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Exact higher-order bulk-boundary correspondence of corner-localized states
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We demonstrate that the presence of a localized state at the corner of an insulating domain is not always
a predictor nor a direct consequence of a certain nontrivial higher-order topological invariant, even though
they appear to coexist in the same Hamiltonian parameter space. Our analysis of Cn-symmetric crystalline
insulators and their multilayer stacks reveals that topological corner states are not necessarily correlated with
other well-established higher-order boundary observables, such as fractional corner charge or filling anomaly. In
a C3-symmetric breathing Kagome lattice, for example, we show that the bulk polarization, which successfully
predicts the fractional corner anomaly, fails to be the relevant topological invariant for zero-energy corner states;
instead, these corner states are explained by the decoration of topological edges. Also, while the corner states
at the interface between C4-symmetric topological crystalline insulators and their trivial counterpart have long
been reported to be the result of the bulk polarization of the lowest band, we reveal that such embedded corner
states are trivial defect states. By refining several bulk-corner correspondences in two-dimensional topological
crystalline insulators, our work motivates further development of rigorous theoretical grounds for associating the
existence of corner states with higher-order topology of host materials.
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I. INTRODUCTION

Bulk-boundary correspondence (BBC) lies at the heart
of topological physics. BBC bridges abstract mathematical
indices called topological invariants, which are calculated
from band structures of a bulk material, to physical ob-
servables at its boundary. Early efforts in establishing BBC
focused on boundaries of codimension 1 such as edges of two-
dimensional (2D) materials or surfaces of three-dimensional
(3D) materials [1–5]. Inspired by the discovery—both the-
oretical [6–11] and experimental [12–16]—of topological
materials that feature gapless states at boundaries of codi-
mension d � 2, efforts have recently been made to extend
the framework of BBC to these higher-order topological
phases [17–19].

The study of BBC sometimes takes the form of analytic
case studies with a specific form of topological invariant
[3,4,19], or relies on algebraic topology for generic classifica-
tion of bulk and boundary Hamiltonians [1,2,5,17,18]. While
the latter approach provides more comprehensive formulation
of BBC than the former does, its concern does not aim further
than identifying the classification group of Hamiltonian in
certain symmetry classes, thereby evading the task of find-
ing the actual topological invariants relevant to the boundary
signatures. For example, the algebraic knowledge of “the ho-
motopy group of unitary symmetry group is Z in 2D” [1,2]
does not reveal the definition of a relevant bulk invariant nor
the mechanism of how a certain invariant leads to boundary
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signature. In contrast, the BBC of the 2D unitary symme-
try group was undoubtedly completed by the famous work
by Thouless, Kohmoto, Nightingale, and denNijs [20] that
provided an analytic derivation on the relationship between
Chern number and the quantized Hall conductivity. Therefore,
while the algebraic classification method allows an insightful
start for the search of topological structures, rigorous BBC
cannot be established without rigorous analytic studies that
specifically address a certain pair of a bulk invariant and a
boundary signature.

As the field of higher-order topological insulators (HOTIs)
rapidly expanded, however, rigorous BBCs have often been
replaced by an implicit assumption that it suffices to show
merely that the boundary signatures (e.g., corner-localized
states) “appear at the same time” with a bulk invariant by
which the host bulk Hamiltonian can be characterized (e.g.,
bulk polarization). To be specific, the following prescriptive
framework is widely used in the field of HOTIs [21–45]:
(1) find a symmetry-protected bulk topological invariant of
a given Hamiltonian model within a certain range of pa-
rameters, (2) uncover corner-localized states for the same
parameters of the Hamiltonian as in (1), and (3) conflate (1)
and (2) because both occur for the same parameters’ range.
Because correlation does not imply causation, the above pro-
cedure does not necessarily imply that the boundary signature
has a topological origin. A physical explanation is necessary
to establish the causal relationship between bulk invariants
and the emergence of anomalous boundary properties. Oth-
erwise, a topological nature of a boundary can be attributed
to an irrelevant bulk invariant, or a trivial defect state can
be mistaken for a topological one, thereby obscuring true
BBCs.
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In this work, we address several cases of such weakly
conjectured higher-order BBC, specifically in the context
of corner-localized states and bulk polarization in 2D Cn-
symmetric topological crystalline insulators (TCIs). By intro-
ducing the multilayer stacking construction of TCIs, inspired
by Ref. [46], we clearly reveal that ZCSs in C3-symmetric
TCI (also known as breathing Kagome lattices) are not well
correlated with the bulk polarization characterized by Z3, con-
trary to many previous works that claimed BBC between ZCS
and bulk polarization in C3-symmetric TCI [21–34]. We show
that, at best, ZCSs in C3-symmetric TCI can be understood as
purely an edge effect associated with the Z2 composite Zak
phase of chiral-symmetric edge bands.

Also, we discuss the issues with the corner states in
the four-band C4-symmetric TCI model. First, we clarify
and complement the BBC regarding the ZCS in the open-
boundary—i.e., terminated with vacuum—system reported by
Refs. [47,48]. We show that, for an unambiguous BBC, it is
necessary to introduce a half corner charge index at the half
filling despite the lack of band gap at zero energy. It turns
out that the corner charge index defined at half filling (the
first and the second band altogether) becomes a proper bulk
invariant responsible for ZCSs under the presence of the chiral
symmetry and the reflection symmetry. Second, we reveal that
the corner states, which appear at 90◦-cornered interfaces be-
tween topological and trivial domains, are trivial defect states
without any topological origin, while many previous studies
regarding this C4-symmetric TCI model [35–43] suggested
BBC between these embedded corner states and the bulk
polarization of the lowest energy band because they appear
at the band gap right above the lowest band. The underlying
theory work [35] of those studies explicitly claimed such
correspondence between the embedded corner states at the
embedded-boundary and the ZCS in the open-boundary sys-
tem. However, we show that the counterpart zero-energy state
in the embedded-boundary system exists as a state delocalized
in the outer domain, and the trivial embedded corner states
at the band gap above the lowest band can be independently
made to disappear by a local perturbation that respects all
essential symmetries of the system (C4v and chiral symmetry).
These examples clearly demonstrate that a precise formula-
tion of BBC requires more than simply identifying the phase
diagrams of a bulk invariant and a boundary state.

To set some good examples on the contrary, we briefly
review several well-established BBCs. A classic example is
the forementioned correspondence between the Hall conduc-
tivity (a surface effect) and Chern number (a bulk topological
index). The two are directly related through an analytic
expression [20]. Because conduction cannot occur in an in-
sulating bulk, nonzero Hall conductivity in a Chern insulator
must indicate metallic channels on its edge or, in other words,
gapless edge states [49]. Another analytically straightfor-
ward BBC is found between fractional edge charge and bulk
polarization in a one-dimensional (1D) TCI [50], i.e., the
Su-Schrieffer-Heeger (SSH) model. Recent works [11,46] es-
tablished higher-order versions of similar correspondences in
2D TCIs by explicitly constructing bulk invariants for frac-
tional corner charges. Even though these boundary anomalies
in the form of fractional charge excess/deficit have yet to be
incorporated in the framework of the algebraic classification

FIG. 1. Venn diagram classification of crystalline insulators in
regard to the existence of nonzero p or Qc and the existence of ZCSs.
(I) A class of models that support both nontrivial bulk higher-order
topology and ZCSs, (II) support nonzero p or Qc only, but no ZCSs,
and (III) support ZCSs despite trivial bulk topology.

method [18], they have recently attracted attention as alterna-
tive observables of higher-order topology [51].

Our key message is that, unlike the above-mentioned non-
vanishing Chern number being a necessary and sufficient
condition for the existence of gapless edge states under a
clear BBC [20,49], nontrivial bulk polarization p or secondary
topological index for corner charge Qc [46] are not always
sufficient or necessary for the existence of corner states, even
though they appear to coexist in some systems. As recently
pointed out [46,51], the observables in a straightforward BBC
with p or Qc are fractional corner or edge charge anomalies.
Therefore, the treatment of BBC regarding the corner states
requires extra caution. The Venn diagram shown in Fig. 1
schematically illustrates our key result: a ZCS might not exist
despite nontrivial p and Qc (classification set II) or a ZCS
can arise despite vanishing p and Qc (classification set III).
Figures 2(a) and 2(b) depict C3- and C4-symmetric crystalline
insulators, respectively, that are used as exemplary models
to support our key results, and Table I summarizes various
C3- and C4-symmetric Hamiltonian models according to each
classification category defined in Fig. 1. In Table I and Fig. 1,
C3-symmetric models that belong to set I are (6N − 5)- or
(6N − 1)-layer stacking of the h(3) model given in Fig. 2(a)
with |t | < |λ|, as these stacked models possess nonzero bulk
polarization and ZCSs. (6N − 4)- or (6N − 2)-layer stacking
of the h(3)(|t | < |λ|) model belong to set II, as these stacked
models possess nonzero p but do not exhibit ZCSs. On the
contrary, (6N − 3)-layer stacking of the h(3)(|t | < |λ|) model
belong to set III, as these stacked models possess ZCSs de-
spite vanishing p. Therefore, it is clear that the BBC for
ZCSs C3-symmetric models cannot be explained by the bulk
polarization. For C4-symmetric models, the h(4) model given

FIG. 2. (a) C3-symmetric crystalline insulator model h(3); t and
λ are the nearest-neighbor coupling within and across unit cells,
respectively. (b) C4-symmetric crystalline insulator model h(4); g is
the next-nearest-neighbor coupling across diagonally adjacent unit
cells. (c) N-layer stacking of a Hamiltonian model h, ⊕N h; γ denotes
the interlayer coupling strength.
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TABLE I. Hamiltonian models of C3- and C4-symmetric insula-
tors for each classification set introduced in Fig. 1.

C3-symm. models C4-symm. models

I ⊕1,5,7,11,...h(3)(|t | < |λ|) h(4)(|t | < |λ|; g = 0)
II ⊕2,4,8,10,...h(3)(|t | < |λ|) h(4)(|t | < |λ|; g �= 0)
III ⊕3,9,15,...h(3)(|t | < |λ|)

in Fig. 2(b) with |t | < |λ| and g = 0 possesses ZCSs along
with nonzero p and Qc, thereby belonging to set I. But, the
h(4)(|t | < |λ|) model with nonzero g loses the ZCSs due to the
lack of chiral symmetry despite carrying the same p and Qc

to the vanishing g case. Each Hamiltonian model element in
Table I is discussed in more details in the following sections.

II. STACKING OPERATION

We introduce the stacking operation ⊕ between two crys-
talline insulators h1 and h2, as defined in Ref. [46]:

h1 ⊕ h2 =
[

h1 γ

γ † h2

]
, (1)

where γ describes the nearest-neighbor coupling between ad-
jacent layers. The strength of interlayer coupling is set to be
reasonably small so that the shared band gap of h1,2 is not
closed. We denote an N layer stack of h as ⊕N h, as depicted
in Fig. 2(c). This operation allows us to easily access other
topologically distinct phases, as the topological indices of a
stacked insulator are simply given as an addition of those in
each layer [46]; for example,

ph1⊕h2 ≡ ph1 + ph2 (mod {R}), (2)

where the composite polarization p (normalized to a unit
charge) is evaluated in each model for all bands below the
shared band gap of interest, and is given in modulo the set
of primitive lattice vectors {R}. The same relation holds for
Qc as well in modulo unit charge. The stacking operation
defined here in Eq. (1) and its property in Eq. (2) turn out to
be extremely useful in constructing case models that belong
to each category of the Venn diagram in Fig. 1, especially for
C3-symmetric crystalline insulators as shown in Table I.

III. ZCS IN C3-SYMMETRIC TCI AS BOUNDARY
TOPOLOGICAL EFFECTS

Now, we consider the example model h(3) in Fig. 2(a),
also known as a breathing Kagome lattice, with threefold
rotational C3 symmetry. When the nearest-neighbor coupling
strengths across unit cells, λ, are greater than those within
unit cells, t , the considered model is known to carry a ZCS
emerging at every 60◦-angled corner of a type with a single
cornermost sublattice, as depicted in Fig. 3(a) (another type
of 60◦-angled corner with two cornermost sublattices does
not support ZCSs). The same condition |t | < |λ| produces
nonzero bulk polarization p(1) = 2

3 R1 + 2
3 R2 in the lowest en-

ergy band [22–24,46], which is separated from the second and
third bands by a band gap; see Fig. 3(b). Figure 3(c) illustrates
that each Wannier center is displaced from the origin of each
unit cell by bulk polarization vector p(1), and therefore located

FIG. 3. (a) 60◦-angled corner with a single cornermost sublat-
tice. (b) Band structure of h(3); t = −0.25 and λ = −1. (c) Charge
distribution around a 60◦-angled corner at 1

3 filling (up to the first
band only); turquoise circles denote the Wannier centers displaced
by p = 2

3 R1 + 2
3 R2 from the unit cell centers. (d) Eigenspectra of a

finite-sized system (190 unit cells) with open boundaries of triangular
termination like in (a); corner-localized modes are highlighted as
dark red dots. (e) Field profile of a ZCS; the area of black circles are
proportional to the wave function amplitude. (f) Edge dispersion of
nanoribbon structure with an edge termination like one of the edges
in (a); the edge localized band is colored red along with its inversion
eigenvalues at high symmetry points.

at the junction vertice of three adjacent hexagonal unit cells.
Thus, in the limit of |t | � |λ| (i.e., the localization length of
Wannier function is much smaller than the unit cell size),
a unit cell gains fractional charge of 1

3 from each Wannier
center in contact, when the lowest energy band is occupied.
For example, the cornermost unit cell carries no charge ρ = 0
as there is no Wannier center in contact, each unit cell along
both edges carries a fractional charge of ρ = 1

3 as there is a
Wannier center in contact, and each unit cell in the bulk carries
a whole charge ρ ≡ 0 (mod 1) as there are three Wannier
centers in contact. From this observation, it has been recently
established that nonzero bulk polarization in h(3) gives rise to
a higher-order topological observable called fractional corner
anomaly (FCA) φ = ρcorner − ρedge1 − ρedge2 = 0 − 1

3 − 1
3 ≡

1
3 (mod 1) [51]. Note that FCA is nonvanishing even in the
absence of corner charge ρcorner = Qc.

Regarding the existence of a ZCS shown in Figs. 3(d)
and 3(e), many previous works [21–34] labeled the ZCS
to be higher-order-topological merely due to its coexis-
tence with the bulk polarization p(1) in the Hamiltonian
parameter space (|t | < |λ|). This conjecture, however, is dis-
proved by our analysis of multilayer stacking constructions
of ⊕1,2,3,...h(3)(|t | < |λ|) described below. Instead, we prove
that the existence of a ZCS is a result of topological Zak
phase of the edge localized band. Figure 3(f) shows the band
dispersion of 1D-periodic nanoribbon structure terminated by
an edge shown in Fig. 3(a), where the red line denotes an
edge-localized band. This edge band carries the inversion
eigenvalues of +1 at k1d = 0 and −1 at k1d = π , thereby
featuring a Zak phase of θ

edge
Z = π [50] (or polarization of 1

2
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[11]). The energy dispersion of this band follows E (k1d ) =
−

√
t2 + λ2 + 2tλ cos(k1d ), which is reminiscent of a 1D

chiral-symmetric SSH chain [50]. In fact, the chiral partner
band of this edge band in Fig. 3(d) does not stand out since
it is hybridized with other bulk bands at positive energy. The
detailed discussion on how this edge-localized band is exactly
mapped onto a 1D chiral-symmetric SSH chain is provided in
the Appendix.

In what follows, we analyze the multilayer stacks of
h(3)(|t | < |λ|) to show that the existence of ZCSs of a breath-
ing Kagome lattice is correlated with neither finite bulk
polarization nor with finite FCA. Such correlation has been
widely assumed because the existence conditions |t | < |λ|
for ZCSs and nonzero p appear to coincide with each other
[22–24]. Bilayer and trilayer stacks of h(3)(|t | < |λ|), accord-
ing to Eq. (2), carry the bulk polarization of p(2) ≡ 2p(1) ≡
1
3 R1 + 1

3 R2 and p(3) ≡ 3p(1) ≡ 0, respectively. Thus, based
on their bulk polarization, ⊕2h(3) is classified as topologi-
cally nontrivial and ⊕3h(3) as trivial. This distinction will
indeed physically manifest in their FCA; φ = 2

3 for ⊕2h(3) and
φ = 0 for ⊕3h(3). Therefore, if the presence of a ZCS were
predicated on the finite FCA, we would expect that ⊕2h(3)

should possess a ZCS, while ⊕3h(3) should not. Remarkably,
the opposite is true, as observed from Figs. 4(a) and 4(b).
Furthermore, the quad-layer stack ⊕4h(3) shares exactly the
same bulk polarization p(4) ≡ 4p(1) ≡ p(1) and FCA φ = 1

3
with the original monolayer structure h(3) that supports ZCSs,
but ⊕4h(3) does not support a ZCS as shown in Fig. 4(c).

On the other hand, the composite Zak phase of the edge-
localized bands in those structures, as shown in Figs. 4(d)–
4(f), predicts well the existence of ZCSs. In the presence
of multiple bands below a certain band gap of interest, the
existence of a midgap boundary/dislocation state in 1D sys-
tems is determined by the composite Zak phase of all bands
below the band gap [52,53]. Thus we find that a stack with
an even number of layers features vanishing θ

edge
Z = 0 (mod

2π ) and a stack with an odd number of layers has nontrivial
θ

edge
Z = π . Accordingly, we observe the ZCSs in odd-layer

stacks, but not in even-layer stacks. We note that there exist
two corner-localized states in the bilayer stack structure as
well, but they are not pinned at zero energy. Their spectral
positions are at E = ±γ , where γ is the interlayer coupling
strength. Consequently, these corner states are not spectrally
stable against perturbations in γ (e.g., vertical compression).
Similarly, the trilayer stack also carries two spectrally unstable
corner states at E = ±√

2γ other than the ZCS. The spectral
shifts of these corner states with respect to the change in γ is
drawn in Fig. 4(g).

In general, ⊕N h(3)(|t | < |λ|) carries N corner-localized
states and one of them becomes a ZCS with topological
spectral pinning, when N is an odd number. Therefore, it is
clear that the existence of ZCSs is determined not by Z3 bulk
polarization, but by Z2 edge band Zak phase. To be specific,
a corner acts as a termination to each of two edge-localized
SSH chains, and each topological (θ edge

Z = π ) SSH chain
is expected to support a zero-energy state localized at the
termination: |v1〉 = ∑

n,m�0[βb→e
1 ]n[βe→c

1 ]m |A; nR1 + mR2〉
and |v2〉 = ∑

n,m�0[βb→e
2 ]n[βe→c

2 ]m |A; nR2 + mR1〉. Here, A
is the sublattice index of the cornermost sublattice, |A; R〉

FIG. 4. (a)–(c) Eigenspectra of a finite-sized system—190 unit
cells as in Fig. 3(d)—of the bi-, tri-, and quad-layer stacked structures
of h(3) (t = −0.25, λ = −1), respectively, with the interlayer cou-
pling strength of γ = −0.3; corner-localized modes are highlighted
as dark red dots. (d)–(f) Edge dispersion of nanoribbon structure
of bi-, tri-, and quad-layer structures, respectively, as in Fig. 3(f);
the composite Zak phases of the edge-localized bands (dark red)
are denoted together. (g) Energies of all corner-localized states in
bi- (dashed green), tri- (solid blue), and quad-layer (dot/dashed
orange) structures as a function of γ . (h) At the corner, each of
two edge-localized SSH chains (i = 1, 2) supports a zero-energy
termination-localized state, where it is localized along the edge with
the edge-to-corner localization factor βe→c

i and localized with respect
to the bulk with the bulk-to-edge localization factor βb→e

i . These
two states coalesce to each other as βb→e

1 = βe→c
2 and βb→e

2 = βe→c
1 ,

giving rise to a ZCS to the bulk Hamiltonian.

is the basis vector that occupies the sublattice A in the
unit cell located at position R, and βb→e

i /βe→c
i is the

bulk-to-edge/edge-to-corner localization factor as depicted in
Fig. 4(h). It turns out that these two localized states from
each edge coalesce |v1〉 = |v2〉, as the bulk-to-edge localiza-
tion factor of an edge matches exactly to the edge-to-corner
localization factor of the other edge: βb→e

1 = βe→c
2 = −t/λ

and βb→e
2 = βe→c

1 = −t/λ.
Lastly, we show that ZCSs still arise in a breathing

Kagome lattice, when there is no bulk crystalline symmetry.
Figure 5 clearly demonstrates that ZCSs are well preserved
even though hopping strengths are all different for three sides
and C3-rotational and mirror symmetries are broken. Like
this case where we observe edge-induced corner states with-
out any connection to bulk properties, several recent works
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FIG. 5. (a) Breathing Kagome lattice without any bulk crys-
talline (C3 nor mirror) symmetries. (b) Eigenspectra of a finite-sized
system—190 unit cells as in Fig. 3(d)– -with t1 = −0.5, λ1 = −0.9,
t2 = −0.3, λ2 = −1, t3 = −0.1, and λ3 = −0.4. (c) Field profiles of
ZCSs at each corner.

have similarly identified higher-order topological signatures
stemming from boundary (not bulk) topology in the lan-
guage of decoration subgroups [18] or embedded topological
insulators [54].

IV. ZCS IN C4-SYMMETRIC TCI
WITH OPEN BOUNDARIES

Next, we consider the example model h(4) in Fig. 2(b) with
fourfold rotational C4 symmetry. Before we address the main
issue of the embedded corner states that arise at the 90◦-
cornered embedded-boundary between the trivial (|t | > |λ|)
and the topological (|t | < |λ|) domains, we first investigate the
ZCS in the open-boundary system. For the ZCS in the open-
boundary system of the C4-symmetric TCI model h(4)(|t | <

|λ|; g = 0), we establish an alternative BBC that complements
the study presented in Refs. [47,48]. References [47,48] report
that the reflection symmetry (thus C4v symmetry along with
the underlying rotational symmetry) and the chiral symmetry
prevent the inseparable hybridization of the corner state and
the bulk states at the zero energy, allowing the well-localized
ZCS to exist as a bound state in continuum. The proof given
in Ref. [47] starts by assuming the existence of a zero-energy
eigenstate that consists of a corner-localized part and a bulk
part, and proves that the bulk part is trivially separable un-
der C4v and chiral symmetries. Their initial assumption of
the existence of such a zero-energy eigenstate with corner-
concentrated (even though not fully localized) distribution,
however, eventually relies on the phenomenological observa-
tion of the corner density of state being peaked at the zero
energy, rather than being unambiguously explained through
topological effects, for the following reasons.

As shown in Fig. 6(a), the h(4)(|t | < |λ|; g = 0) model has
no band gap at half filling; in other words, the second and
the third band touch at zero energy. Thus the higher-order
topology of this system has been described by the corner
charge index of the first band, the middle two bands together,
and the fourth band: Qc = (− 1

4 , 1
2 ,− 1

4 ) mod 1. An important
thing to note is that this topological corner charge index is
always given in modulo 1, and Qc = 1

2 can manifest either
as an excess charge of + 1

2 or as a deficit charge of − 1
2 in

the open-boundary system. The presence of a corner-localized
state can be unambiguously predicted only with the prior
knowledge that all Qc manifests as a deficit charge, thereby
requiring a whole charge compensation by a corner state.

FIG. 6. (a) Band structure of h(4) along with C4-rotation eigenval-
ues at 	 and M; t = −0.25, λ = −1, and g = 0. (b) Staggering phase
flux of θ realizes a quadrupole insulator, and the same structure in
(a) is viewed as a zero-flux limit (θ → 0) of a quadrupole insulator;
the C4-rotation eigenvalues at 	 and M for the second and third bands
are assigned differently. (c) Charge distribution around a corner at
quarter filling (the first band only); turquoise circles are Wannier cen-
ters. (d) Charge distribution around a corner at half filling (up to the
second band); two Wannier centers are overlapping at each position.
(e) Eigenspectra of a finite-sized system with open boundaries (12
by 12 unit cells); the corner modes are marked as dark red dots. (f) A
uniform on-site loss of δ = −0.05 was applied to a open-boundary
domain of 12 × 12 unit cells except at each 2 × 2 corner unit cell. (g)
Resulting eigenvalues in a complex energy plane. (h) Field profile of
the corner modes marked as dark red dots in (f) and (h).

Since the middle two bands are grouped together, however,
the bit of information Qc = 1

2 itself cannot tell any specific
arrangement of eigenstates at the zero energy.

Even with the chiral symmetry, at best we know that the
half charge of two middle bands should be split into two
quarters with respect to the zero energy, but still, before diag-
onalizing the finite system, there is no way to predict whether
the split quarter charge for the second and the third bands
will be − 1

4 or + 1
4 mod 1. If the split charges are − 1

4 —Qc =
(− 1

4 ,− 1
4 ,− 1

4 ,− 1
4 )—under the chiral symmetry, all Qc need

to manifest as charge deficits. Otherwise, the charge neutrality
of the entire system cannot be met due to a pair (by chiral
symmetry) of charge excess of + 3

4 ; there will be + 3
4 × 2 −

1
4 × 2 = +1 excess charge, even if the other pair comes in
the deficit of − 1

4 . Thus, in this case, a ZCS is guaranteed.
If the split charges are + 1

4 —Qc = (− 1
4 ,+ 1

4 ,+ 1
4 ,− 1

4 )—
under the chiral symmetry, however, a ZCS cannot exist.
Therefore, the presence of the ZCS cannot be predicted di-
rectly out of Qc = (− 1

4 , 1
2 ,− 1

4 ) mod 1, as there is the latter
possibility.
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In order to resolve this ambiguity, we demonstrate that a
half corner charge Qc = 1

2 is well defined at half filling for
the first and the second band considered together, even though
the system is gapless at zero energy between the second
and the third band. In a time-reversal- and C4-symmetric
crystalline insulator, the following expressions can be used to
determine its topological indices [46]:

p = 1
2

[
X(2)

+1

]
(x̂ + ŷ) (mod {x̂, ŷ}), (3a)

Qc = 1
4

([
X(2)

+1

] + 2
[
M(4)

+1

] + 3
[
M(4)

+i

])
(mod 1), (3b)

where [k(n)
p ] ≡ #k(n)

p − #�(n)
p , and #k(n)

p refers to the number
of eigenstates with Cn-rotation eigenvalue p at a Cn-rotational
invariant momentum k. The eigenstates are counted from
the lowest propagation band up to the band of interest. For
example, in h(4)(|t | < |λ|; g = 0), the C2-rotation eigenvalues
are (−1,+1,+1,−1) at X and (+1,−1,−1,+1) at � in
order from the lowest band to the fourth band. Then, we
get [X(2)

+1] = #X(2)
+1 − #�

(2)
+1 = 0 − 1 = −1 for the lowest band

only and [X(2)
+1] = 1 − 1 = 0 for the first two bands together.

Thus, according to Eq. (3a), the lowest band carries a nonzero
bulk polarization of p = 1

2 (x̂ + ŷ), but the first two bands
together feature vanishing polarization p = 0.

Figure 6(a) depicts the band structure of the h(4)(|t | <

|λ|; g = 0) model along with C4-rotation eigenvalues at M and
at �. At M and �, the second and third bands are degenerate at
zero energy. As these degenerate modes have different eigen-
values ±i, there arises an ambiguity of whether we assign +i
or −i to the C4-rotation eigenvalue of the second band. This
ambiguity, however, can be lifted up partially by the time-
reversal symmetry, which enforces [M(4)

+i ] = [M(4)
−i ] (see the

Supplemental Material of Ref. [46]), that we should choose
the same values at M and at �. Without loss of generality,
−i is assigned to the second band, see Fig. 6(a), which gives
[M(4)

+i ] = 1 − 1 = 0 for the first two bands. Then, along with
[X(2)

+1] = 0 and [M(4)
+1] = −1, Eq. (3b) yields a half corner

charge Qc = 1
2 for the first two bands.

Another way of interpreting this half charge is to consider
this C4-symmetric TCI model as a quadrupole insulator in a
zero flux limit. A phase flux of θ can be achieved by complex
tight-binding parameters [t, λ] → [t, λ] × e+iθ/4(×e−iθ/4) for
hopping along (against) the direction of arrows illustrated in
Fig. 6(b). Any finite phase flux upon a cyclic hopping opens
a complete band gap between the second and the third band,
while maintaining the chiral symmetry [16]. In this setting,
the C4-rotation eigenvalue of the second band at M, +i, is
different from that at �, −i, as shown in Fig. 6(c). While we
cannot apply Eq. (3) any longer as the time-reversal symmetry
is broken due to the finite flux, the quadrupole moment qxy can
be evaluated as

ei2πqxy = r+
4 (M)r+

4 (�)∗ = r−
4 (M)r−

4 (�)∗, (4)

where r±
4 (k) is the C4-rotation eigenvalue at k = M/�

that satisfies r±
4 (k)2 = ±1 [11,55]. From Fig. 5(c), we get

r+
4 (M) = −1, r+

4 (�) = +1, r−
4 (M) = +i, r−

4 (�) = −i, and
therefore qxy = Qc = 1

2 [11].
Figure 6(c) shows the location of Wannier centers p =

1
2 (x̂ + ŷ) and the resulting charge distribution (in modulo unit
charge) at quarter filling (when the lowest energy band is

filled) in the limit of |t | � |λ| [46]. This quarter-filled con-
figuration features edge charge density of 1

2 per unit cell and
FCA of φ = − 1

4 [51]. At half filling (when the first two bands
are filled), we have provided two different perspectives—(1)
enforcing time-reversal symmetry or (2) treating the system as
a time-reversal-broken quadrupole insulator with infinitesimal
band gap—that a corner charge index Qc = 1

2 can still be
well-defined despite the lack of a band gap at zero energy. The
resulting charge distribution at half filling (up to the second
band) drawn in Fig. 6(d) shows a half corner charge and
vanishing edge charge, as two overlapping Wannier centers
from the first and second bands cancel the contribution to bulk
polarization from each other.

Now that we have established a proper invariant Qc = 1
2 at

half filling, we investigate the crucial role of the chiral sym-
metry at half filling for the existence of ZCSs. It is well studied
in various systems [7,8,11,13–16,46,56] that the combination
of a half fractional corner charge and the chiral symmetry
guarantees a ZCS. If the bands below zero energy carry a
half charge at a corner, the chiral symmetry ensures that the
bands above zero energy also carry a half charge at the corner.
Since the integration of the local density of states over energy
must be equal to the number of bands at each unit cell (i.e.,
charge neutrality), the fractional corner charge in this case
cannot be a charge excess as it implies that the integration
at the corner unit cell exceeds the number of bands. Thus
two half charge deficits, each from the lower and the upper
bands, requires the existence of a corner state to compensate
for a total whole charge deficit, and this corner state should be
pinned at zero energy due to the chiral symmetry. This BBC
based on Qc = 1

2 at half filling and the chiral symmetry does
not leave any ambiguity that we discussed in the beginning of
this section regarding the BBC based on the lumped treatment
of the second and the third band.

We note that, due to the lack of band gap at zero energy, the
reflection symmetry (C4v) is additionally required to ensure
that the predicted ZCS is immune to inseparable hybridization
with the bulk states at the zero energy [47]. Without the
reflection symmetry, even though our BBC still predicts the
existence of a set of corner-loaded states at or around zero
energy that compensates the corner charge deficit, these states
may leak into the bulk continuum. Also, our approach to
define a topological invariant at the half filling works only
because the second and the third band simply touch each
other at zero energy and do not overlap with each other in a
finite energy range. This nonoverlapping band touch is in fact
ensured by the chiral symmetry, which enforces the energy
range of the second (third) band to be strictly less (greater)
than or equal to zero energy.

The chiral symmetry in C4-symmetric TCI is given as S =
diag[1,−1, 1,−1], where the four sublattices are indexed in a
clockwise order, and its presence Sh(4)S−1 = −h(4) gives rise
to a band structure that is mirror symmetric with respect to
the zero energy as shown in Figs. 6(a) and 6(b). Since we
have a half-corner charge and the chiral symmetry, a ZCS is
expected to arise. Figure 6(e) shows that the expected ZCS is
embedded in the bulk continuum due to the absence of a band
gap at zero energy. In order to avoid numerical complication
that the ZCS wave function gets generally mixed with other
degenerate bulk states, we adopt the method used in Ref. [47]:
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FIG. 7. (a) Band structure of a chiral-symmetry-broken h(4)

structure along with C4-rotation eigenvalues at 	 and M; t = −0.25,
λ = −1, and g = −0.3. (b) Eigenvalues in a complex energy plane
obtained by using the same setting described in Fig. 6(f). (c) Field
profile of the modes marked as dark red dots in (b). (d) Zoom on one
of the quadrants of (c). (e) Zoom on one of the quadrants of a ZCS
wave function, Fig. 6(h). (f) Average wave function amplitude |ψ |2
in a unit cell as a function of the number of grid steps (x + y) from
the cornermost unit cell.

as shown in Fig. 6(f), we introduced a uniform loss of iδ
(δ = −0.05) in the system except at small subsystems (2 × 2
unit cell) at each corner. Then, the corner-localized states
will be easily identified, as their imaginary part of eigenvalue
becomes much smaller than other bulk modes; see Fig. 6(g).
As expected, Fig. 6(h) clearly shows the wave function of a
truly corner-localized zero energy state at each corner.

The diagonal hopping across diagonally adjacent unit cells
g, see Fig. 2(b), can be used to remove the chiral symmetry
while preserving C4v symmetry. Since C4 symmetry is pre-
served, the perturbed structure with a finite g still inherits
the same C4- and C2-rotation eigenvalues for the modes at
rotation-invariant momenta, given that g is not too large to
cause band inversion. In other words, a moderate strength of
g does not change bulk topological invariants p and Qc that
are discussed in the previous section. Figure 7(a) shows that
a finite g breaks the chiral symmetry, as seen in the band
structure that is not mirror symmetric around the zero energy.
Then, we observe that the modes that were ZCSs with g = 0
now get hybridized with the bulk continuum due to broken
chiral symmetry. A detailed analysis on how this hybridization
occurs as a result of chiral symmetry breaking is provided
in Ref. [47]. Figures 7(c)–7(f) show that the wave function
amplitude of these hybridized modes remains finite in the
bulk unlike the true ZCS wave function which decays expo-
nentially from the corner. This observation verifies that the
presence of the chiral symmetry with respect to zero energy
plays a pivotal role in the existence of a ZCS, in agreement
both with Ref. [47] and our BBC established above.

V. C4-SYMMETRIC TCI WITH EMBEDDED BOUNDARIES

As we discussed earlier, there have been several works that
studied the corner states in C4 TCI at an embedded corner

FIG. 8. (a) Embedded corner between a topological domain and
a trivial domain; λemb refers to the coupling strength of the hopping
across the domains. (b) Spectral flow, with varying λemb, of the
embedded structure with a finite size (10 by 10 unit cells of the
topological domain surrounded by the trivial domain of 5 unit-cell-
long thickness); the green areas refer to bulk modes, the blue lines are
edge(domain wall)-localized modes, and the dark red lines denote the
corner localized states. (c) Similar to Fig. 6(f), a uniform on-site loss
of δ is introduced except around the embedded corner. (d) Resulting
complex eigenvalues with λemb = −0.64. (e) Complex eigenvalues
with λemb = −0.31. (f) Field profile of the embedded corner state
[marked as a red diamond in (d)]. (g), (h) Field profile of ZCSs
delocalized toward the outer trivial domain [marked as dark red dots
in (d), (e)].

interfaced with a surrounding trivial domain [35–43], where
these corner states emerge in the band gap between the first
and the second bands instead of at zero energy. These stud-
ies labeled such corner states to be second-order topological
simply because the nonzero bulk polarization coappears with
the corner states, or conflated the origin of their corner state
with that of the topological ZCS studied in this work without
enough justification [35]. Here, however, we provide a de-
tailed explanation on why the embedded corner states reported
in Refs. [35–43] are trivial defect states, sharing no common-
ality in their formation mechanism with the ZCS studied in
the previous section and in Refs. [47,48].

Figure 8(a) depicts the geometry of the topological domain
(|t | = 0.25 < |λ| = 1) interfacing with the trivial domain
(|t | = 1 > |λ| = 0.25) around an embedded corner. Naturally,
the coupling strength of the hopping across the domains, λemb,
would be given as a free parameter, which is determined by the
microscopic details of the system and not by any topological
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effects. In the ring-resonator-based [13] or circuit-based [14]
waveguide flatforms, the system can be designed for any arbi-
trary strength of interdomain coupling λemb. In the photonic
crystal structures with subwavelength periodicities [35,36],
we can reasonably expect that the strength of λemb would fall
in the range between two λ values in the trivial domain and
the topological domain.

In Fig. 8(b), we computed the spectral flow of the em-
bedded structure with a finite size, as λemb is varied between
−1 (λ in the topological domain) and −0.25 (λ in the trivial
domain). The red curves correspond to the embedded corner
state predicted and observed in Refs. [35–43]. In a certain
range (|λemb| < 0.4 in this example), these embedded corner
states are completely lost, even though C4v symmetries of
each bulk domain, the bulk polarization of each domain, and
the chiral symmetry of the entire system are not changing.
Figures 8(d) and 8(e) also depict that these states (red
diamond) are not topologically protected in their spectral po-
sitions, get drifted, and disappear as λemb varies. Note that
we did not even resort to any extreme or artificial choice in
the value of λemb in order to demonstrate the fragility of this
embedded corner state; as stated above, we only considered
the range of λemb to fall between two λ values in the trivial
domain and the topological domain. Therefore, these states
are trivial defect states, not protected by any crystalline sym-
metries nor by the bulk polarization. In fact, the field profile of
this embedded-corner state calculated from our tight-binding
model, see Fig. 8(f), is nearly identical to the field profiles
reported in the above-mentioned works [35–43]. Figures 8(f)
and 8(g) then show the field profile of the zero-energy states
that correspond to the ZCSs in the open-boundary system.
These states reduce back to the ZCSs in Fig. 6(h) in the
limit of λemb → 0. Because the outer domain is also gapless
around the zero energy, the ZCS of the inner domain appears
as delocalized toward the outer trivial domain, even though it
remains exponentially localized toward the inner topological
domain.

VI. CONCLUSION

In conclusion, we addressed that a topological correspon-
dence between a corner state and a nontrivial bulk invariant
should be claimed by a physical argument (e.g., a half
charge with chiral symmetry), but not by coincidence of
their existence conditions in terms of the Hamiltonian pa-
rameters. We revealed that the corner states that claimed to
be second-order topological in the above-mentioned works
regarding the breathing Kagome lattice [21–34] or regard-
ing the two-dimensional SSH model [35–43] turn out to
have no connection to any bulk topology despite the shared
phase boundaries in the Hamiltonian parameter spaces with
the bulk polarization. Therefore, our examples in these
two-dimensional C3- and C4-symmetric crystalline insulators
clearly demonstrated that the bulk polarization, which has a
well-established causal relationship with the fractional corner
charge anomaly, cannot be attributed to the emergence of the
corner states at zero energy in general. In addition, we refined
the bulk-corner correspondences for the corner states in these
examples by identifying other topological invariants that are
truly responsible for the corner state formation.
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APPENDIX

Exact mapping of the edge-localized band in Fig. 3(f)
onto a chiral-symmetric SSH chain

Here we show how the edge-localized band of a 1D-
periodic nanoribbon structure out of a breathing Kagome
lattice can be exactly mapped onto a chiral-symmetric 1D
SSH model. We also explain why the chiral-partner band does
not appear in the same band structure.

The 1D SSH model is described by the following
Hamiltonian:

HSSH =
∑
n∈Z

(t ĉ†
A,nR1

ĉB,nR1 + λĉ†
A,nR1

ĉB,(n−1)R1 + c.c.), (A1)

where R1 is the primitive lattice vector and ĉA/B,R and ĉ†
A/B,R

are the annihilation and creation operators for the sublattice
A/B in the unit cell located at R. By introducing the mo-
mentum space operators, ĉA/B,k1d = 1√

L

∑
n∈Z e−ink1d ĉA/B,nR1

(L: the total length of SSH chain; k1d = k · R1, where k is
the Bloch momentum), we can obtain the momentum space
Hamiltonian H (k1d ):

HSSH =
∑

k1d ∈[−π,π )

[
ĉ†

A,k1d
ĉ†

B,k1d

]
H (k1d )

[
ĉA,k1d

ĉB,k1d

]
, (A2a)

H (k1d ) =
[

0 t + λ e−ik1d

t + λ eik1d 0

]
. (A2b)

This Hamiltonian in Eq. (A2b) is solved H (k1d )�v± = E±�v± as
below:

E±(k1d ) = ±sgn(t )
√

t2 + λ2 + 2tλ cos(k1d ), (A3a)

�v±(k1d ) = 1√
2

[α±(k1d )1]†
, (A3b)

α±(k1d ) = ±
√

|t | + |λ|eik1d√
|t | + |λ|e−ik1d

. (A3c)

Therefore, we get the following eigenbasis of HSSH:
HSSH |k1d ; ±〉 = E±(k1d ) |k1d ; ±〉, where

|k1d ; ±〉 = 1√
2

[α±(k1d )ĉ†
A,k1d

+ ĉ†
B,k1d

] |vac〉 . (A4)

Now, let us turn to the breathing Kagome lattice shown
in Fig. 2(a). Consider edge-localized modes along an edge
terminated by the side parallel to R1 drawn in Fig. 3(a).
Let us label the two sublattices along the terminated edge
as A and B, and the other third sublattice as C. Then, the
Hamiltonian for this edge-terminated Kagome lattice is given
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FIG. 9. β±(k1d) in Eq. (A7) calculated (a) with t = −0.25 and
λ = −1 and (b) with t = −1 and λ = −0.25. (c) Edge dispersion
with t = −1 and λ = −0.25 of nanoribbon structure with an edge
termination like one of the edges in Fig. 3(a); the edge localized band
is colored red along with its inversion eigenvalues at high symmetry
points.

as

Hedge =
∑

n∈Z,m�0

(t ĉ†
A,nR1+mR2

ĉB,nR1+mR2

+ t ĉ†
B,nR1+mR2

ĉC,nR1+mR2

+ t ĉ†
C,nR1+mR2

ĉA,nR1+mR2

+ λĉ†
A,nR1+mR2

ĉB,(n−1)R1+mR2

+ λĉ†
B,nR1+(m+1)R2

ĉC,(n+1)R1+mR2

+ λĉ†
C,nR1+mR2

ĉA,nR1+(m+1)R2 + c.c.), (A5)

where R2 is the other primitive lattice vector that is not paral-
lel to the terminated edge; see Fig. 3(a). In order to map these
edge-localized modes to 1D SSH eigenstates in Eq. (A4), let
us take the following ansatz:

|k1d ; ±〉 = [α±(k1d )ĉ†
A,k1d ;± + ĉ†

B,k1d ;±] |vac〉 , (A6a)

ĉA/B,k1d ;± =
∑

n∈Z,m�0

[β±(k1d )]me−ink1d ĉA/B,nR1+mR2 . (A6b)

Here, α±(k1d ) takes the same expression to Eq. (A3c) and
β±(k1d ) signifies the edge localization. A proper normal-
ization factor is not considered in Eqs. (A6) for now, but
this does not affect any of the following discussions. As we
enforce Hedge |k1d ; ±〉 = E±(k1d ) |k1d ; ±〉, the wave function
amplitudes on every sublattice C are required to vanish and
we obtain the following expression for the edge localization
factor:

β±(k1d ) = t

λ

1 + α±(k1d )

1 + α±(k1d )e−ik1d
. (A7)

In order for the modes in Eq. (A6a) to be truly edge localized,
the norm of β should be less than 1. In fact, if we have λ <

t < 0 (|t | < |λ|) as in the main text, we get |β+(k1d )| < 1 �
|β−(k1d )|; see Fig. 9(a).

Therefore, the ansatz |k1d ; +〉 is a valid eigenstate for HEdge

with proper edge localization, and this is the exact solution
that describes the edge-localized band in Fig. 3(f) with dis-
persion relation of E+(k1d ) from Eq. (A3a). The chiral partner
band E−(k1d ) does not appear in the edge band dispersion,
since |k1d ; −〉 states violate the edge localization condition
|β−(k1d )| � 1. The same analysis can be repeated for more
generic cases as depicted in Fig. 5(a), where all the hopping
strengths t/λ1,2,3 are different, and the edge localized band
with a proper mapping onto a 1D SSH chain can be found as
long as |ti| < |λi| is met for each i = 1, 2. t3 and λ3 do not play
any role in determining the existence of a ZCS at the corner
made by edges along R1 and R2.

Lastly, we note that the breathing Kagome lattice with
|t | > |λ| (no bulk polarization) still supports an edge-localized
band. Figure 9(b) shows the edge localization factors for this
trivial case |t | > |λ|; |β−(k1d )| � 1 < |β+(k1d )|. Thus, in the
same way, the ansatz |k1d ; −〉 is a valid eigenstate for Hedge

with proper edge localization, and this is the exact solution
that describes the edge-localized band in Fig. 9(c) with disper-
sion relation of E−(k1d ) from Eq. (A3a). This edge-mapped
SSH chain features a trivial (vanishing) Zak phase, as the
inversion eigenvalues at k1d = 0, π are equally −1.
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