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Near-gate plasmons are a new type of plasma oscillations emerging in homogeneous two-dimensional electron
systems where a gate provides partial screening of electron-electron interaction. Here we develop a theory
of the near-gate plasmons in van der Waals heterostructures comprising a conducting layer separated by a
thin insulator from an uncharged disk-shaped gate. We show that in these structures the near-gate plasmons
form gate-size-quantized quasistationary discrete modes even in the collisionless limit. Belonging to continuum
spectrum of two-dimensional plasmons outside of the disk-gate, the near-gate plasmons are manifested as
Fano-like resonances in frequency and magnetodispersions of scattering cross section of the former scattered
off the region under the gate. This enables to recover spectrum of the near-gate plasmons in the van der Waals
heterostructures using near-field imaging techniques.
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I. INTRODUCTION

It is well known that properties of two-dimensional (2D)
plasma oscillations (or plasmons) significantly depend on
the characteristics of the medium surrounding 2D electron
system. If 2D system is in dielectric environment then the
plasmons possess a conventional square-root dispersion law
[1]. However, for 2D system placed near the infinite metallic
gate, the image charges, induced in the gate, screen strongly
the Coulomb interaction between 2D electrons. As a result, the
spectrum of such gated plasmons acquires “acoustic” behavior
[2], with the frequency proportional to the 2D wave vector.

Recently, it has been predicted a new type of plasmons—
near-gate plasmons—emerging in partially gated electron
system, i.e., in an infinite homogeneous 2D system with a
finite gate (for instance, in the form of a stripe or a disk),
located nearby [3,4]. In general, properties of the near-gate
plasmons depend on the geometry of the gate. In the case of a
stripe-shaped gate, spectra of these plasmons are determined
by continuous longitudinal wave vector and discrete transver-
sal number (starting from zero) equal to the number of nodes
in charge density across the gate. The modes with nonzero
transversal numbers have frequency gaps at zero longitudinal
wave vector and they were investigated in Refs. [5–11]. In
contrast, the fundamental mode with zero transversal number
is characterized by the specific gapless square-root disper-
sion [3,12] and it is the fundamental mode that is called
the near-gate plasmon in Ref. [3]. However, in case of the
gate confined in both lateral directions, we can expect that
the differences, which existed between the fundamental and
higher modes in the case infinite stripe-shaped gate when the
longitudinal wave vector was continuous, are erased, since
all plasmon modes become gate-size-quantized in both lateral
directions. Therefore, in similar cases of confined geometry,

for example, for the disk-shaped gate, we will refer to all
modes as near-gate plasmons. Existence of such plasmons
has been experimentally confirmed in 2D electron systems
based on GaAs/AlGaAs quantum wells with stripe-shaped
[13,14] and disk- or ring-shaped [15,16] geometry of the gate.
Mention that these modes were called “proximity plasmons”
in Refs. [13–16].

However, a technique used to discover the near-gate plas-
mons in the conventional heterostructures [13–16] enables
to determine only their frequencies rather than spatial distri-
bution of electric field for corresponding mode determined
by quantization numbers. It may prevent extraction of the
true dispersion of the near-gate plasmons, characterizing by
orbital and radial quantization numbers, in the structures with
disk-shaped gate, as the modes with the different numbers
can have close eigenfrequencies (as shown in Fig. 2) and be
indistinguishable for the experimental technique.

The issue can be addressed in van der Waals (vdW) het-
erostructures [17,18] with the help of local nano-imaging
techniques, like scanning near-field microscopy [19,20], en-
abling a direct visualization of plasmon waves [21,22].
In 2D material (2DM) plasmonics, graphene/hBN and
hBN/graphene/hBN are the most studied vdW heterostruc-
tures [23–25] because of high carrier mobilities [26] and easy
control of the spectral range of interest (from mid-infrared to
visible) by means of gate voltage. However, multitude of two-
dimensional materials discovered for the past decade, open up
new possibilities [27].

Here, we demonstrate that the near-gate plasmons, form-
ing in 2DM under an uncharged disk-shaped metallic gate
(Fig. 1), strongly modify an interference pattern, observable in
the nano-imaging techniques [21,22], when the frequency of
plasmon scattered off the region under the gate coincides with
one of those of near-gate plasmons, as exemplified in Fig. 1.
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FIG. 1. (Left panel) Side view of a vdW heterostructure (con-
ducting 2D material encapsulated in dielectric environment) with
disk-shaped metallic top gate. Distance between gate and 2DM is as-
sumed to be much smaller than the gate radius. (Right panel) Electric
potential distribution for resonance scattering of 2D plasmons with
the frequency corresponding to the quasistationary near-gate mode
characterized by orbital momentum l = 4.

In addition, we show that variation of a weak out-of-plane
magnetic field can be used to tune the resonance conditions.

II. NEAR-GATE PLASMONS IN ZERO MAGNETIC FIELD

We consider a vdW heterostructure [28] consisting of
a conducting 2DM thin film [graphene or mono(few)-layer
transition metal dichalcogenides] encapsulated in dielectric
environment and supplemented with a circular metallic gate of
radius R, placed at a distance d from 2DM (see Fig. 1). Below,
we study the near-gate plasmons using an approach used in
Refs. [6,9,29–35] where one finds self-consistent plasmon
potential independently in several regions and then match the
solutions with appropriate boundary conditions. In the qua-
sistatic approximation, valid for long-wavelength plasmons
far from the light cone, oscillating potential of plasmon prop-
agating in 2DM ϕe−iωt is determined by the Poisson equation

[ε||(z)�r,θ + ∂zε⊥(z)∂z]ϕ(r, θ, z) = −4πρ(r, θ )δ(z), (1)

where ε||,⊥(z) are in-plane and out-of-plane dielectric permit-
tivities of insulators surrounding 2DM, ε||,⊥(z) equals εb

||,⊥
and εt

||,⊥ at z < 0 and 0 < z < d , correspondingly; �r,θ =
∂2

r + (1/r)∂r + ∂2
θ is 2D Laplace operator in polar coordi-

nates, ρ(r, θ )e−iωt is 2D charge density of plasmon. The
density is related with plasmon potential by the continuity
equation in the layer plane z = 0:

iωρ(r, θ ) + σ (ω)�r,θϕ(r, θ, 0) = 0, (2)

where σ (ω) = iD/πω is a 2D local dynamic conductivity of
2DM expressed via the Drude weight D, which in the Drude
model for electrons with effective mass m∗ is D = πnse2/m∗,
while for massless Dirac electrons in graphene [24], D =
e2v

√
πns/h̄, where ns is 2D concentration of free charge car-

riers, e is the elementary charge, and v is the Dirac fermions’
speed. Below we consider collisionless limit for conductivity
ωτ � 1 neglecting scattering time τ in σ (ω). Combining (1)
and (2) we obtain a single equation for the potential:

[ε||(z)�r,θ + ∂zε⊥(z)∂z]ϕ = 4πσ (ω)

iω
δ(z)�r,θϕ. (3)

Under the disk-gate (at r � R), we require vanishing of
plasmon potential at the gate surface

ϕ(r, θ, d )|r�R = 0, (4)

assuming that gate is an ideal metal, i.e., it has infinitely large
conductivity [36]. The boundary condition (4) results in differ-
ent wave vectors for a plasmon wave propagating in 2DM with
the same frequency outside and under the gate, giving rise to
elastic plasmon scattering. Note that the scattering mechanism
occurs even for unbiased gate with zero total charge that does
not introduce inhomogeneity in conductivity of 2DM.

Therefore, we look for solution of (3) describing scattering
of plasmon plane wave off the region under the gate. To this
aim we solve (3) separately in two regions (i) r > R and
(ii) r � R, and then match the two solutions at boundary
r = R in the plane of 2DM (z = 0).

Outside the 2DM plane plasmon potential satisfies the
Laplace equation,[

ε
t/b
|| �r,θ + ε

t/b
⊥ ∂2

z

]
ϕ = 0, (5)

for which we impose a solution in a separable form,
ϕ(r, θ, z) = ϕ||(r, θ )ϕ⊥(z). Substituting the latter in (5) we
obtain

�r,θϕ||
ϕ||

+ ε
t/b
⊥

ε
t/b
||

∂2
z ϕ⊥
ϕ⊥

= 0. (6)

Introducing a separation parameter, −k2 = �r,θϕ||/ϕ|| and
k2 = ε

t/b
⊥ ∂2

z ϕ⊥/ε
t/b
|| ϕ⊥, we reduce (6) to the following system:{
(�r,θ + k2)ϕ|| = 0,(−εt,b

|| k2 + εt,b
⊥ ∂2

z

)
ϕ⊥ = 0.

(7)

Here, the equation for ϕ⊥(z) should be supplemented by
boundary conditions (BCs) at the plane z = 0:

ϕ⊥(+0) = ϕ⊥(−0) (8)

ε⊥(z)∂zϕ⊥(z)|z=+0
z=−0 = −4πσ (ω)k2

iω
ϕ⊥(0), (9)

where the first BC describes continuity of potential at the
2DM plane, and the second describes jump of electric field
on the charged plane derived from (3) by integration over z
with lower limit −0 and upper limit +0. Using Eq. (7) for ϕ⊥
with BCs (8) and (9) we express the separation parameter k
via frequency outside and under the gate denoted k(ω) and
kd (ω), respectively. Difference of the parameter in the two
regions is due to an additional BC for ϕ⊥(z) at the gate surface
ϕ⊥(d ) = 0 (4).

Outside the gate (r > R), the in-plane part of the potential
reads

ϕ||(r, θ ) =
+∞∑

l=−∞

[
il Jl (kr) + il fl (ω)H (1)

l (kr)
]
eilθ , (10)

where Jl (ξ ) and H (1)
l (ξ ) are respectively Bessel and the first

kind Hankel functions, fl (ω) are partial scattering amplitudes
with orbital momenta l = 0,±1,±2, . . . Solution (10) cor-
responds to the boundary condition [37] of the scattering
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problem at large distances from the gate kr � 1:

ϕ||(r, θ ) = eikr cos θ + F (ω, θ )
eikr

√
ir

,

where the first term describes incident and passed plane wave,
whereas the second term represents scattered wave character-
ized by the total scattering amplitude

F (ω, θ ) =
√

2

πk(ω)

+∞∑
l=−∞

fl (ω)eilθ . (11)

Using the above mentioned BCs (8) and (9), the out-of-
plane potential at r > R is expressed as

ϕ⊥(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ0(0) exp
[
kz

√
εb
||/ε

b
⊥
]
, z < 0;

ϕ0(z), 0 < z < d;

exp [−k(z − d )], z > d;

(12)

where we choose normalization factor for plasmons potential
such that ϕ⊥(d ) = 1,

ϕ0(z) = cosh

(
k

√
εt
||

εt
⊥

(z − d )

)
−

sinh

(
k

√
εt
||

εt
⊥

(z − d )

)
√

εt
||ε

t
⊥

,

and k(ω) is determined by the following equation:

√
εb
||ε

b
⊥ +

εt
||ε

t
⊥ tanh

(
kd

√
εt
||

εt
⊥

)
+

√
εt
||ε

t
⊥√

εt
||ε

t
⊥ + tanh

(
kd

√
εt
||

εt
⊥

) = 4πσ (ω)k

iω
. (13)

In the long-wavelength limit kd
√

εt
||/ε

t
⊥ � 1 we obtain a

standard relation between wave number and frequency for the
ungated 2D plasmon [1]:

k = ω2

4D

(
1 +

√
εb
⊥εb

||
)
. (14)

Under the gate, r < R, in-plane part of plasmon potential
reads

ϕ||(r, θ ) =
+∞∑

l=−∞
AlJl (kd r)eilθ , (15)

where coefficients Al are introduced to match ϕ|| given by (10)
and (15). Whereas the out-of-plane part of potential is

ϕ⊥(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− sinh

(
kd d

√
εt
||

εt
⊥

)
exp

(
kd z

√
εb
||

εb
⊥

)
, z < 0;

sinh

(
kd (z − d )

√
εt
||

εt
⊥

)
, 0 < z < d;

0, z > d;
(16)

where kd (ω) is determined by the equation [2]:

√
εb
||ε

b
⊥ +

√
εt
||ε

t
⊥ coth

(
kd d

√
εt
||

εt
⊥

)
= 4πσ (ω)kd

iω
. (17)

In the long-wavelength limit kd d
√

εt
||/ε

t
⊥ � 1, (17) de-

scribes acoustic 2D plasmons characterized by linear disper-
sion [2,38,39]:

kd = ω

Vp
, (18)

with the velocity Vp = √
4Dd/εt

⊥.
As long as we consider 2DM with homogeneous conduc-

tivity we use simple conditions of continuity for in-plane
potentials (10), (15) and electric fields, E || = −r̂∂rϕ|| −
θ̂∂θϕ||/r at the gate edge r = R in plane of 2DM, z = 0. This
gives

fl (ω) = J ′
l (kd R)Jl (kR) − k

kd
J ′

l (kR)Jl (kd R)
k
kd

Jl (kd R)H (1)′
l (kR) − J ′

l (kd R)H (1)
l (kR)

, (19)

Al = il Jl (kR) + fl (ω)H (1)
l (kR)

Jl (kd R)
. (20)

For a nonrelativistic quantum particle poles of its scattering
amplitude lying at negative energies determine energies of
truly localized states in the system [37]. Although Eq. (7)
for in-plane plasmon potential (ϕ||) is formally identical to
2D Schrödinger equation, it describes only states with posi-
tive energies [as k2 ∝ ω4 (14) outside gate and k2 ∝ ω2 (18)
under the gate]. Therefore, plasmons cannot form real local-
ized modes under the gate but rather belong to continuum
spectrum of plasmons outside the gate region. However, the
continuum may host discrete quasistationary modes having
complex frequencies ω′ + iω′′ determined by complex poles
of the scattering amplitude with ω′ > 0 and ω′′ < 0 [37,40].
Axial symmetry of the problem allows us to characterize
the quasistationary modes by orbital and radial quantization
numbers. Equalizing denominator of fl (ω) (19) to zero we
obtain a dispersion equation for these modes:

J ′
l (kd R)

Jl (kd R)
= k

kd

H (1)′
l (kR)

H (1)
l (kR)

. (21)

Right-hand side of (21), responsible for a decay of the near-
gate plasmons, gives rise to quasistationary modes with large
lifetimes (|ω′′/ω′| � 1) only for |k|R � 1. At |k|R � 1 (21)
reduces to

J ′
l (kd R)

Jl (kd R)
≡

+∞∑
p=1

2kd R

(kd R)2 − μ2
l,p

+ |l|
kd R

=

=
⎧⎨
⎩ − |l|

kd R + i
2π( kR

2 )2|l|

kd R �2(|l|) , |l| = 1, 2, 3, . . .
1

kd R ln ( eC kR
2 )−iπ

kd R
2

, l = 0,
(22)

where in the first identity we expressed logarithm derivative of
the Bessel function via Jl zeros [41], μl,p; �(ξ ) is the Gamma-
function, and C = 0.577.. is the Euler-Mascheroni constant.
For every orbital momentum l , Eq. (22) has a series of roots
enumerated by a radial quantization number n = 0, 1, 2, . . .

in ascending order, characterizing the number of nodes at
r � R for potential of the l-th mode. The lowest quantized
values for Re(kd R) and, therefore, for the frequency (18) of
the near-gate quasistationary modes are listed in Table I. We
note that allowed wave numbers Re(k(n,0)

d ) for axial symmetric
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TABLE I. Quantization for wave vector and frequency
Re(k(n,l )

d R) = ω′
n,l R/Vp of the quasistationary near-gate plasmon

modes, computed from Eq. (22) (values for axisymmetric modes,
l = 0, are given for d/R = 0.01).

�����n
|l|

0 1 2 3 4

0 0.59 2.43 3.87 5.18 6.44
1 3.95 5.57 7.08 8.49 9.85
2 7.10 8.74 10.27 11.73 13.13

modes have weak logarithmic dependence on wave vector
outside the gate, resembling spectra of the “charged” modes
in 2D electron system electrically connected to gate [42].
Additional analysis of the obtained modes and the connection
with the previous result [4] are given in Appendix.

Since k and kd are related with each other via the same
frequency, lifetimes of the modes, determined by imaginary
part in (22), strongly depend on magnitudes of quantization
numbers themselves. Indeed, using equations for k (14) and
kd (18) in the long-wavelength limit (|kd |d

√
ε||/ε⊥ � 1), the

condition for existence of long-lived near-gate plasmons is

equivalent to |kR| = |kd R|2(d/R)(1 +
√

εb
||ε

b
⊥)/εt

⊥ � 1. The

last strong inequality can be satisfied only for not too high
quantum numbers in the limit d/R � 1 (as Re(kd )R � 1, see
Table I). Therefore, for real vdW heterostructures the total
number of the near-gate plasmon modes is finite and deter-
mined by ratio d/R. Inverse lifetimes of the near-gate modes
can be estimated as follows:

ω′′
n,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−πω′
n,l

(Re(k(n,l ) )R
2

)2|l|

2|l|�2(|l|) , |l| = 1, 2, 3, . . .

− πω′
n,0

4
∣∣ln [ eC Re(k(n,0) )R

2

]∣∣ , l = 0.

(23)

Axial symmetric modes l = 0 possess the shortest lifetimes,
while the lifetimes for modes with larger orbital momenta
grow exponentially with |l| as long as |k(l,n)|R � 1. This is
because modes with nonzero orbital momenta should tunnel
through an additional barrier, produced by centrifugal motion,
(l2 − 1/4)/r2, to decay into bulk continuum states outside of
the gate.

Having established resonance features of the scattering
amplitude, we analyze a total scattering cross section �

characterizing ratio of plasmon energy densities of outgoing
cylindrical and incident plane waves integrated over far distant
circle (with radius r � 1/k) comprising the gate:

�(ω) =
∫ 2π

0
rdθ

k2|F (ω, θ )|2
rk2

=
∫ 2π

0
|F (ω, θ )|2dθ =

= 4

k

[
| f0|2 + 2

+∞∑
l=1

| fl |2
]
, (24)

where the factor of two in brackets after the last equality
results from relation fl = f−l responsible for double degen-
eracy of the near-gate modes with nonzero orbital momenta.
For the case of long-lived near-gate plasmons kR � 1 par-
tial scattering cross sections takes an asymmetric form of

10

n=0
l=1,n=0 l=2,n=0 l=3,n=0

l=4,n=0

10

0π

0π0π

0π

0π

cr
os

s-
se

c
on

, Σ
/R

cr
os

s-
se

c
on

, Σ
/R

(a)

(b)

10

20

0
0

0
0 0

FIG. 2. (a) Frequency dependence of total scattering cross sec-
tion (24) for d/R = 0.01. Resonances occur at frequencies of
quasistationary plasmon modes listed in Table I. Insets show an-
gle distribution for differential cross section of the lowest modes
for the first five orbital momenta. (b) Zoom-in of (a) with reso-
nances indexed by orbital and radial quantization numbers of the
quasistationary near-gate plasmon modes. Different colors show con-
tributions of partial scattering cross sections for indicated orbital
momenta. For calculation we used dielectric permittivities of hBN,
εt,b
|| = 6.9, εt,b

⊥ = 3.6 [43].

Fano-resonance [44,45]:

1

k(ω)
| fl (ω)|2 = 1

k(ω)

[χl (ω)Xl (ω) − 1]2

X 2
l (ω)

γ 2
l (ω)

+ 1
, (25)

where function

Xl (ω) =
+∞∑
p=1

2kd (ω)R

(kd (ω)R)2 − μ2
l,p

+ 2|l|
kd (ω)R

+

+ δl,0

kd (ω)R
∣∣ln ( eC k(ω)R

2

)∣∣ (26)

has plain zeros at frequencies of the near-gate modes ω = ω′
n,l

[see (22)], and

γl = 2π
(

kR
2

)2|l|

�2(|l|)kdR
(1 − δl,0) + πδl,0

2kd R
[
ln

(
eC kR

2

)]2 (27)
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determines the resonance width, which is directly proportional
to lifetimes of the near-gate plasmons (23); the function χl =
kd R[(1 − δl,0)/2|l| + δl,0| ln(eCkR/2)|] is introduced for con-
venience. Fano resonances in plasmon scattering arise due
to the interference of potential scattering between states of
continuum with resonance scattering of continuum states on
quasidiscrete states under the disk-shape gate. Such inter-
ference does not emerge for the stripe-shaped gate systems
as for this geometry of the structure component of plasmon
wave vector along the stripe is a good quantum number.
This leads to possibility of only 1D scattering with a single
passed/reflected wave and, therefore, absence of Fano res-
onances in transmission and reflection coefficients. Close to
resonances ω ≈ ω′

n,l the total scattering cross section, shown
in Fig. 2, is dominated by a corresponding partial contribution
(25). Therefore, peak magnitude of the total cross section
decays with frequency as 1/k = 1/ω2 (as | fl (ω′

n,l )|2 = 1), and
can be used to extract n of the near-gate plasmon mode for
given l . Whereas angle distribution of the differential cross
section |F |2, shown in insets of Fig. 2, allows one to charac-
terize its orbital momentum. At resonances ω = ω′

n,l , angular
distributions of the total scattering amplitude have in-plane
symmetry of the lth cosine harmonics, as they are mainly
determined by | f0(ω′

n,l ) + 2 fl (ω′
n,l ) cos(lθ )|2. However, this

symmetry may be broken by an admixture of other small par-
tial amplitudes, as it happens for the resonance l = 4, n = 0
where nonvanishing contribution of f1(ω′

0,4) [see Fig. 2(b)]
results in asymmetry for scattering on 0- and π -angles.

Thus, to recover spectrum of the near-gate plasmons
in disk-shaped geometry one can combine frequency spec-
troscopy with the angular distribution analysis of scattering.

III. EFFECT OF A WEAK OUT-OF-PLANE
MAGNETIC FIELD

In a weak out-of-plane magnetic field σ (ω) in (2) should
be replaced with [46]

σxx(ω) = D

π
· iω

ω2 − ω2
c

, (28)

where ωc = |e|B/(mcc) [47] is the electron cyclotron fre-
quency (mc = h̄

√
nsπ/v is the cyclotron mass for Dirac

fermions in graphene, and mc = m∗ for massive electrons).
The off-diagonal (Hall) component of 2DM conductivity does
not contribute in the continuity equation (2), making equation
for the plasmon potential (3) independent on orientation ±|B|
of magnetic field.

The scattering amplitude and cross section are determined
by (11) and (24) where in definition of wave numbers k (14)
and kd (18) one should substitute ω → √

ω2 − ω2
c , which

corresponds to σ (ω) → σxx(ω).
Magnetodispersion of the total scattering cross-section,

shown in the Fig. 3, possesses resonances at cyclotron fre-
quencies

ωn,l
c =

√
ω2 − (ω′

n,l )
2, (29)

where ω is the frequency of incident plasma wave and ω′
n,l is

the resonance frequency of the corresponding near-gate plas-
mon mode in zero magnetic field. The number of resonances

(a)

(b)

FIG. 3. Magnetodispersion of total scattering cross section (solid
gray line) and contributions from partial cross sections (24) with
l = 0, 1, 2, 3, 4 shown by different color. Figures (a) and (b) are
plotted for frequencies of the excited plasmon wave ωR/Vp equal
to 7 and 5.6, correspondingly; other parameters of the system are the
same as in Fig. 2. Resonances are indexed by orbital l and radial
n quantization numbers of the quasistationary near-gate plasmon
modes. All resonances have magnitudes as corresponding resonances
at zero magnetic field, see Fig. 2.

in the magnetodispersion is determined by magnitude of ex-
citation frequency as that for freely propagating plasmons
should always exceed cyclotron frequency ωc, providing real
values of k. Equation (29) can be alternatively interpreted as
a shift of the cross-section resonances in Fig. 2 induced by
magnetic field. This allows one to control resonance condi-
tions varying the field magnitude. Since the shift does not
modify peak values of the resonances for the same n and l ,
magnetodispersion of the total cross section can be also used
to extract dispersion of the near-gate plasmon modes similarly
as it was discussed above.

It is interesting to note that resonance widths in magne-
todispersion of the plasmon cross section can be tuned by the
choice of the excitation frequency. This is because dispersion
of gated plasmons in magnetic field, ω2 = ω2

c + V 2
p k2

d , leads to
wave number dependent group velocity. Therefore, the width
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of a resonance (with fixed numbers n and l) in magnetodis-
persion of the cross section increases with the decrease of
frequency ω. In Fig. 3 we demonstrate this behavior compar-
ing magnetodispersions of the scattering cross section for two
different excitation frequencies.

Although in out-of-plane magnetic field the eigenfrequen-
cies of near-gate plasmons gain a conventional blue shift

because of cyclotron motion, ωn,l (B 
= 0) =
√

(ω′
n,l )

2 + ω2
c

(29), it is useful to compare their magnetic field dependence
with plasmons in a fully gated 2D system in the form of a
disk, where plasmon modes are also characterized by orbital
and radial quantization numbers.

In magnetic field B the frequencies of plasmons in disk-
shaped 2DM are split into two branches due to the sign of the
orbital number l , see Fig. 1 in Ref. [48], which leads to a rather
complicated structure of plasma modes, including the appear-
ance of so-called edge magnetoplasmons Refs. [49–52]. On
the contrary, for near-gate plasmons there is no splitting in
magnetic field due to the sign of l , which makes the applica-
tion of magnetic field a convenient tool for studying near-gate
plasmons.

IV. DISCUSSION AND CONCLUSION

Existence of the discrete near-gate plasmon modes under
the disk-gate at zero gate voltage, i.e., for homogeneous 2DM,
makes these structures attractive for applications, because
the resonance frequencies can be readily tuned by a size
of gate. While lack of translational-invariance in the whole
structure relaxes momentum conservation rules allowing di-
rect excitation of plasmons by photons independently on their
polarization. It is likely that the near-gate plasmons have been
recently observed in graphene nanopatterned with array of
metallic nanocubes [53] (see also [54]).

In our analysis we assume collisionless limit for 2DM
conductivity ωτ → ∞, whereas finite electron momentum
relaxation time τ would reduce lifetimes (23) of the near-gate
modes. So, it is interesting to compare the lifetimes with
typical values of electron relaxation time τ in 2DM. Life-
times (23) for the n = 0, l = 0, and n = 0, l = 1 modes are
(ω′′

00)−1 = R/(0.086Vp) and (ω′′
01)−1 = R/(0.009Vp), respec-

tively. Considering graphene as 2DM and taking parameters
close to those of Ref. [53], d = 2 nm, EF = 0.47 eV, and R =
50 nm, we find frequencies ω′

00/2π = 3.4 THz, ω′
01/2π =

14 THz and lifetimes (ω′′
00)−1 = 0.31 ps and (ω′′

01)−1 = 3 ps.
These lifetimes substantially exceed relaxation time τ = 10 fs
(at T = 300 K) in the system [53], making electron collisions
a dominant factor of the near-gate mode decay. However, in
principle the electron relaxation time in graphene can be of
the order of 1 ps [55,56]. Consequently, in this case decay
rate of the near-gate plasmons is due to their quasistationary
feature.

We also mention that the used and similar approaches
[6,9,29–35], namely, solving Eq. (7) for ϕ|| in separate regions
with the subsequent matching at the boundary, are widely
exploited to study plasmons in 2D systems with inhomoge-
neous profile of concentration (or conductivity), despite of
the fact that they lead to discontinuity of potential outside of
the conducting plane, due to difference in the out-of-plane

behavior of plasmon potential in the regions with different
concentrations. Although in our system charge density in
2DM is homogeneous, screening of plasmon potential under
the disk-gate gives rise to the same discontinuity at the gate
edge outside of the 2DM plane. Nevertheless, the obtained
expressions for scattering amplitude (19) and cross section
(24) are independent on the choice of the matching plane
(below the disk-gate), and lead to the same eigenfrequencies
for the axial asymmetric (i.e., l 
= 0) quasistationary near-gate
modes as were obtained in a different approach [4].

To conclude, we demonstrated that uncharged metallic
gate, providing partial screening of electron-electron interac-
tion in homogeneous conducting 2DM, gives rise to discrete
near-gate plasmon modes, possessing finite lifetimes, and, for
the disk-shaped gate, quantized by its radius. Characterized by
radial and orbital quantization numbers, the near-gate modes
are manifested as Fano-like resonances in cross section of 2D
plasmons scattered off the region under the gate. Out-of-plane
magnetic field controls the resonance frequencies allowing to
tune their widths in magnetodispersion of the scattering cross
section.
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APPENDIX: NEAR-GATE PLASMONS
IN DIFFERENT 2D SYSTEMS

Before analyzing near-gate plasmons in 2DM with disk-
shaped gate, let us remind the properties of these plasmons
in 2D system with massive/massless charge carriers in stripe-
shaped gate geometry [3] and, then, compare them. We will
use standard quasistatic approximation to describe plasmons,
without taking into account retardation effects.

Consider infinite 2D electron system with stripe-shaped
ideal (i.e., with infinitely large conductivity) metallic gate
situated at the distance d above 2D system. The metal stripe
has the width W and an infinite length, we assume that
d � W . We assume that the conductivity of 2DM obeys
the Drude model σ (ω) = iD/πω with Drude weight D =
πnse2/m∗ in massive systems and D = e2v

√
πns/h̄, where

v is the speed of Dirac fermions, in graphene. Note that
for the case of graphene the condition EF � h̄ω should be
satisfied. Under these assumptions (using the same analytical
procedure as in Ref. [3]) the fundamental near-gate plas-
mon mode at the long-wavelength limit |k||W | � 1, where
k|| is the wave vector along the stripe, has the dispersion
law as follows:

ω(k||) =
√

8Dd

ε⊥

|k|||
W

, (A1)

where ε⊥ is the out-of-plane dielectric permittivity between
2DM and the gate. Note that, due to different dependence of
D on concentration ns, near-gate plasmon in graphene has
typical n1/4

s -dependence of frequency on ns, in contrast to
n1/2

s -dependence for plasmon in massive 2DM.
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Near-gate plasmon (A1) has square-root dispersion law
ω ∝ √

k similarly to ungated 2D plasmon, which obeys
ωung = √

2Dk/ε for 2DM placed in isotropic dielectric
medium with permittivity ε. Consequently, the relation of the
frequencies of these plasmon modes at the same wave vector
k does not depend on k and (for isotropic media with ε⊥ =
ε) equals 2

√
d/W � 1, i.e., frequency of near-gate plasmon

is below that of ungated plasmon. That is why near-gate
plasmon can not decay into the continuum of ungated 2D
plasmons (the frequency and wave vector along the stripe
are fixed).

For the near-gate mode discussed above, profile of charge
density across the stripe does not have zeros. However, there
are also higher energy modes having finite number of zeros
of charge density across the stripe [3]. These modes possess
nonzero frequencies and finite lifetime at k|| → 0 as they
fall into continuum of ungated 2D plasmons. Nevertheless, at
large k|| these modes are localized near the stripe as well as
the fundamental near-gate mode.

Now let us move to near-gate plasmons in 2DM with
disk-shaped gate, as shown in Fig. 1. Their dispersion law
[found as poles of the scattering amplitude (19)] is defined by
Eq. (21). Equation (21) has no solutions with real frequency
ω, it has only quasistationary solutions with complex-valued
ω. However in the formal limit kR → 0, which qualitatively
corresponds to the suppression of ungated plasmons excita-
tion, as their wavelength 2π/k tends to infinity, one can use
standard series for Hankel functions at small arguments in the
right-hand side of Eq. (21) to find the dispersion equations as
follows:

kd RJ ′
l (kd R) + |l|Jl (kd R) = 0 at l 
= 0 (A2)

and

kd R ln

(
eCkR

2

)
J ′

0(kd R) − J0(kd R) = 0 at l = 0, (A3)

where the stroke defines the derivative by the argument and
l is the orbital number. Equations (A2) and (A3) have so-
lutions with real ω. Note, that in this limit, wave vector of
ungated plasmons k vanishes in Eq. (A2), which qualita-
tively can be understood as that we distinguish the near-gate
plasmon modes with l 
= 0 from the continuum of ungated
2D plasmons. Also, it should be mentioned that Eq. (A2)
coincides with dispersion equation derived in Ref. [4] by
another approach, namely, solving the integral equation for
self-consistent potential of near-gate plasmon modes. Tak-
ing into account more terms in the expansion of Hankel
functions in the right-hand side of Eq. (21), one can obtain
additional terms (with imaginary contributions) in Eqs. (A2)
and (A3).

Essentially, roots of Eqs. (A2) and (A3) define (approxi-
mate) real parts of dimensionless frequencies of the modes
kd R = Re(ω)R/Vp [here Vp is the velocity of gated plasmons
defined after Eq. (18)], which are given in Table I. The radial
number n is the root’s number of Eqs. (A2) and (A3), counted
from zero.

As was mentioned above, we assume that the conductivity
of 2DM can be described in the Drude model. Then, di-
mensionless frequencies given in Table I are independent of
whether 2DM has massive or massless charge carriers. All the
difference is in the definition of velocity of gated plasmons
Vp (via the Drude weight D), which is given after Eq. (18).
Note once again that the main characteristic feature of near-
gate plasmons in massless 2DM is their n1/4

s -dependence of
frequency on concentration ns.
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