
PHYSICAL REVIEW B 104, 195432 (2021)

Metal-insulator transitions in bilayer electron-hole systems in transition metal dichalcogenides
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We investigated metal-insulator transitions for double-layer two-dimensional electron-hole systems in transi-
tion metal dichalcogenides stacked on opposite sides of thin layers of boron nitride. The interparticle interaction
is calculated by including the screening due to the polarization charges at different interfaces, including that
at the encapsulation and at the substrate of experimental structures. We compute and compare the energies of
the metallic electron-hole plasma and the proposed insulating exciton solid with fixed-node diffusion Monte
Carlo simulation including the high valley degeneracy of the electron bands. We found that for some examples
of current experimental structures, the transition electron/hole density is in an experimentally accessible range
between 4.1 × 1012 cm−2 and 14.5 × 1012 cm−2 for spacer thicknesses between 2.5 and 7.5 nm. Our result raises
the possibility of exploiting this effect for logic device applications.
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I. INTRODUCTION

There has been much recent interest in bilayer electron-
electron (e-e) and electron-hole (e-h) systems in graphene
and transition metal dichalcogenides (TMDCs) stacked on
opposite sides of a boron nitride (BN) film of thickness d
[1–6]. External gate voltages are applied so that electrons and
holes are on opposite sides of the BN spacer. This follows
earlier interests in the physics of the two-dimensional electron
gas in single and double layers in Si-MOSFET and in GaAs
heterostructures [7]. An attractive feature of the graphene and
the TMDC systems is the high mobility that can be achieved,
thus promising practical applications.

An electron-hole system can exist as a collection of ex-
citons or in a metallic state of an electron-hole plasma, as
has been observed in bulk Ge under laser excitation [8–10].
Most previous studies consider the collection of excitons to
form a fluid [11]. We recently found that in the parame-
ter range of interest the exciton solid is more stable than
the exciton fluid. This solid exhibits a supersolid behavior
as an approximately quantized Coulomb-drag resistance [6].
The metal-insulator transition between the exciton solid and
the electron-hole plasma is the focus of the present study.
Metal-insulator transitions make possible the application of
the present structure as logic devices. Graphene has also been
considered for this application but because it does not have a
band gap, the small but finite current makes the application
difficult [12]. For practical applications, the exciton energy
should be higher than room temperature. This exciton energy
is inversely proportional to the Bohr radius. As an example
we consider WSe2 for both the top and bottom layers. We
shall express lengths in terms of the Bohr radius of 6 Å, corre-
sponding to that for the electron with effective mass of 0.45me

[13] and a geometric mean dielectric constant discussed below
of 5.1. The corresponding Rydberg (Ry), our unit of energy,
is 0.235 eV. The hole mass is 0.9me. The exciton reduced

mass is μ = 0.31me The Bohr radius for the exciton discussed
later, which involves the reduced mass, is equal to 8.7 Å. The
exciton Rydberg is Ryexc = 0.157 eV. The exciton energy
is much higher in the TMDC system [14], because its Bohr
radius, aB = 6 Å, is much smaller than that in the graphene
system, aB,graphene = 90 Å [15], which is comparable to that
in GaAs.

In this paper we included the screening of the Coulomb
interaction by the polarization charge density at the interfaces
of typical realistic experimental structures and found that
the exciton energy can be an order of magnitude less than
previous estimates that does not consider the complete struc-
ture. We extended our previous fixed-node diffusion quantum
Monte Carlo calculation for the single layer electron gas
[16,17] to the current bilayer electron-hole system with the
screened potential for different spacer thickness d . Previous
many-body calculations [11,18–24] were motivated by the
GaAs heterostructures and do not correspond to the parameter
range of the TMDC system. For bulk Ge, the large num-
ber of valleys lower the energy of the electron-hole fluid at
high densities [8]. For the bilayer system there are two hole
valleys and 6/12 electron valleys for odd/even number of
layers [25]. We included this effect in our calculation and
found it to be important. For d between 2.5 and 7.5 nm, we
found for typical examples of experimental structures, the
metal-insulator transition to occur at electron-hole densities in
an experimentally accessible range between 4.1 × 1012 cm−2

and 14.5 × 1012 cm−2. We now describe our results in detail.

II. SCREENING

We consider a typical experimental structure consisting of
two TMDC layers of thicknesses 2 nm separated by a BN
layer of thickness d that is of the order of 5 nm. The structure
is encapsulated by boron nitride films BNtop and BNbottom of
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FIG. 1. The real-space intralayer potential rVa(r) with encapsu-
lation (regular), with no encapsulation, no encapsulation and very
thin TMDC, and results for the interlayer potential with encapsula-
tion. rV is in units of e/εBN, d = 5 nm.

thicknesses 10 and 20 nm, respectively. On one side of this
structure is SiO2; on the other side, vacuum. The effect of the
induced surface polarization (the “image charge” [26]) for a
single two-dimensional structure was discussed by Keldysh
[27] and applied to the study of excitons in single layer struc-
tures with isotropic dielectric constants [28]. Both BN and
the TMDC possess hexagonal symmetry so that the dielectric
constants exhibit diagonal components εz and εxy along the
z direction and the xy plane. These dielectric constants are
given [29] for BN as εz,BN = 3.76, εxy,BN = 6.93; for WSe2 as
εz,TMDC = 7.6, εxy,TMDC = 15.7; and for SiO2 as 3.6. The di-
electric properties are characterized by ε = (εzεxy)1/2 and the
ratio γ = εxy/εz. The geometric means yield εBN = 5.1 and
εTMDC = 10.9. Furthermore, εTMDC/εBN = 2.1, γBN = 1.35,
and γTMDC = 1.43. We have previously considered the case
of two thin TMDC films separated by a BN film without
considering the effect of the encapsulation [6]. We extended
this approach and solved the electrostatics problem of a point
charge in our circularly symmetric anisotropic dielectric mul-
tilayer structure by separating the space into different regions
of different dielectric constants and relate the Fourier trans-
form of the potential Ṽ (q) in different regions by matching the
tangential (normal) components of the electric (displacement)
fields at the interfaces. The general solution is then obtained
with the transfer matrix method.

From Ṽ (q) we have computed the screened potential
V (r) in real space. As the distance becomes larger than
the multilayer thickness, the effect of screening diminishes,
and rV (r) approaches the limit of e/〈ε〉 with 〈ε〉 = (1 +
εSiO2 )/2. In Fig. 1 we show the intralayer potentials Va in
units of e/εBN close to the origin. For no encapsulation and
thin TMDCs our previous result [6] shows that for small r,
rV (r)(εBN/e) approaches εBN/〈ε′〉 = 1.67 with 〈ε′〉 = (1 +
εBN )/2, close to our numerical result of 1.2 at small r in
this figure. In the presence of the TMDC, close to r = 0, a
very simple effective medium idea suggests that rV (r)(εBN/e)
approaches εBN/〈ε′′〉 where 〈ε′′〉 = (εTMDC + εBN )/2. Numer-
ically rV (r)(εBN/e) approaches 0.5 in this figure, close to our
estimate of εBN/〈ε′′〉 = 0.64. There is very little dependence
of the intralayer potential on d at small distances.

FIG. 2. The real-space interlayer potential Ve(r) with encapsula-
tion, with no encapsulation, no encapsulation and very thin TMDC
and the bare Coulomb potential V0. V is in units of e/(aBεBN ) and
d = 5 nm.

We next turn our attention to the interlayer potential Ve for
the interaction between charges on opposite sides of the BN
spacer. In Fig. 2 we show the real-space interlayer potential
Ve(r) in units of e/(εBN aB) for d = 5 nm together with results
for the corresponding structures with no encapsulation, no
encapsulation and very thin TMDC, and, for reference, the
Coulomb potential in BN V0 = e/[(dγBN + tTMDCγTMDC)2 +
r2]1/2/εBN in which tTMDC is the thickness of the TMDC
film. The potential for our structure is softer than V0 because
as r increases there is less screening and thus the potential
decreases less rapidly. The encapsulation and the finite TMDC
thickness produces a significant effect. For the case without
the encapsulation and very thin TMDCs, in our previous study
[6] we found that the screened potential for the interaction at
small transverse distance r approaches V (r) = V0(r)εBN/εeff ,

where the effective dielectric constant is given by 1/εeff =
(1 − β2), β = (1 − εBN )/(εBN + 1) is the well-known image
charge in elementary electrostatics [26]. Now β = 0.672 and
1/εeff = (1 − β2) = 0.548. Our estimate thus suggests that
for no encapsulation and very thin TMDC the potential at
r = 0, given by e/(εeffγ d ), is equal to 0.248(e/aB/εBN ). This
is close to the r = 0 value of 0.23(e/aB/εBN ) in this figure.
In contrast to the intralayer potential, the dependence of the
interlayer potential on the BN spacer thickness is significant.
This is illustrated in Fig. 3.

The energy due to the interaction of a charge and the uni-
form charge backgrounds of density σ = 1/(πr2

s a2
B) is given

by

Ebg = [Ṽe(q = 0) − Ṽa(q = 0)]/
(
πr2

s

)
(Ry), (1)

where Ṽa (Ṽe) is the intralayer (interlayer) interaction. If we
approximate V by a Coulomb potential with an effective
screening constant, we obtain Ebg = −σd/(2εeff ), as we ex-
pected from elementary electrostatics. Numerically, we found
that −Ebg/(σ ) = 6.19, 10.08, 15 Ry for d = 2.5, 5, 7.5 Å,
corresponding to an εeff/εBN = 1.1, 0.9, 0.8. For the electri-
cally non-neutral e-e systems, the corresponding background
energy is inversely proportional to the first power and not the
second power of rs and much larger [30] in magnitude. The
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FIG. 3. The real-space interlayer potential V (r) with encapsula-
tion for two values of d and the bare Coulomb potential V0.

origin of the energy scale is shifted so that most of the energies
per particle are negative for the e-e system, whereas most of
the energies per particle for the present system are positive.

III. EXCITON

To gain some intuition on the properties of the system, we
first discuss the physical property of a single exciton in the
bilayer WSe2 structure with electrons and holes on opposite
sides and the BN spacer in between. Because our potential
is circularly symmetric, the exciton wave function χ can be
separated into a radial and an angular component, χ (r, φ) =
ψ (r)eilφ . We discretize the radial equation and solve for the
eigenvalue problem of the matrix, which is tridiagonal but not
symmetric, with the EISPACK routine rt.f in double precision.

The bound state eigenvalues in units of the exciton Ry-
dberg, Ryexc, as a function of different BN thicknesses are
shown in Fig. 4 for l = 0 (lines). Also shown is an analytic
estimate [6] for the ground-state energy using the second

FIG. 4. Exciton binding energies in units of Ry as a function of
the BN thickness normalized by the exciton Bohr radius for l = 0.
The different color curves correspond to different eigenstates. Also
shown is an analytic estimate for the ground-state energy (solid black
square).

FIG. 5. Exciton wave functions for l = 0 for different d as a
function of radial distance in units of the Bohr radius.

derivative of the interplane potential, which agrees well with
the numerical result. Our result is an order of magnitude
smaller than previous estimates that uses a potential without
the effect of the encapsulation [14].

The ground-state wave functions for three different values
of d are shown in Fig. 5. We have previously considered the
large d limit for the potential V0 and found that the width of
the wave function ξ is of the order of ξ ≈ d (aB/d )1/4. The
size of the wave function is larger than this estimate because
our potential is softer. Also, because the potential does not
change much as d is decreased, the ground-state wave func-
tion has a weak dependence on d . The electroluminescence is
proportional to the probability of finding the electron and the
hole on top of each other and thus equal to ψ2

exciton(r = 0). We
next turn our attention to the metal-insulator transition.

IV. FIXED-NODE DIFFUSION MONTE
CARLO SIMULATION

To investigate the metal-insulator transition, we have cal-
culated the energies of the electron-hole plasma and the
hexagonal quantum exciton solid by extending our previous
fixed-node diffusion Monte Carlo simulation [16,17,31]. This
approach solves the many-particle Schrödinger equation in
imaginary time for a finite number of particles under periodic
boundary conditions. For our problem, the potential with the
encapsulation is used. To enhance the speed of the computa-
tion, the solution is assumed to have the same node structure
of a trial function of the form [31]

� = D exp
∑

i< j,a,b

uab(ri j ), (2)

where D is a product of n Slater determinants of single-
particle wave functions for particles in the n different valleys.
For the fluid (solid) phase, the single-particle wave functions
are plane waves (Gaussian orbitals localized on the lattice
sites.) The second factor is a Jastrow correlation factor for
particles between layer a and layer b. We next discuss the
choice of uab.

Our interparticle interaction is given by∑
q,ab Ṽab(q)ρa(q)ρb(−q)/2, where Ṽa=b = Ṽa (Ṽa �=b = Ṽe) is
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the intralayer (interlayer) interaction. For the electron-electron
fluid system, the simplest way is just to have

uab = −1/S + [1/S2 + Ṽab]1/2, (3)

where S is the static structure factor for noninteracting elec-
trons. For the electron-hole system, uab becomes imaginary
for Ṽe < 0. Thus, this approach cannot be used. De Palo et al.
[19] have investigated the phase diagram of a two spin particle
hole system with two layers interacting with an isotropic
Coulomb potential with fixed-node Monte Carlo simulation
in a different parameter regime of d/aB < 3. We have used a
modification of their u.

We introduce new operators that are linear combinations of
charge densities ρ1,2 on the two layers:

ρ± = (ρ1 ± ρ2)/r, (4)

with the normalization factor r = 2 as ρ involves the product
of two field operators. If we interpret 1 as pseudospin up and
2 as pseudospin down, then ρ+ (ρ−) is the particle (pseu-
dospin) density. The interparticle interaction can be written
in diagonal form as |ρ+|2Ṽ+ + |ρ−|2Ṽ−, where Ṽ± = (Ṽa ±
Ṽe)/2. This motivated a trial wave function proportional to
exp (u+ρ2

+ + u−ρ2
−) where

2u± = −1/S + [1/S2 + 4mṼ±/h̄2k2]1/2. (5)

The exponent becomes (u+ + u−)(ρ2
1 + ρ2

2 ) + 2(u+ −
u−)ρ1ρ2. Rapisarda and co-workers [19] used a correlation
factor

4u′
± = −1/S + [1/S2 + 8mṼ±/h̄2k2]1/2. (6)

This can be interpreted as a different normalization factor
r = √

2. For the electron-electron system, in the limit that
d approaches zero so that Ṽa = Ṽe and Ṽ− = 0, we get back
the correct limit of correlation involving the particle-particle
correlation. This is not true with the correlation factor in
Eq. (6). We found numerically that Eq. (3) gives the low-
est variational energy where possible. Equation (6) gives the
highest energy. A similar generalization is used for the solid
case. We have performed calculations with a sample of 30
electrons and 30 holes for different number of electron valleys
nv (1, 2, 3, 5) and doubly degenerate holes. The energies are
then fitted with a quadratic polynomial in 1/

√
nv and extrap-

olated to provide for estimates of the energies for nv = 6, 12.

Our results are expressed in terms of the usual dimensionless
density parameter rs defined by π (rsaB)2 = 1/σ. The energies
for nv = 6 in units of Ry of different phases as a function of rs

from fixed-node diffusion Monte Carlo simulations for three
values of d are shown in Fig. 6. At small rs, we expect the
kinetic energy term that is proportional to 1/r2

s to dominate.
The intraplane potential energy that is proportional to −1/rs

comes in as rs increases. For large rs the energy per particle
for the solid phase is of the order of half the exciton energies.
This is consistent with results in Fig. 4. Our energy may
be measured experimentally as it is equal to (e2σ/2)/(C/A)
where C/A is the total capacitance (C) per unit area (A) of
the system. The total capacitance contains contributions from
the self-capacitances due to the e-e and h-h interactions and
the mutual capacitance from the e-h interaction. Such type of
capacitance measurements have recently been carried out by
Ma and co-workers [32] on similar structures.

FIG. 6. The energies in units of RyBN of the solid (solid lines)
and the e-h plasma (dashed lines) as a function of rs from fixed-node
MC simulations for three values of dBN as is indicated by the inset in
the figure.

From where the solid lines cross the dashed lines we obtain
the phase boundary of the transition in Fig. 7. The physics
involved in the transition is captured by an idea of Mott that
as the density of the plasma is increased the screening length is
reduced and it becomes more and more difficult to form an ex-
citon. Thus the metallic plasma is more stable at high densities
(small rs). As the number of electron valleys is increased, the
kinetic energy of the plasma is reduced, whereas the energy of
the exciton is not much changed. The plasma has lower energy
over a larger region in phase space. As the spacer thickness
is decreased, the interlayer Coulomb interaction enhances the
energy of the exciton and the coupling of density modula-
tion 〈ρG〉 at reciprocal lattice vector G that characterizes the
solid phase. Thus the metallic region shrinks. The transition
electron/hole density is in an experimentally accessible range
between 4.1 × 1012 cm−2 and 14.5 × 1012 cm−2. This raises
the possibility of exploiting the structure for logic device
applications.

FIG. 7. The transition rs as a function of dBN .
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V. CONCLUSION

In conclusion, we have investigated the metal-insulator
transition between the electron-hole plasma and a newly
proposed exciton solid for double-layer two-dimensional
electron-hole systems in transition metal dichalcogenides
stacked on opposite sides of thin layers of BN. We com-
puted the energies of the two phases with fixed-node diffusion
Monte Carlo simulation. The valley degeneracy of the bands
lowers the energy of the e-h plasma by a significant amount.
The screened interlayer and intralayer Coulomb interaction
is calculated for typical realistic experimental structures by
including the polarization charges at the interfaces of en-
capsulations and substrates. We found that the encapsulation
can lower the exciton energy by an order of magnitude. For
spacer thickness d between 2.5 and 7.5 nm, the transition
electron/hole density is in an experimentally accessible range
between 4.1 × 1012 cm−2 and 14.5 × 1012 cm−2. We have
explored the effect of the potential from the charges on the
boron and the nitrogen ions and found that it produced a less
than 10% change in the energy difference between the two
phases [33]. The phase boundary is not affected. Our results

raise the possibility of exploiting this effect for logic device
applications.

In this paper we focus on the case with equal number of
electrons and holes. In the metallic phase, when the number
of electrons is not equal to the number of holes, the state
will remain metallic. In the insulating phase, we expect a
small number of the excess electrons/holes to form a Wigner
solid occupying the interstitial positions of the exciton solid
[34], since the Wigner solid is stable at low densities. The
system remains insulating. Eventually when the imbalance
gets bigger the Wigner solid becomes unstable and the system
becomes metallic. This metal insulator transition provides for
another opportunity to explore possible device applications.
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