon theory is still necessary to describe accurately
the changes induced in diffuse scattering signals.

The present approach is as simple as it is efficient,
and it can be implemented straightforwardly in any soft-
ware package dealing with phonon properties of materials.
Given the generality of our methodology, it should be pos-

sible to apply it in a large-scale high-throughput manner
for studying all-phonon diffuse scattering in solids. For sys-
tems experiencing a high degree of anharmonicity, one could
upgrade the phonons using the self-consistent harmonic ap-
proximation [66,88], or combine Eq. (4) with ab initio
molecular dynamics [89]. For special cases, including (i)
doped graphene [90] or heavily boron doped diamond [91],
and (ii) undoped semiconductors whose band-gap energy is
comparable to their phonon energies, a breakdown of the
adiabatic approximation is to be expected. In these cases, ap-
proaches beyond static density-functional perturbation theory
and the frozen-phonon method are necessary to account for
nonadiabatic phonon dispersions via the calculation of the
phonon self-energy [36].

Electronic structure calculations performed in this study
are available on the NOMAD repository [92].
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APPENDIX: EQUIVALENCE BETWEEN EQS. (18)
AND (10)

In this Appendix, we show the equivalence between
Eqs. (18) and (10). For the sake of clarity, we exclude from
the discussion the terms arising from the phonons in group A.
This does not constitute a limitation, since the contribution of
these terms vanishes in the thermodynamic limit [31].

We start the derivation with the aid of Eq. (8) and observe that the ZG scattering intensity can be written as

IZG(Q, T ) =
∑
pp′

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)eiQ·[Rp−Rp′ +τκ−τκ′ ]e− 1

2

{
Q·(�τZG

pκ −�τZG
p′κ′ )

}2

. (A1)

Substituting Eq. (15) inside Eq. (A1) and performing some straightforward algebra yields

IZG(Q, T ) =
∑
pp′

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)eiQ·[Rp−Rp′ +τκ−τκ′ ]e−Wκ (Q,T ) e−Wκ′ (Q,T ) ePpp′,κκ′ (Q,T )e�pp′,κκ′ (Q,T ), (A2)

where

Ppp′,κκ ′ (Q, T ) = 2M0N−1
p√

MκMκ ′

∑
q∈B,ν

u2
qν

∑
αα′

QαQα′Re
[
eκα,ν (q)e∗

κ ′α′,ν (q)eiq·(Rp−Rp′ )
]

(A3)

and

�pp′,κκ ′ (Q, T ) = 2M0

Np

∑
αα′

QαQα′
∑

q �= q′ ∈ B
ν �= ν ′

[
− Re[eκα,ν (q)eiq·Rp]Re[eκα′,ν ′ (q′)eiq′ ·Rp]

Mκ

− κ p ↔ κ ′ p′

+ Re[eκα,ν (q)eiq·Rp]Re[e∗
κ ′α′,ν ′ (q′)eiq′ ·Rp′ ]√

MκMκ ′
+ κ p ↔ κ ′ p′

]
uqνuq′ν ′SqνSq′ν ′ . (A4)

The function �pp′,κκ ′ (Q, T ) represents the deviation from the exponents of the Debye-Waller and phononic factors. The notation
κ p ↔ κ ′ p′ indicates the previous term with the indices κ, p and κ ′, p′ interchanged. We now take the Taylor expansion of
e�pp′ ,κκ′ (Q,T ) and, for simplicity, we keep only terms up to second order in atomic displacements to obtain

IZG(Q, T ) =
∑
pp′

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)eiQ·[Rp−Rp′+τκ−τκ′ ]e−Wκ (Q,T ) e−Wκ′ (Q,T ) ePpp′,κκ′ (Q,T )

+
∑
pp′

∑
κκ ′

fκ (Q) f ∗
κ ′ (Q)eiQ·[Rp−Rp′ +τκ−τκ′ ]e−Wκ (Q,T ) e−Wκ′ (Q,T ) �pp′,κκ ′ (Q, T ). (A5)

In view of translational symmetry of the lattice, the first line of the above relation gives exactly the all-phonon term, Iall(Q, T ),
as given by Eq. (10). The second line is recognized as the leading error in the evaluation of the ZG scattering intensity. Now we
substitute Eq. (A4) into Eq. (A5), perform the summations over p and p′ using twice the relation

∑
p ei(Q−q)·Rp = Np δQ,q+G, and

apply time-reversal symmetry, i.e., IZG(Q, T ) = IZG(−Q, T ). Hence, the ZG scattering intensity simplifies to

IZG(Q, T ) = Iall(Q, T ) +
∑
κκ ′

fκ (Q) f ∗
κ ′ (Q) cos[Q · (τκ − τκ ′ )]e−Wκ (Q,T ) e−Wκ′ (Q,T ) �κκ ′ (Q, T ), (A6)

where the error term �κκ ′ (Q, T ) is given by

�κκ ′ (Q, T ) = −2
M0Np

Mκ

∑
αα′

QαQα′δQ,G

∑
q ∈ B
ν < ν ′

Re[eκα,ν (q)e∗
κα′,ν ′ (q)]uqνuqν ′SqνSqν ′

−2
M0Np

Mκ ′

∑
αα′

QαQα′δQ,G

∑
q ∈ B
ν < ν ′

Re[eκ ′α,ν (q)e∗
κ ′α′,ν ′ (q)]uqνuqν ′SqνSqν ′

+ 4
M0Np√
MκMκ ′

∑
αα′

QαQα′
∑

q ∈ B
ν < ν ′

Re[eκα,ν (q)e∗
κ ′α′,ν ′ (q)]uqνuqν ′SqνSqν ′ . (A7)
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The first and second lines of the above expression are associ-
ated with the error in the evaluation of diffuse scattering for
Q = G. By comparing now Eq. (16) with Eq. (A7), it is evi-
dent that �κκ ′ (Q, T ) is minimized together with E ({Sqν}, T )
due to the choice of signs made for the ZG displacement.
The same arguments also apply for the elimination of the

error arising beyond second order in atomic displacements,
i.e., terms including higher powers of �pp′,κκ ′ (Q, T ). This
completes the proof that Eqs. (18) and (10) are equivalent
in the thermodynamic limit. As a numerical demonstration,
in Fig. 11 we show that multiphonon contributions calculated
with Eqs. (18) and (10) are indeed identical.
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