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Bulk contributions to the Casimir interaction of Dirac materials
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Exploiting methods of quantum field theory we compute the bulk polarization tensor and bulk dielectric
functions for Dirac materials in the presence of a mass gap, chemical potential, and finite temperature. Using
these results (and neglecting eventual boundary effects), we study the Casimir interaction of Dirac materials.
We describe in detail the characteristic features of the dielectric functions and their influence on the Casimir
pressure.
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I. INTRODUCTION

Topological insulators [1,2] are among the most interesting
and most actively studied materials of modern condensed mat-
ter physics. The characteristic feature of these materials is the
presence of topologically protected surface states. [We shall
consider here three-dimensional (3D) materials only]. The
simplest continuous model having this property is a massive
Dirac fermion subjected to suitable boundary conditions.

Over the recent years, the physics of the Casimir interac-
tion [3] emerged as an important instrument for the study of
properties of new materials [4,5]. First of all, the Casimir ef-
fect is an integral effect which depends on the properties of the
dielectric functions at all frequencies and all momenta. Such
properties are hard to analyze with other methods. Besides,
the Casimir interaction dominates at short separations. Thus,
the study of the Casimir force is important for applications in
nanoelectromechanical systems. The main tool for our study
is the fermion polarization tensor. Because of its high com-
plexity it is useful to study its bulk contribution separately and
to postpone the inclusion of the remaining parts. The present
work is dedicated to the bulk part. The effects of surface states
will be neglected.

The materials which we consider in this paper have a
nonzero mass gap in the bulk (like the topological insulators,
e.g.). Thus zero-gap Dirac semimetals are not included. Also,
we do not consider Weyl semimetals which are characterized
by a nonzero separation between Weyl points in the momen-
tum space. We briefly comment on possibilities to include
these very interesting materials in our approach in Sec. V.
The publications on the Casimir interactions of various Dirac
materials have been reviewed in Refs [4,5]. We make mention
of a couple of recent papers, Refs. [6–8]. The papers which
have been published so far use different physical setups. A
detailed comparison of our approach to that of the current
literature is postponed to Sec. V.
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The bulk electronic properties will be expressed in terms of
the polarization tensor of Dirac fermions and computed using
the methods of quantum field theory (QFT) as a one-loop
Feynman diagram. This approach was applied to a 2D Dirac
material — graphene — in the papers [9,10] and subsequently
confirmed in the experimental studies [11–13]. The polariza-
tion tensor approach is known to take properly into account
the spatial dispersion effects by construction. As it has been
demonstrated recently [14,15], these effects are essential for
a resolution of some internal controversies in the Casimir
physics. To describe a wide range of materials we need the
full expression for the polarization tensor at arbitrary values of
four-momenta, mass m, temperature T , and chemical potential
μ. Despite the large literature on finite-temperature QFT we
were not able to find a suitable expression of the required level
of generality and had to redo this (rather standard) calcula-
tion. For example, in the papers [16–20] just the polarization
function rather than the full polarization tensor was computed.
Also, even the polarization function was not given for the
whole range of parameters which we need in our work. The
dielectric functions εl (longitudinal) and εt (transversal) are
expressed through components of the polarization tensor with
the help of Lindhard formalism [21]. We mention closely
related calculations in Ref. [22]. There the Casimir interac-
tion between half-spaces with a scalar field confined to them,
interacting through another scalar field across the gap, was
calculated using the TGTG-formula1. However, the methods
for the calculation of the polarization tensor used there, are
different from the ones used in the present paper.

Our purpose is not to study the Casimir interaction of a
particular material, but rather to answer the question: What
are the characteristic features of dielectric functions and the
Casimir pressure of a material having Dirac quasiparticles in
the bulk? Therefore, we perform our study for a reasonably
wide range of parameters. We find that quantum corrections

1TGTG is a shorthand notation for Green’s function - T-matrix -
Green’s function - T-matrix in the scattering approach to the Casimir
effect.
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to the magnetic permeability are always negligible. The di-
electric functions εl,t have a strong peak at low (imaginary)
frequencies and momenta with rather characteristic depen-
dence on m, μ, and T , and a slow varying tail at moderate or
high momenta and frequencies. The Casimir pressure between
two identical Dirac materials is influenced significantly by
quantum corrections. It is suppressed at short distances and
low temperatures and enhanced at large separations and high
temperatures. We trace this behavior back to the properties
of dielectric functions. We also find that almost the whole
dependence of the Casimir pressure on T and μ is due to the
zero Matsubara frequency contribution to the Lifshitz sum.

In this work, we neglect the effects of impurities and
well as the contributions to the polarization tensor from the
fermionic surface states. It is hard to make any definite conclu-
sions on the relative amplitude of these effects before explicit
calculations have been performed. (We postpone them to a
future work.) There are, however, some indirect arguments
implying that our model should indeed be a good approxima-
tion to a realistic situation. They are based on a comparison to
the Casimir interaction of graphene, which is the only Dirac
material whose Casimir interaction has been studied exper-
imentally (see Refs. [11–13]). First, the experiment shows
a good agreement with the theory based on a polarization
tensor computed without taking into account the contributions
of impurities. Thus, it is reasonable to neglect the effects of
impurities of other Dirac materials as well (at least in the first
approximation and if they are clean enough). Note, that the
influence of impurities on the Casimir force has never been
studied in the approach based on polarization tensor. Second,
the effects of surface states for 3D materials can be mimicked
by a sheet of graphene on top of a dielectric. Both theory and
experiment in this case show that the main contributions to
the Casimir force comes from the dielectric bulk. This can
be related to differences in the dependence of polarization
tensor on the Fermi velocity in 3+1 and 2+1 dimensions, see
discussion in the next section. Thus, neglecting surface states
in the first approximation is not so unreasonable.

This paper is organized as follows. The polarization tensor
is computed in the next section while some details of this com-
putation are placed in the Appendix. In Sec. III we analyze
the dielectric functions at imaginary frequencies. Section IV
is dedicated to the Casimir interaction. Some concluding re-
marks are contained in Sec. V.

Throughout the paper we use natural units h̄ = c = kB = 1,
if not stated otherwise.

II. POLARIZATION TENSOR AND ITS FORM FACTORS

We consider an idealized material with quasiparticle ex-
citations corresponding to one generation of Dirac fermions.
Their spectrum is described by the Dirac operator

/D = iγ̃ ν (∂ν + ieAν ) + m. (1)

Here ν = 0, 1, 2, 3 is a four-vector index, Aν is an electro-
magnetic potential. A tilde over a four-vector means that the
components are rescaled with the Fermi velocity vF as

γ̃ μ ≡ ημ
ν γ ν, η = diag(1, vF , vF , vF ). (2)

The matrices γ μ satisfy the usual Clifford relation γ μγ ν +
γ νγ μ = 2gμν with g = diag(+1,−1,−1,−1). Particular

representation of the γ matrices will play no role in what
follows. Without any loss of generality we assume m � 0.

The interaction with quantum fermions leads to the follow-
ing effective action in quadratic order for the electromagnetic
potential:

Seff = 1

2

∫
d4x d4y Aμ(x)�μν (x, y) Aν (y), (3)

where �μν is the polarization tensor. Due to the translation
invariance, it is convenient to make a Fourier transformation
in Eq. (3). Our conventions are clear from the formula

Aμ(x) =
∫

d4k

(2π )4
eikxAμ(k).

Thus, we have

Seff = 1

2

∫
d4k

(2π )4
Aμ(−k)�μν (k) Aν (k). (4)

For zero temperature and zero chemical potential, T =
μ = 0, and to the lowest order of perturbation expansion (one-
loop) the polarization tensor, which will be denoted by �0(k),
can be written as

�
μν
0 (p) = ie2

∫
d4k

(2π )4
tr

[
γ̃ μ /D−1

0 (k)γ ν /D−1
0 (k − p)

]
. (5)

Here /D−1
0 (k) is a Fourier transform of the inverse of free Dirac

operator (Aμ = 0),

/D−1
0 (k) = −kμγ̃ μ + m

k2 − m2
. (6)

We use causal Green’s functions, so that the integration con-
tour for k0 is defined by the shift k0 → k0 + i0 sgn (k0).

To include a nonzero temperature T and a nonzero chem-
ical potential μ we shall use the imaginary time Matsubara
formalism. First, one has to shift the temporal components
of the momenta of fermions by the chemical potential μ,
k0 → k0 + μ, without shifting the contour. Then one has to
introduce imaginary Matsubara frequencies, k0 → ik4, p0 →
ip4, k4 = 2πT (n + 1

2 ), p4 = 2πT l , n, l ∈ Z. (Later we shall
use a special notation ξl = 2π lT for the bosonic Matsubara
frequencies). At the last step, one has to replace the integral
over k0 by a sum over the Matsubara frequencies,∫ ∞

−∞
dk0 → 2π iT

∑
n∈Z

. (7)

Thus, we obtain

�μν (p) = −e2T
∑
n∈Z

∫
d3�k

(2π )3
tr [γ̃ μS(k)γ̃ νS(k − p)], (8)

where all momenta are Euclidean as described above. S(k) is
the Euclidean propagator,

S(k) = − (ik4 + μ)γ 0 + vF �k × �γ + m

(ik4 + μ)2 − v2
F
�k2 − m2

. (9)

Our notations respect the natural position of indices, �k =
(k1, k2, k3) while �γ = (γ 1, γ 2, γ 3). We stress that we do not
change the γ matrices and do not make Euclidean rotation of
the components of �μν .
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As we know, see for example Ref. [23], the dependence
of � on the Fermi velocity can be accounted for in a very
simple way. One can make the change of integration variable
�k → vF �k in (8) to see that

�μν (p) = v−3
F ημ

ρ ην
σ �̂ρσ ( p̃), (10)

where �̂μν (p) is the polarization tensor computed for vF = 1
and p̃μ = ην

μ pν . As we shall see below, to reconstruct full ten-
sor structure one needs just two specific combinations of the
components of �̂μν , namely �̂00 and �̂tr ≡ �̂μ

μ. We introduce
a shorthand notation �̂x for both of them with either x = 00
or x = tr.

In 2 + 1 dimensions, an analog of Eq. (10) contains a
factor of v−2

F instead of v−3
F . This suggest that bulk quan-

tum effects are more important than the effects of surface
states.

The computations of polarization tensor can be found in
the Appendix, the final result reads

�̂x(p) = �̂x
0(p) + �̂x

T,μ(p), (11)

where individual terms on the right-hand side are given by

�̂x
T,μ(p) = + e2

2π2

∫ ∞

0

�k2d|�k|
Ek

{Ix
+ + Ix

−}�(Ek, μ), (12)

�̂x
0(p) = − e2

2π2

∫ ∞

0

�k2d|�k|
Ek

{Ix
+ + Ix

−}. (13)

We used the following notations:

�(Ek, μ) = 1

e
Ek +μ

T + 1
+ 1

e
Ek −μ

T + 1
, Ek =

√
m2 + �k2,

(14)
and

I00
± = 1 + 4E2

k − �p2 − p2
4 ± 4ip4Ek

4|�k|| �p|
ln

[
�p2 + p2

4 + 2|�k|| �p| ∓ 2ip4Ek

�p2 + p2
4 − 2|�k|| �p| ∓ 2ip4Ek

]
,

I tr
± = 2

{
1 + 2m2 − �p2 − p2

4

4|�k|| �p|
ln

[
�p2 + p2

4 + 2|�k|| �p| ∓ 2ip4Ek

�p2 + p2
4 − 2|�k|| �p| ∓ 2ip4Ek

]}
. (15)

A characteristic property of the split (11) is that the tensor �̂0 depends neither on T , nor on μ, while the part �̂T,μ vanishes
when T = μ = 0. This motivates our choice of notations. The representation (11) has many other advantages which will be
explained below.

Let us now show how the full expression for polarization tensor can be recovered from �̂tr and �̂00. The polarization tensor
for the problem in question has to satisfy a number of symmetry requirements. It has to be symmetric, invariant under spatial
rotations and transversal. Thus, just two independent tensor structures are allowed:

�μν (p) = ϕL(p)Pμν
L + ϕT (p)Pμν

T , (16)

Pμν
L = pμ pν

p2
− pμuν + pνuμ

p0
+ uμuν p2

p2
0

, Pμν
T = gμν − pμ pν

p2
,

where u = (1, 0, 0, 0) in the medium rest reference frame. The scalar functions ϕL and ϕT (form factors) can be expressed
through the components of polarization tensor as

ϕT = 1

2

(
p2

�p2
�00 + �μ

μ

)
, ϕL = p2

0

2 �p2

(
3p2

�p2
�00 + �μ

μ

)
. (17)

By using Eq. (10) we can express these quantities through the polarization tensor at vF = 1,

�00(p) = v−3
F �̂00( p̃), �μ

μ(p) = v−3
F (1 − v2

F )�̂00( p̃) + v−1
F �̂μ

μ( p̃). (18)

Equations (17) and (18) are valid for both terms of the split (11) �0 and �T,μ individually.
The integral over |�k| in Eq. (13) is divergent. Thus the polarization tensor �μν needs to be regularized and renormalized. Note

that �T,μ is finite, so that the renormalization can be performed at zero temperature and zero chemical potential, as expected.
In the presence of vF , the renormalization was performed recently in Ref. [23] in the Pauli-Villars formalism which we follow
in this work (see also Refs. [24–27] for a renormalization group analysis of such theories). A short summary of the procedure
used in Ref. [23] is as follows. One uses subtraction of the contributions of Pauli-Villars regulator fields to polarization tensor.
The expressions obtained are still divergent in the limit of infinitely massive regulators. These divergences are removed by a
redefinition of bare dielectric permittivity ε0 and magnetic permeability μM,0 in the Maxwell action in a media

SM = 1

2

∫
d4 p

(2π )4

[
ε0 �E (−p) × �E (p) − μ−1

M,0
�B(−p) × �B(p)

]
. (19)

According to the general philosophy of renormalization, ε0 and μM,0 do not depend on the momentum p. These two constants
cannot be predicted in the framework of QFT and have to be considered as an input. The renormalized �0 reads

�
μν
0 (p) = − e2

2π2v3
F

ημ
σ ην

ρ[ p̃σ p̃ρ − gσρ p̃2] f ( p̃2/m2), f (z) ≡
∫ 1

0
dx x(1 − x) ln[1 − zx(1 − x)]. (20)
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To avoid a notation clutter, we do not introduce any spe-
cial symbol for the renormalized tensor. From now on, only
renormalized quantities will be used. f (0) = 0, and thus ε0,
and μM,0 can be interpreted as a dielectric permittivity and
a magnetic permeability, respectively, they are measured at
vanishing temperature, zero chemical potential and zero ex-
ternal momentum. The quantum effective action (4) obtained
in this way vanishes in the limit of infinitely large mass gap,
m → ∞, which is very natural from the physical point of
view.

We use now the analysis by Lindhard [21] to relate these
quantities to the components of dielectric tensor εl and εt

which are more common in the condensed matter context. The
matrix-valued dielectric function εi j which relates �E to the
electric displacement �D, Di = εi jE j , can be written through
two scalar functions as

εi j (p) =
(

δi j − pi p j

�p2

)
εt (p) + pi p j

�p2
εl (p). (21)

By comparing the standard Maxwell equations to the one
obtained by varying SM + Seff one comes to the following
relations:

εl = ε0 + 1

p2

( �p2

p2
0

ϕL − ϕT

)
= ε0 + �00

�p2
, (22)

εt = ε0 − �p2

p2
0

(
1

μM,0
− 1

)
− ϕT

p2
0

= ε0 − �p2

p2
0

(
1

μM,0
− 1

)

− 1

2p2
0

(
p2

�p2
�00 + �μ

μ

)
. (23)

These two functions will play the central role in our work. At

real frequencies, they define the optical properties of a bulk
of a Dirac material. At imaginary frequencies, these functions
enter the Lifshitz formula for the Casimir energy.

III. BEHAVIOUR OF THE DIELECTRIC FUNCTIONS

From now on we work with Euclidean momenta only. Let
us introduce the following notations for the Euclidean norm
of four-vectors

|p| :=
√

p2
4 + �p2, | p̃| :=

√
p2

4 + v2
F �p2. (24)

Although for T �= 0, within the Matsubara formalism, the
momentum p4 takes only discrete values, p4 = 2πT l [see
Eq. (7)], the above expressions are valid for any imaginary
frequency, ω = ip4, and the analysis below will be done for
continuous values of p4 regardless of the temperature.

For the purpose of numerical study, we will need some
numerical values for the constants characterizing Dirac mate-
rials. As we have already mentioned above, we are not going
to stick to any particular material. We shall rather make our
choice within some reasonable range. We fix vF = (600)−1.
The bare dielectric permittivity ε0 will be allowed to vary
between 2 and 10, the mass will be taken 0.01 or 0.1 eV,
while the chemical potential will take values between μ = 0
and μ = 0.2 eV.

First, consider the case T = 0 = μ. By using Eqs. (22),
(23) and the explicit form of polarization tensor (20) we obtain

εl (p) = ε0 − e2

2π2vF
f (−| p̃|2/m2), (25)

εt (p) = ε0 + �p2

p2
4

(
1

μM,0
− 1

)
− e2

2π2

(
1

vF
+ vF �p2

p2
4

)
f (−| p̃|2/m2). (26)

At this point, we observe that in the terms representing quantum corrections in Eqs. (25) and (26), the spatial momentum �p
is always multiplied by vF . This makes the spatial dispersion practically irrelevant except for the zeroth Matsubara frequency
p4 = ξ0 = 0. Therefore, for p4 �= 0 instead of εl and εt one can use the dielectric permittivity and magnetic permeability which
are given by the formulas [21,28]

ε(p4) = lim
�p→0

εt (p) = lim
�p→0

εl (p), 1 − 1

μM
= − lim

�p→0

p2
4

�p2
(εt − εl ), (27)

where in all function the Wick rotation p0 = ip4 is understood. By using Eqs. (20) we obtain

ε(p4) = ε0 − e2

2π2vF
f (−p2

4/m2), μ−1
M (p4) = μ−1

M,0 − e2vF

2π2
f (−p2

4/m2). (28)

As compared to quantum corrections �0ε(p4) ≡ ε(p4) −
ε0 the corrections to �0μ

−1
M (p4) ≡ μ−1

M (p4) − μ−1
M,0 are

suppressed with v2
F which is a very small quantity.

Thus, there is no significant correction to μ−1
M,0 for

T = μ = 0.
Note that f (−p2

4/m2) is a monotonously increasing func-
tion of p2

4. Asymptotically, it behaves as p2
4/(30 m2) for small

p2
4 and as 1

6 ln(p2
4/m2) for large p2

4. The log term may look
troubling since it grows indefinitely for very large values of
p4. However, such terms are usual in QFT. They signal the
necessity of a resummation of perturbation series. Fortunately,
for the applications considered in the present paper this ef-
fect is not significant due to the presence of an exponential

damping in the Lifshitz formula for the Casimir pressure, see
Eq. (36) below.

For μ �= 0 �= T the dielectric functions are given by com-
plicated expressions. These expressions are invariant with
respect to the replacement μ → −μ. From now on we take
μ � 0. Most remarkable is the behavior of dielectric permit-
tivity at small (imaginary) frequencies:2

�T,με(p4) 	 �2
ε

p2
4

. (29)

2We use a notation ε = ε0 + �0ε + �T,με consistent with the ex-
pansion (11) of polarization tensor.

195431-4



BULK CONTRIBUTIONS TO THE CASIMIR INTERACTION … PHYSICAL REVIEW B 104, 195431 (2021)

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

(a) (b)

p4 (eV)

Δ
εl

(i
p 4

)

0 0.2 0.4 0.6 0.8 1

·10−2

0.0

0.2

0.4

0.6

0.8

1.0
·10−2

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

p4 (eV)

Δ
εt

(i
p 4

)

0 0.2 0.4 0.6 0.8 1

·10−2

0.0

0.2

0.4

0.6

0.8

1.0
·10−2

FIG. 1. Total quantum correction �εl,t = �0ε
l,t + �T εl,t as functions of p4 for m = 0.1 eV, | �p| = 0.01 eV, T = 100 K, and μ = 0. (a) and

(b) represent εl and εt , respectively.

This term reminds us of the plasma model of dielectric per-
mittivity with the plasma frequency given by

�2
ε = e2

3π2vF

∫ ∞

0

�k2d|�k|
Ek

2E2
k + m2

E2
k

�(Ek, μ). (30)

This integral can be evaluated explicitly in two limiting cases.
In the first one, when μ < m and T is much smaller than m −
μ, one has

�2
ε 	 e2

vF

√
mT 3

2π3
(e− m−μ

T + e− m+μ

T ). (31)

If m < μ and T 
 μ − m,

�2
ε 	 e2(μ2 − m2)3/2

3π2vF μ

(
1 + T 2 π2

6

2μ4 + 2m4 − μ2m2

μ2(μ2 − m2)2

)
.

(32)
In deriving this formula the low-temperature expansion from
Ref. [29] is useful.

The correction �T,μμ−1
M for small imaginary frequencies

has a form similar to Eq. (29). It is suppressed by a factor
of order of v2

F as compared to �T,με. Indeed, as one can
check numerically, the corrections to μ−1

M always remain sev-
eral orders of magnitude smaller than the corrections to ε.
This is consistent with the phenomenological observation that
Dirac materials are nonmagnetic which also prompts us to use
μM,0 = 1 till the end of this paper.

The formula (29) is not valid at the zeroth Matsubara
frequency p4 = 0. At this point, the spatial dispersion is not
negligible. Thus the full functions εl and εt have to be consid-
ered. The function εl (0, �p) has a pole at | �p| = 0,

εl (0, �p) 	 e2

π2v3
F �p2

∫ ∞

0

d|�k|
Ek

{
k2 + E2

k

}
�(Ek, μ). (33)

If T is much smaller than both m and |m − μ|, the expression
above can be simplified as

εl (0, �p) 	 e2

v3
F �p2

√
mT
2π

(e− m−μ

T + e− m+μ

T ) for m > μ, (34)

εl (0, �p) 	 e2μ

πv2
F �p2

√
μ2 − m2 for m < μ. (35)

One sees many similarities to the behavior of the pole term in
ε, see Eqs. (29), (30), (32), and (31) above.

The other function εt can be analyzed along the same lines.
However, due to the structure of reflection coefficients, see
Eq. (38) below, the behavior of εt at small frequencies and
momenta is less important. Typical plots for both εl and εt are
given in Fig. 1. Both graphs have very sharp positive peaks at
low frequencies and long slowly-varying negative tails. The
peak is so narrow that its influence is practically limited to the
zeroth Matsubara frequency.3

IV. CASIMIR INTERACTION

In this section, we study the Casimir interaction between
two identical Dirac materials with parallel flat boundaries
separated by a vacuum gap a. Let x3 be the coordinate normal
to the boundaries. The Casimir pressure (the force per unit
area) is given by the celebrated Lifshitz formula

P(a) = −T

π

∞∑
n=0

′
∫ ∞

0
qn p⊥d p⊥

∑
l=te,tm

(
e2aqn

r2
l (iξn, p⊥)

− 1

)−1

.

(36)

In the n sum, the Euclidean frequency p4 takes discrete
Matsubara values p4 = ξn = 2πnT . The prime near the sum-
mation symbol means that the term with n = 0 enters with a
factor of 1/2. We also defined

p⊥ =
√

p2
1 + p2

2, qn =
√

p2
⊥ + ξ 2

n . (37)

In Eq. (36), rte and rtm are the reflection coefficients for
transverse electric (TE) and transverse magnetic (MT) modes,
respectively. To compute the reflection coefficients one needs
to know the behavior of the polarization tensor near the
boundary. This can be done, at least in principle, by QFT
methods as in Refs. [23,30]. However, the computations done
in these papers were quite complicated even for zero temper-
ature and zero chemical potential. Thus, in the present work
we ignore specific boundary contributions to the polarization
tensor and adopt a much simpler approach [31–34] based on
the assumption of specular reflection of charged particles at

3For T = 100 K the first Matsubara frequency is ξ1 = 5.4 ×
10−2 eV.
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FIG. 2. Relative variation of the Casimir pressure (Pd − P)/Pd % as a function of separation for m = 0.01 eV, T = 100 K, μ = 0 and three
different values of ε0: ε0 = 10, 5, and 2 in (a), (b) and (c), respectively.

the boundary. In this approach, the reflection coefficients read

rtm(iξn, p⊥) = qn − ξnZtm(iξn, p⊥)

qn + ξnZtm(iξn, p⊥)
,

rte(iξn, p⊥) = qnZte(iξn, p⊥) − ξn

qnZte(iξn, p⊥) + ξn
. (38)

The surface impedance functions

Ztm(iξn, p⊥) = ξn

π

∫ +∞

−∞

d p3

�p2

(
p2

⊥
ξ 2

n εl
n

+ p2
3

�p2 + εt
nξ

2
n

)
,

Zte(iξn, p⊥) = ξn

π

∫ +∞

−∞

d p3

�p2 + εt
nξ

2
n

, (39)

are completely defined by dielectric functions in the bulk. We
used a shorthand notation εl,t

n ≡ εl,t (iξn, �p).
As a reference point, we will use the Casimir pressure be-

tween two identical dielectrics with a constant permittivity ε0,
i.e., the materials where quantum corrections are neglected.
The reflection coefficients in this case read

r (d )
te (iξn, p⊥) =

qn −
√

p2
⊥ + ε0ξ 2

n

qn +
√

p2
⊥ + ε0ξ 2

n

,

r (d )
tm (iξn, p⊥) =

ε0qn −
√

p2
⊥ + ε0ξ 2

n

ε0qn +
√

p2
⊥ + ε0ξ 2

n

. (40)

To estimate the effect of quantum corrections, let us con-
sider the variation of the Casimir pressure for a Dirac material
P relative to the Casimir pressure for dielectrics with a con-
stant permittivity, denoted Pd , plotted as a function of the
distance a, Fig. 2, and of the temperature T , Fig. 3. First
of all, we see that this relative effect is tiny for ε0 = 10,
considerable for ε0 = 5, and large for ε0 = 2. However, this
is just a background effect: the pressure Pd used as a reference
point increases as a function of ε0. The shape of the functional
dependence on T is similar to that on a, which confirms
the general observation on the Casimir physics: the relevant
parameter is the product aT . We see that at large distances and
high temperatures quantum corrections increase the Casimir
interaction, while for short distances and lower temperatures
the interaction decreases.

Qualitatively, the behavior of the Casimir pressure depicted
in Figs. 2 and 3 can be explained by the behavior of dielectric

functions described in the previous section. Interestingly, the
values of critical temperature, Tc, and critical distance, ac, de-
fined by Pd = P, have a rather weak dependence on ε0. Thus,
even though the Casimir interaction is a nonlinear effect, the
presence of two characteristic regions may be explained by
looking at the sign of quantum corrections without taking
the value of ε0 into account. It is a very well know fact in
the Casimir physics that the small a/low T behavior of the
Casimir interaction is governed by the high-frequency behav-
ior of reflection coefficients, while in the opposite limit the
zeroth Matsubara frequency becomes increasingly important.
This is roughly related to the presence of the damping fac-
tor e2aqn in the Lifshitz formula (36) and to the temperature
dependence of the spacing in the Matsubara sum. Although
the reflection coefficients are related to εl and εt through
complicated formulas (38), one can deduce some qualitative
results by looking at the properties of εl,t which we discussed
in the previous section. The zero-frequency positive peak in
εl,t effectively increases optical density of the material and
thus leads to an increase of the Casimir pressure at large a
and high T . The negative tail which becomes more visible at
higher frequencies leads to a decrease of the Casimir pressure
in the small a and low T regions. This is exactly what we
see at Figs. 2 and 3. As another check of our qualitative un-
derstanding it is useful to consider the dependence of critical
temperature Tc (at which P = Pd ) on the mass and chemical
potential, see Fig. 4. It is clear on the basis of our arguments
above, that the higher is the peak in εl,t , the smaller Tc has to
be. From the expression (34), we see that as long as μ < m
the increase of μ leads to strong enhancement of εl due an
exponential factor. For μ > m the dependence of εl on μ

is weaker, as follows from Eq. (35). These two regions are
clearly seen at Fig. 4(b). The dependence on m is a bit more
complicated. Actually, the increase of the mass gap leads to a
decrease of all quantum corrections, both in the “peak” and in
the “tail”. For T 
 m suppression of the “peak” is exponen-
tial, see Eq. (34) and is more important than suppression of the
“tail”. For lower values of m the “tail” suppression wins. This
latter effect cannot be confirmed by our analytic formulas, but
it is clearly seen at Fig. 4(a).

Let us now discuss the contribution of the zero Matsub-
ara frequency term in Eq. (36) to the Casimir pressure. By
comparing the graphs in Figs. 5(a) and 5(b) we observe that
practically the whole dependence of the Casimir pressure on μ

and T is due to this term. (A similar picture occurs until very
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FIG. 3. The relative difference in percent (Pd − P)/Pd %. The values m = 0.01 eV, a = 200 nm, and μ = 0 eV are used. ε0 is taken to be
10, 5, and 2 in (a), (b) and (c), respectively.

small distances.) The usual dominance of the zero Matsubara
frequency in the Casimir pressure is enhanced in our case by
strong dependence of the “peak” in dielectric functions on
both T and μ (while the “tail” practically does not depend on
these parameters). A similar effect has been observed in the
Casimir interaction of graphene [10,35]. One may conjecture
that this is a general property of Dirac materials. This is
very remarkable fact which considerably simplifies numerical
calculations. For μ = 0, and for small values of μ as well,
there is no dependence of P on T for low temperature. This
can be traced back to the strong temperature suppression in
Eq. (34). There is no such suppression for μ > m, see (35).
The T dependence of pressure for μ > m is caused by an
O(T ) correction which is not shown in Eq. (35). The behavior
of the Casimir pressure at finite T cannot be fully understood
by asymptotic formulas. Thus, we have to rely on the numerics
which shows that P increases considerably with the increase
of T or μ.

V. CONCLUSIONS

The purpose of this paper was to compute the bulk dielec-
tric functions for Dirac materials at imaginary frequencies
and to study their effect on the Casimir interaction. Let us
summarize briefly our findings. The structure of dielectric
functions was quite simple: a strong and sharp positive peak
near the zero frequency and a long smooth negative tail,
see Fig. 1. This structure causes an increase of the Casimir
pressure at large separations and high temperatures, and a
decrease at small separation and low temperature, as com-
pared to the interaction of dielectrics with a constant dielectric
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FIG. 4. The dependence of critical temperature Tc on the mass
gap m (a) and on the chemical potential μ (b). The values ε0 = 2,
a = 200 nm are used.

permittivity ε0. Other properties of the Casimir pressure also
got nice qualitative explanation through the properties of
quantum corrections to dielectric functions. We found that
the dependence of the Casimir energy on temperature and
chemical potential is almost entirely due to the contribution
from the zeroth Matsubara term in the Lifshitz sum. This fact
leads to great simplifications in the numerics. We like to stress
that the effects of quantum corrections to dielectric functions
are very well seen in the Casimir interaction, as well as the
influence of mass gap and chemical potential.

The publications on the Casimir interaction of Dirac and
similar materials have been reviewed in Refs. [4,5]. Almost
all of these papers did not consider the effects of quantum
Dirac fermions in the bulk. There are exceptions, however.
Reference [8] considered lattice fermions in various dimen-
sions, but the Casimir energy computed there was a function
of the size of samples (rather than of the distance between
samples, as in our work) and was caused by vacuum fluctu-
ations of fermions (rather than by an interaction of quantum
fermions with quantum photons as in our work). The Casimir
interaction of Weyl semimetals was studied in Refs. [6,7,36].
It should be possible to compare some limiting cases of these
papers to our work. However, the authors of Refs. [7,36] used
only the anomalous (antisymmetric) part of the polarization
tensor (which is absent in our case) and neglected the symmet-
ric part. The study of Ref. [6] was based on the conductivity
tensor calculated within the Kubo approach, which made all
the quantities dependent on a cutoff parameter. The role of this
parameter is still unclear. The QFT method used here does
not provide any additional parameters in the description of
the system. Reference [6] studied the case m = 0 and used the
absolute value of vector b describing the separation of Weyl
points in the momentum space as a scale parameter. Thus, the
limit b → 0 is tricky. All in all, Ref. [6] and the present work
studied completely different ranges of physical parameters by
different methods.

At the same time, it would be very interesting to redo
the calculations of Ref. [6] within the QFT approach ad-
vocated in the present paper. The presence of field b leads
to a possibility of Casimir repulsion. By looking at our
results one may suggest that the repulsion is more likely
to happen at small separation where the attractive inter-
action is weaker, see Fig. 2. However, without precise
calculations this prediction should be taken with a grain of
salt.
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The limit m → 0 (Dirac semimetals) cannot be taken in our
formulas immediately. The polarization tensor at T = 0 = μ

diverges in this limit which is the usual zero mass singularity
of QFT. This singularity can be easily avoided by changing the
normalization point. Also, in this work we used a dielectric
with constant ε as a reference material which is not a natural
choice in the case of semimetals. Both problems are technical
and easy to solve, but one has to redo all calculations reported
above.

In this work, boundary contributions to the polarization
tensor have been neglected. To take them properly into ac-
count, one has to extend the results of Refs. [23,30] to the case
of nonzero temperature and chemical potential. We hope to
address this problem in a future publication. The present work
also did not consider possible contributions to the dielectric
functions from other sources (from phonons, for example).
Taking these contributions into account is also a task for some
future work when we shall consider particular materials.
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APPENDIX: COMPUTATION OF THE
POLARIZATION TENSOR

Here we sketch the computation of polarization tensor �̂μν

for unit Fermi velocity, vF = 1. The formalism which we
apply here is rather standard, see Ref. [37]. Exactly the same
methods were used in Refs. [35,38,39], see also Ref. [40],
to compute the polarization tensor in graphene for nonzero
temperature and chemical potential.

After computing the traces of γ matrices in Eq. (8)
we arrive at the following expression [see notations below
Eq. (10)]:

�̂x(p) = −4e2T
∞∑

l=−∞

∫
d3�k

(2π )3

Zx

N
. (A1)

Here,

Z00 = m2 − (k4 − iμ)(k4 − iμ + ip0) + �k(�k − �p), (A2)

Z tr = 4m2 + 2(k4 − iμ)(k4 − iμ + ip0) + 2�k(�k − �p), (A3)

N = [
(k4 − iμ)2 + E2

k

][
(k4 − iμ + ip0)2 + E2

k−p

]
, (A4)

with k0 = ik4 = 2πT (l + 1
2 ), Ek =

√�k2 + m2 and Ek−p =√
(�k − �p)2 + m2 .
We express the sum over Matsubara frequencies through a

contour integral

�̂x(p) = 4e2
∮

γ

dk4

1 + ei k4
T

∫
d3�k

(2π )4

Zx

N
. (A5)

The contour γ = γ1 ∪ γ2 consists of two parts which are de-
picted in Fig. 6.

FIG. 6. The integration contour γ = γ1 ∪ γ2 in the complex k4

plane, see Eq. (A5). Here we also marked the positions of poles of
the integrand. Depending on the signs of μ ± Ek and of μ ± Ek−p

some poles may appear either in the upper or in the lower half-plane.
Both possibilities are depicted.
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On the upper part γ1 of the contour we use the identity

1

1 + ei k4
T

= 1 − 1

1 + e−i k4
T

. (A6)

Contribution of the first (constant) term in Eq. (A6) reads

�̂x
1(p) = 4e2

∫ −∞

+∞
dk4

∫
d3�k

(2π )4

Zx

N
. (A7)

With just the second term in Eq. (A6) present under the
integral, the integration contour γ1 can be closed upwards.
The contour γ2 can be closed downwards. The integration
over k4 is done by computing the residues. After some long
but otherwise straightforward algebra, we obtain the rest of
�̂T = �̂ − �̂1:

�̂x
T (p) = e2

4π3

∫
d3�k
Ek

{
Zx[k4 = i(μ + Ek )]

E2
k−p − (p0 + Ek )2

[nμ + n−μ

− θ (μ − Ek ) − θ (−μ − Ek )]

+ Zx[k4 = i(μ − Ek )]

E2
k−p − (p0 − Ek )2

[n−μ + nμ − θ (μ − Ek )

− θ (−μ − Ek )]

}
. (A8)

Here

n±μ = 1

1 + e
Ek ±μ

T

(A9)

is the Boltzmann factor. We remind the reader that p0 = ip4 =
2π inT = iξn is an imaginary bosonic Matsubara frequency.
Thus, nμ±p0 = nμ.

It is useful to take the terms containing step functions θ

out of the expressions (A8) and combine them with �̂1. The
reshuffled contributions to polarization tensor read

�̂x
0(p) = − e2

4π3

∫
d3�k

{∫ +∞

−∞

dk4

π

Zx

N
+ 1

Ek

[
Zx[k4 = i(μ + Ek )]

E2
k−p − (ip4 + Ek )2

+ Zx[k4 = i(μ − Ek )]

E2
k−p − (ip4 − Ek )2

]
θ (μ2 − E2

k )

}
, (A10)

�̂x
T,μ(p) = e2

4π3

∫
d3�k
Ek

{
Zx[k4 = i(μ + Ek )]

E2
k−p − (ip4 + Ek )2

+ Zx[k4 = i(μ − Ek )]

E2
k−p − (ip4 − Ek )2

}
(nμ + n−μ). (A11)

It remains to integrate over k4 in (A10) and perform the angular integration in d3�k in both formulas above to obtain Eqs. (11)–(15)
of the main text.
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