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Motivated by the recent experimental realization of twisted trilayer graphene and the observed superconduc-
tivity that is associated with its flat bands at specific angles, we study trilayer graphene under the influence
of different forms of light in the noninteracting limit. Specifically, we study four different types of stacking
configurations with a single twisted layer. In all four cases, we study the impact of circularly polarized light and
longitudinal light coming from a waveguide. We derive effective time-independent Floquet Hamiltonians and
review light-induced changes to the band structure. For circularly polarized light, we find band flattening effects
as well as band gap openings. We emphasize that there is a rich band topology, which we summarize in Chern
number maps that are different for all four studied lattice configurations. The case of a so-called ABC stacking
with top layer twist is especially rich and shows a different phase diagram depending on the handedness of the
circularly polarized light. Consequently, we propose an experiment where this difference in typologies could be
captured via optical conductivity measurements. In contrast for the case of longitudinal light that is coming from
a waveguide, we find that the band structure is very closely related to the equilibrium one but the magic angles
can be tuned in situ by varying the intensity of the incident beam of light.
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I. INTRODUCTION

Graphene [1], a single layer of carbon atoms arranged in a
hexagonal lattice structure, is an amazing material with some
highly unusual physical and electronic properties such as good
conduction of electricity and heat almost without scattering
[2]. Electrons in graphene behave as massless relativistic
fermions at low energies which led to much excitement. How-
ever, some aspects of this feature, such as Klein tunneling,
which enables charge carriers to tunnel through very high
electrostatic barriers [3,4], are detrimental to the realization
of electronic applications. Hence, a lot of efforts have focused
on modifying the band structure of graphene [2,5], which
is hoped to allow for better control of graphene’s exciting
features.

One approach to modifying graphene’s band structure that
is exceptionally versatile is to stack multiple graphene layers
on top of each other and introduce a relative twist angle
between them. Such a twist manifests itself in the appearance
of moiré patterns, which can be visualized using scanning
tunneling microscope (STM) techniques [6]. These structures
have been observed in many samples constructed using me-
chanical exfoliation techniques, which makes it possible to
obtain flakes with the desired number of layers [7]. In samples
created this way one commonly finds rotation of the top layer
with respect to the lower ones. One of the most exciting
features of twisted graphene bilayer was noticed in 2011 by
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Bistritzer and MacDonald [8]. Particularly, they found that for
a twist angle θ ≈ 1.05◦—the magic angle—the lowest energy
moiré bands become flat. This finding led to predictions that
the electron-electron interactions at this special magic angle
play an important role and may give rise to strong correlation
effects such as superfluidity [9,10], magnetism [11], or other
types of ordered states [12].

In this context, the discovery of superconductivity near the
magic angle in twisted bilayer graphene by Cao et al. [13] has
led to much excitement about the potential occurrence of a
similar effect in a growing number of twisted moire materials.
Since then, it has been experimentally found that twisted ma-
terials can host a variety of strongly correlated states [13–31]
ranging from correlated insulator [13,26–29] to ferromagnetic
behavior [30,31].

A second common approach at modifying graphene’s band
structure, topology, and transport is to subject it to different
forms of light such as circularly polarized light [32–40]. For
this it is important to be able to solve the time-dependent Flo-
quet eigenvalue problem. For instance it can be useful to make
use of effective time-independent Floquet Hamiltonians, Flo-
quet perturbation theories, and various other techniques that
allow for both perturbative and nonperturbative descriptions
[41–67]. More recently, both moiré and Floquet approaches
have been combined, and a wealth of additional features such
as modified band structures, light induced flat bands [68–70],
and various topological phases have been theoretically pre-
dicted [71–75].

In this work, we have been motivated by the recent interest
in twisted trilayer graphene (TTG), which was sparked by
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the discovery of superconductivity [76]. However, instead of
focusing on the impact of interactions in this material, which
have already been studied in [26,77–79], we will focus on
the interplay of twisted trilayer graphene under the action of
different forms of light. This interaction can lead to effective
bands with distinct properties from their equilibrium counter-
parts such as topological Chern phases similar to what has
been found in graphene [36], as we will see later.

The rest of this work is structured as follows. In Sec. II we
describe twisted trilayer graphene in equilibrium, introduce
the model, and review some of its properties. In Sec. III, we
describe the different forms of light that are used in this work
and describe how they enter the Hamiltonian description. We
also discuss the numerical approach to our theoretical model.
In Sec. IV, we focus on circularly polarized light where we
first analyze the band structures for the different TTGs. We
then derive effective time-independent Hamiltonians that al-
low for less computationally costly treatment of light-driven
TTG. These effective Hamiltonians are then used to study
the band topology and suggest an experimental setup to test
some of our predictions. Finally, in Sec. V we consider lon-
gitudinal light coming from a waveguide. Here, we focus
exclusively on changes to band structure and the effective
Hamiltonian. We find that this type of light makes it possible
to tune the magic angles, where flat bands appear. The effec-
tive Hamiltonian allows us to gain insight into the mechanism

behind this observation. Lastly, in Sec. VI we present our
conclusion.

II. SETUP OF EQUILIBRIUM MODEL AND EQUILIBRIUM
RESULTS

The system we will study in this work is twisted trilayer
graphene in its various stacking configurations subjected to
different forms of light. Here, we briefly review some of its
equilibrium properties.

Trilayer graphene is formed by three layers of graphene
stacked on top of one another. If two sheets are stacked in such
a way that all the carbon atoms of one layer are exactly on top
of an atom in the layer below, this is called AA stacking. The
case where only half of the atoms in the top layer have an atom
exactly below it is referred to as either AB or BA stacking
(there are two possible orderings). For trilayer graphene there
can be various possible configurations such as AAA, ABA,
and ABC stacking. To obtain twisted trilayer graphene each
of these stackings can then have either the top or middle layer
rotated with respect to the other layers, which will lead to a
moiré pattern that is associated with a smaller moiré Brillouin
zone (MBZ), as we show in Fig. 1.

The static Hamiltonian for twisted trilayer graphene we
will work with is based on the Hamiltonian introduced in
earlier works [80,81]. It is given as

H (x, k) =

⎛
⎜⎝

h1(θ1, k − κ1) T12(x) 0

T †
12(x) h1(θ2, k − κ2) T23(x)

0 T †
23(x) h3(θ3, k − κ3)

⎞
⎟⎠, (1)

where

h�(θ�, k) = γ

(
0 f (R(θ�)k)

f ∗(R(θ�)k) 0

)
(2)

is the single layer graphene Hamiltonian with hoppings be-
tween graphene’s sublattices given as f (k) = e−i2a0ky/3 +
2eia0ky/3 sin(a0kx/

√
3 − π/6), R(θ�) is the rotation matrix in

the layer plane, and γ = h̄vF /a0 = 2.364 eV is the strength of
the interlayer hopping, where vF = 106 m/s is the Fermi ve-
locity and a0 = 0.246 A◦ is the lattice constant [82]. Here, we
used the bounded tight binding form of f (k) for single layer
graphene rather than a linearized dispersion used in Ref. [81]
because bounded Hamiltonians are more well behaved for the
purposes of Floquet theory.

The Hamiltonian above can be used to model the various
possible configurations of twisted trilayer graphene we will
consider. Particularly at twist angle θ , a top layer twist (TLT)
can be modelled with parameter choices θ1 = −θ2 = −θ3 =
θ/2, κ1 = κ−, and κ2,3 = κ+ where κ± = kθ

2 (−√
3,±1) and

kθ = 8π sin(θ/2)/3a0. Similarly, for a middle layer twist
(MLT), one would have to set θ1 = −θ2 = θ3 = θ/2, κ1,3 =
κ−, and κ2 = κ+.

The κ± shifts were introduced into the Hamiltonian
through a unitary transformation that ensures that the mo-
menta in all three layers are measured with respect to the �

point in the moiré Brillouin zone seen in Fig. 1. This trans-

formation is also the reason why our T (x) matrices, where x
is the spatial coordinate, at first glance seem to differ by the
choice of q vectors from those used in Ref. [81] as we will see
below. The advantage of this approach is that an expansion
of the Hamiltonian in terms of plane waves can be done in
a conventional way (without the need to introduce additional
phases for the different layer components of the wave func-
tion). In our case, the T matrices for a middle twist are given
as T12(x) = ∑3

�=1 e−iq�·xT�, T23(x) = ∑3
�=1 e+iq�·xT�. The case

(a) (b)

FIG. 1. (a) The moiré Brillouin zone for a trilayer graphene
(TTG) system with only one layer twisted. (b) Schematic plot of the
TTG system for the AAA stacking with middle layer twist showing
the moiré pattern.
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FIG. 2. Band structure of the TTG with equilibrium Hamiltonian
[Eq. (1)] top layer twisted (top row) and middle layer twisted (bottom
row) with twist angle θ = 1.6◦. (a),(c) Starting from AAA stacking
and (b),(d) starting from ABC stacking.

of a top twist differs in that T23(x) = ∑3
�=1 T�. In addition,

we have q1,2 =
√

3kθ

2 (±1,
√

3) and q3 = (0, 0). Finally, the
matrices T� are defined as follows [81]

T AB
� = [

T BA
�

]† =
(

w0ei 2�π
3 w1

w1e−i 2�π
3 w0ei 2�π

3

)
, (3)

T AA
� =

(
w0 w1e−i 2�π

3

w1ei 2�π
3 w0

)
(4)

where the superscripts refer to the type of stacking we have
which can be AA, AB, or BA stacking. We choose the fol-
lowing tunneling parameters w1 = 110 meV and w0 ≈ 0.8w1

so that they are close to those in twisted bilayer graphene
where distortions in a relaxed lattice can be modelled this
way [68,69], which is expected to happen for twisted trilayer
graphene if we neglect next nearest layer interactions.

To provide a reference for our discussion of the nonequi-
librium case, we remind the reader of some equilibrium
properties of twisted trilayer graphene. We plotted the band
structure for the AAA and ABC stacked twisted trilayer
graphene with top and middle layers twisted as shown in
Fig. 2. We have omitted the ABA stacking case because we
find that top layer twisted ABA TTG has a band structure that
for small twist angles is equivalent to the top layer twisted
ABC case. Similarly, the middle layer twisted ABA case has a
band structure that is equivalent to middle layer twisted AAA
TTG. This phenomenon is similar to twisted bilayer graphene
where for small twist angles it does not matter whether one
started from AA stacking or AB stacking. This property is
also preserved once we introduce circularly polarized light
and longitudinal light coming from a waveguide.

FIG. 3. Light source applied on TTG system with AAA middle
layer twisted.

III. NONEQUILIBRIUM SYSTEM AND THEORETICAL
APPROACH

In this section we discuss the effect of shining differ-
ent types of light on TTG samples (Fig. 3) and how to
include this effect in our theoretical model. The first light
source we consider in this work is a circularly polarized
light. If this light is applied perpendicular to the graphene
layers, at frequency ω and driving strength A, then we in-
clude its effect in a semiclassical fashion—assuming large
photon numbers—by making use of the minimal substitution
prescription kx → kx − A cos(ωt ) and ky → ky − A sin(ωt )
[70]. Thus, we have a time-periodic Hamiltonian satisfy-
ing H (x, k, t ) = H (x, k, t + 2π/ω). We should mention that
small deviations from normal incidence leads to small cor-
rections in the high-frequency limit, which is the case in this
work, and thus it can be neglected. For a study of oblique
incidence light in bilayer graphene, see Ref. [83].

The second type of light we will be considering in this
work is longitudinal light coming from a waveguide. Here,
the boundary conditions of a waveguide allow for light with
longitudinal components to exist, which is not possible in
vacuum [69]. The semiclassical Peirls substitution teaches us
how to include a vector potential in a tight binding model [69].
Since our model can be derived from a tight binding model, it
becomes clear that the effect of this type of light is included
in the Hamiltonian via the substitution w0 → w0e−iaAAA cos(ωt )

and w1 → w1e−iaABA cos(ωt ), where aAA = 0.36 nm and aAB =
0.34 nm are interlayer distances in AA and AB regions of the
twisted materials [41]. The effect of this type of light therefore
is to turn interlayer hoppings time dependent.

In both cases light leads to a periodically time-dependent
Hamiltonian. It is therefore necessary to introduce tools that
allow us to properly treat the periodic time dependence. For
this purpose, we note that the solution of the time-dependent
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Schrodinger equation can be written in Bloch form ψ (t ) =
e−iεt u(t ), for some periodic function u(t + T ) = u(t ) and
quasienergy ε, this gives the following equation for u(t ) [41]

(H − i∂t )u(t ) = εu(t ). (5)

Because u(t ) is periodic we can expand the Hamiltonian in the
Fourier basis |n〉 = einωt/

√
2π/ω and find∑

�

[H ( j−�) + δ�, j�ω]u� = εu j, (6)

where H (M ) = T −1
∫ T

0 dte−iMωt H and T = 2π/ω [41]. This
equation is effectively time independent and can therefore
be treated using equilibrium techniques. Clearly, this comes
at the price, however, that the resulting matrix needs to be
truncated to finite order since it can be really large. It is
therefore computationally expensive and thus approximations
can be convenient. In later sections we will consider two types
of approximations, which allow us to work with much smaller
matrices that will help speed up computation times [70].

IV. CIRCULARLY POLARIZED LIGHT

A. Numerical band structure results

In this section we study the effects that circularly polar-
ized light has on the band structure of the various twisted
trilayer graphene systems. To do this we evaluate the Floquet-
Schrödinger equation (6) numerically.

In Fig. 4 we plotted the band structure for different driving
strengths, driving frequencies, and twist angles in the vicinity
of the magic angle of the TTG. We show both the driven case
as well as the undriven case to allow for a comparison. The
cases we consider are twisted configurations that start from
both AAA and ABC stacking and in each case we consider
both top layer and middle layer twists.

An interesting effect of circularly polarized light is that
for certain choices of the twist angle, driving strength A and
the driving frequency ω, one can flatten the central bands
making it a very interesting candidate for strongly correlated
phases because one can expect interactions to be dominant
in this case. For example, in Fig. 4(c), we see that the two
middle bands are less dispersive than their equilibrium coun-
terparts. We observe that not all configurations in Fig. 4 yield
less dispersive bands such as the case of AAA stacked top
layer twist. The effect depends on the relative location of the
Dirac cones, and subsequent hybridization due to interlayer
couplings. In the same figure, we also plotted the density
of states associated with each case. The plots reflect the
flattening of the bands via the appearance of sharper peaks
as can be seen in the case of AAA stacking with a middle
layer twist. Moreover, Fig. 4 shows the appearance of gap
openings which is another rationale for using this type of
light. Consequently, this opens up the possibility to discuss
topological effects that are characterized by the Chern number
of isolated bands. Since we work in the high frequency regime
(the driving frequency is larger than the bandwidth of the
model Hamiltonian), this allows access to information about
topological edge states [84]. This is unlike the low frequency
regime that requires the calculation of the winding numbers
for a proper description of band topology—in this regime the

FIG. 4. Band structure (left column) for TTG driven by cir-
cularly polarized light. (a) Starting with AAA stacking with
TLT and parameters (θ, Aa0, ω) = (1.8◦, 0.25, 2γ ), (b) the ABC
with TLT and (θ, Aa0, ω) = (1.0◦, 0.15, 3γ ), (c) AAA MLT
and (θ, Aa0, ω) = (1.6◦, 0.15, 3γ ), and (d) ABC MLT with
(θ, Aa0, ω) = (1.6◦, 0.15, 3γ ). In the above plots, the dash-dotted
lines represent the undriven case and the solid lines represent the
driven case. The corresponding density of states plots (DOS) are in
the right column rescaled by DM (E ) which is the maximum value of
the DOS of the driven case.

connection between relative Chern numbers and number of
edge states is not immediate anymore. Since such calculations
can be computationally very expensive when working with the
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full quasienergy operator, it will turn out to be convenient to
rely on approximate time independent Floquet Hamiltonians
that will be introduced in Sec. IV B.

B. Effective Hamiltonians

In this section we introduce two approximations to the
Floquet Hamiltonian describing the various twisted trilayer
graphene systems. Before we get to the different specific
approximations let us first make a few approximations that
will be convenient in both cases. It will be useful to linearize
the Hamiltonian (1). However, since we want to capture the
effect of periodic drive as accurately as possible instead of
just linearizing by a Taylor expansion we first expand the
Hamiltonian to first order in a Fourier series and subsequently
linearize it in momenta. The result is that

f (k − A) ≈ a0(kx − iky)J0(2Aa0/3) + 3J1(2Aa0/3)eiωt (7)

where Jn(x) is the Bessel function of the first kind.

1. Van Vleck approximation

The first approximation we now use is the standard per-
turbative Van Vleck (vV) approximation [41,46], where the
effective Hamiltonian to first perturbative order in 1/ω is
given as

H (1)
vV = H (0) +

∑
m �=0

Ĥ (m)Ĥ (m)

mω
. (8)

Hereby, we made use of H (n) = 1
T

∫ T
0 dte−inωt H (t ), which

are Fourier modes of the Hamiltonian H (t ). Within this
approximation, the Hamiltonian takes almost the same
form as in Eq. (1) just with the replacement f (k) →
a0(kx − iky)J0(2Aa0/3) and modified 2 × 2 blocks h� → h� +
diag[−�,+�], where � = (9γ 2/ω)J2

1 (2Aa0/3) [70]. Essen-
tially this means that the circularly polarized light modified
the Fermi velocity and introduced a Dirac gap � into the
Hamiltonian.

2. The rotating frame approximation

An alternative but nonperturbative scheme is to trans-
form to a rotating frame (RF) Hamiltonian HR = U (t )†(H −
i∂t )U (t ) that has a less important time dependence than the
original Hamiltonian. A subsequent time average yields a
Hamiltonian that is more accurate than the vV Hamilto-
nian. It cannot be stressed enough that special care has to
be taken in that the rotating frame transformation is chosen
such that the terms that are neglected in the time average
do not cause breaking of the sixfold rotational symmetry
in momentum space. Here, we provide a simple general-
ization of the unitary transformation that was introduced in
Ref. [70] and that fulfills this property. We start with linearized

dispersion f (k) Eq. (7) in the full Hamiltonian, the time de-
pendent Hamiltonian becomes H (x, k, t ) = H (x, k) + V (t ).
The unitary transformation can be proposed in the form [70]
UR(t ) = e−i

∫
dtV1(t )e−i

∫
dtV2(t ) with a properly chosen decom-

position of the time periodic part of the Hamiltonian V (t ) =
V1(t ) + V2(t ). Here, V1(t ) is the part of the Hamiltonian that is
∝ cos(ωt ), while V2(t ) is ∝ sin(ωt ). The transformation then
is given as

UR(t ) = diag[uR(θ1, t ), uR(θ2, t ), uR(θ2, t )]

uR(θ, t ) = uR,1(θ, t )uR,2(θ, t )

uR,n = cos[γn(t )] − i sin[γn(t )]σ θ
n

, (9)

where γ1(t ) = Bω sin(ωt ), γ2(t ) = Bω(1 − cos(ωt )), Bω =
3J1(2Aa0/3)γ /ω and appropriately rotated Pauli matrices are
given as σ θ

n = e−iθ/2σ3σneiθ/2σ3 .
After taking the time average we arrive at an effective

Hamiltonian H (bare)
eff , which still has a form that is too cum-

bersome to display here and is hard to interpret. Therefore we
apply another unitary transformation that is given by

R = diag
[
eiBωσ

θ1
2 , eiBωσ

θ2
2 , eiBωσ

θ3
2

]
, (10)

where we used definitions for rotated Pauli matrices from
above. Consequently, we calculate our effective Hamiltonian
in the rotating frame as

H (x, k) =

⎛
⎜⎝

h̃(θ1, k − κ1) T̃12(x) 0

T̃ †
12(x) h̃(θ2, k − κ2) T̃23(x)

0 T̃ †
23(x) h̃(θ3, k − κ3)

⎞
⎟⎠,

(11)
where the single layer graphene blocks are modified as fol-
lows

h̃(θ, k) = a0γRFR(θ )k · σ − �RFσ3, (12)

the interlayer hoppings become

γRF = γ J0

(
−6γ

ω
J1

(
2Aa0

3

))
J0

(
2Aa0

3

)
, (13)

and a Dirac gap that is given as

�RF = − 3γ√
2

J1

(
2Aa0

3

)
J1

(
−6

√
2γ

ω
J1

(
2Aa0

3

))
(14)

is introduced.
The effective tunneling matrices are modified as follows.

We first recognize that the original hopping matrices Ti j can
be expressed in terms of Pauli matrices as Ti j = T 0

i j σ0 +
T 1

i j σ1 + T 2
i j σ2 + T 3

i j σ3, where T n
i j are expansion coefficients.

The modified interlayer hopping matrices T̃i j are then found
if we replace the Pauli matrices by new matrices σi → σ̃i.
That is we have T̃i j = T 0

i j σ̃0 + T 1
i j σ̃1 + T 2

i j σ̃2 + T 3
i j σ̃3, where

σ̃1,2 = J0(ν)σ1,2 and

σ̃0 = σ0 + (J0(
√

2ν) − 1)

[
σ0 sin2

(
θi − θ j

2

)
− i

2
σ3 sin(θi − θ j )

]
, (15)

σ̃3 = σ3 + (J0(
√

2ν) − 1)

[
σ3 cos2

(
θi − θ j

2

)
+ i

2
σ0 sin(θi − θ j )

]
, (16)

with ν = (−6γ /ω)J1(2Aa0/3).
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This Hamiltonian offers a huge reduction in computational
cost when compared to the exact case where the quasienergy
operator—if we include a large number of Fourier modes—is
very large. The approximation offers highly reliable results for
the experimentally accessible range of driving strengths in the
high frequency regime.

3. Comparison of the effective Hamiltonian spectrum
and the exact quasienergies

We compare each approximation to the exact result deter-
mined by the full quasienergy operator Eq. (6) in order to
probe the efficiency of each approximation scheme. To illus-
trate their accuracy we compare the full band structure gener-
ated plots of which we show one example in which we show
both the result from the exact quasi energy operator versus the
data found using the above approximate Hamiltonians. The
results for an AAA stacked middle twist can be seen in Fig. 5.

We find that the rotating frame effective Hamiltonian
is systematically closer to the exact quasienergy than the
truncated Van Vleck Hamiltonian. To further quantify the
efficiency of both approximations and get a feel for their range
of validity, we computed the relative error in the center gap
at the K1 point for both methods and plotted the result as
a function of driving strengths and frequencies as shown in
Fig. 6.

Here, we find that the vV approximation works well for
very weak drives and large frequencies and quickly deterio-
rates otherwise, while the RF approximation works well for a
much larger range of driving strengths Aa0 and frequencies
ω. It therefore seems reasonable to use the rotating frame
approximation in all that follows. This is further substantiated
by the fact that the vV approximation can be obtained from the
RF approximation by means of a Taylor expansion in small
J1(2Aa0/3). In this sense the RF approximation can be seen
as a partial resummation of the the vV expansion.

C. Topological phase diagrams

Next, we make use of the rotating frame Hamiltonian to
compute maps of Chern numbers. First, however, let us give

FIG. 5. Comparison between the exact quasienergies and the
energies from the effective Hamiltonians for the band structure of
the TTG with AAA stacking and middle layer twisted, driven by
circularly polarized light θ = 1.6◦, Aa0 = 0.4, and ω = 3γ . (a) Van
Vleck (solid lines) and exact quasienergies compared (dashed lines).
(b) Rotating frame (solid lines) versus the quasienergies (dashed
lines).

a brief summary of the algorithm due to Fukui [84] that we
used in our computations.

To compute the Chern number we divide the moiré Bril-
louin zone into uniform small rectangles of size dkx × dky.
Then we compute the so-called link variables U (�)

k j û
[84],

U (�)
k j û

= 〈ψ (�)(k j )|ψ (�)(k j + û)〉
|〈ψ (�)(k j )|ψ (�)(k j + û)〉| , (17)

where ψ (�)(k j ) is the eigenvector of the Hamiltonian corre-
sponding to the band with index �, and û := ûx = (dkx, 0) or
û := ûy = (0, dky). Next, we calculate the field strength [84]

F (�)
k j

= ln
[
U (�)

k j ûx
U (�)

k j+ûx,ûy
U (�)

k j+ûx+ûy,k j+ûy
U (�)

k j+ûy,k j

]
. (18)

Finally, the Chern number for the �th band is given as

c� = 1

2π i

∑
k j

F (�)
k j

, (19)

where the sum is taken over all plaquettes in the Brillouin
zone.

In this study, we restrict ourselves to the topology of the six
central bands and we use the rotating frame Hamiltonian to be
able to compute Chern numbers sufficiently quickly. We have
spot checked our results against results that we obtained when
we were working with the full quasienergy operator. Since we
work in the high frequency regime, where the frequency is
larger than the bandwidth of the included bands, it is sufficient
to consider the Chern numbers to learn more about topological
properties. We computed Chern numbers for the six central
bands and for various values of the driving strength Aa0 and
the twist angle θ at a fixed driving frequency ω = 2γ . The
resulting topological phase diagrams are shown in Fig. 7. Due
to the high computational cost, we limited ourselves to driving
strengths between Aa0 = 0 and Aa0 = 0.3 (this for frequen-
cies larger than the bandwidth which is the experimentally
favorable regime), and twist angle ranging from 1.5◦ to 2.85◦.

Each color in the diagrams represents a list of Chern
numbers for the six central bands C = {c1, c2, c3, c4, c5, c6}.
Mathematically, if we have N bands {εi(k)}i=N

i=0 , then the six
bands are εN/2−3(k), εN/2−2(k), εN/2−1(k), εN/2(k), εN/2+1(k),
and εN/2+2(k). As an illustration, we plotted the band structure

FIG. 6. Plot of relative error for the gap at the
K1 symmetry point for the TTG system with AAA
stacking and middle layer twisted driven by circularly
polarized light (a) as function of Aa0, with θ = 1.6◦,
and ω = 2γ , (b) and as a function of ω/γ with Aa0 = 0.5.
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FIG. 7. The topological phase diagrams for the TTG system for
a range of values Aa0 and the twist angle θ with ω = 2γ . (a) AAA
stacking and top layer twist, (b) ABC stacking with top layer twisted,
(c) AAA stacking with middle layer twisted, and (d) ABC stacking
with middle layer twisted. Each color represents a set of values for
the Chern numbers of the central six bands as indicated in Table I.

for the ABC stacking case with middle layer twist in Fig. 8,
were we labeled the six central bands. We have tabulated the
corresponding values for each color in Table I. For complete-
ness, we have plotted the variations of the individual Chern
numbers for each case in the Appendix.

We find that each of the different TTG realizations has
its own unique topological structure. The bands in most
cases—except for the AAA middle twist—are also found to
be gapped. Quite generally, we find a rich structure of Chern
numbers and for certain parameter pairs (Aa0, θ ) we find very
large Chern number of 4 or 5 for some of the bands.

For all cases except the ABC top twist we find that the
handedness of the incident circularly polarized light has no

FIG. 8. Band structure for the ABC MLT showing the six bands
labeled c1 → c6. Parameters Aa0 = 0.26375, θ = 1.65◦ and ω = 2γ

were chosen for the plot.

TABLE I. Color codes for the topological phase diagrams Figs. 7
and 9. Here, the term v represents a band closing that was confirmed
up to numerical accuracy. The term ν corresponds to a Chern number
that did not converge even when more than 104 k points were used
in the Chern number computation. RH: right-handed polarized light,
and LH: left-handed polarized light.

color c1 c2 c3 c4 c5 c6

AAA top layer twisted
� -5 3 -1 1 -3 5
� -5 3 -1 1 0 2
� -4 1 0 0 -1 4
� -4 1 0 0 2 1
� -4 2 -1 1 0 2
� -3 0 0 0 2 1
� -2 0 -1 1 0 2
� -2 0 2 -2 0 2
� -2 3 -1 1 -3 2
� -2 3 -1 1 0 -1
� -1 -2 0 0 2 1
� -1 -1 -1 1 1 1
� 1 -3 -1 1 3 -1
� 1 3 -1 1 -3 -1
� ν ν -1 1 0 2

AAA middle layer twisted
� v v 0 0 v v
� v v 1 -1 v v
� v v 1 v v v
� v v v v v v

ABC top layer twisted(RH)
� -3 0 -1 2 0 -3
� -3 0 1 0 0 -3
� -3 0 2 -1 0 -3
� -2 0 -1 2 0 -3
� -2 0 -1 2 1 -4
� 0 0 -1 2 0 -3
� 1 -1 0 2 -2 -1
� 1 0 -1 2 1 -4

ABC top layer twisted(LH)
� -4 1 2 -1 0 -3
� -4 1 2 -1 0 -2
� -4 1 2 -1 0 1
� -3 0 2 -1 0 -3
� -3 0 2 -1 0 0
� -1 -2 2 -1 0 1
� -1 -2 2 0 -1 1

ABC middle layer twisted
� -1 0 1 -1 0 1
� -1 1 0 0 2 -2
� 0 -1 1 -1 1 0
� 0 -1 1 -1 1 ν
� 2 -3 1 -1 3 -2

influence on the topological structure. In Fig. 9 we see that for
this case, however, there are large changes in the topological
structure if we change from left-handed (LH) to right-handed
(RH) circularly polarized light.

D. Experimental proposal

Motivated by the rich topological structure of the different
types of TTGs (see Fig. 7), and the different responses of ABC
to left- and right-handed light we also propose the following
experiment. For a large-enough ABC TTG sample, we shine
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FIG. 9. The topological phase diagrams for the TTG system with
ABC stacking and top layer twisted where (a) for the left-handed cir-
cularly polarized light and (b) the right-handed circularly polarized
light, where we took ω = 2γ . For color codes, please refer to Table. I.

light with opposite handedness next to each other, as depicted
in Fig. 10. By bringing the light beam edges very close to
each other, we can expect to create three distinct topolog-
ical regions, one for each laser pulse and one more at the
intersection between the laser pulses. From the bulk-edge cor-
respondence, we expect edge states at the boundary between
the driven and undriven regions and at boundaries between the
topological regions. These boundary states, indicated in blue
in Fig. 10, could be manifest in optical conductivity measure-
ments [85,86]. This measurement would require employing
a pump-probe experimental setup, where the probe amplitude
a0Aprobe is weak compared with the pump pulse a0A employed
to create the Floquet states.

V. WAVEGUIDE LIGHT

A. Numeric results

Next, we discuss the effect that light coming from a waveg-
uide has on the band structure. This effect is included in the

FIG. 10. Sketch of a two laser procedure to create light-induced
topological boundaries in ABC TTG samples.

Hamiltonian via the time dependent maps of w0,1 that were
mentioned in Sec. III. We treat it numerically by solving
equation (6) that was truncated to finite order. For all cases the
resultant band structure reaches convergence when we include
the first 3 Floquet copies (n = −1, 0, 1).

In Fig. 11 we plotted the band structure for four different
configurations (AAA/ABC stacking, top and middle layer
twists). For convenience we also included the undriven case
for comparison.

When comparing the ABC case (top and middle layers
twists) and the AAA stacking (middle layer twisted) for the
undriven (dashed lines) against the driven case (solid lines),
we find that we can flatten the central bands without intro-
ducing a band opening as in the case of circularly polarized
light. This means that we can tune band flatness, which can be
convenient when trying to realize strongly correlated phases
such as superconductivity. To understand this effect even bet-
ter, we have plotted the velocity of electrons near the K1

symmetry point for the AAA and ABC stacking with middle
layer twisted versus θ−1 in Fig. 12.

We find that the introduction of light from a waveguide
can shift the magic angles. This gives us the opportunity to
speculate a bit about possible applications. For instance, this
observation could be useful in an experiment where one wants
to realize strongly correlated phases. This is because when
one produces a twisted trilayer graphene sample for use in
experiments with strongly correlated phases one has to try to
match the magic angle as precisely as possible. If there is a
small deviation from the angle with flat bands the setup with
waveguide light could be used to correct for these deviations.
Alternatively it could even be possible to use light of this sort
to switch between strongly correlated phases and other phases.

B. Effective Hamiltonian

It is beneficial to better understand the effects that light
from a waveguide has on the band structure from an analyti-
cal perspective. For this purpose, we consider an appropriate
effective time independent Hamiltonian. The vV Hamiltonian
to first order is given by [41]

Heff = H0 +
∑
m �=0

HmH−m

mω
, (20)

where Hm is defined by Hn = 1/T
∫ T

0 e−inωt H (t ). We find that
in our case the term

∑
m �=0

HmH−m

mω
= 0 vanishes and therefore

the Floquet Hamiltonian is given by HF = H0 + O(ω−2).
That is in the Hamiltonian one simply has to replace inter-

layer couplings by

w0 → w0J0(AaAA); w1 → w1J0(AaAB). (21)

The interlayer hoppings are weakened by Bessel functions as
it was also found in Ref. [69]. In twisted bilayer graphene it
was found that the value of the magic angles was interlayer
hopping dependent [87]. If we assume the same is true for
twisted trilayer graphene then this explains the shift of magic
angles that we observed in Fig. 12.

Lastly, to see quantitatively how good this approximation
is we have plotted both the exact quasienergy spectrum as well
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FIG. 11. Left column: Band structure of the TTG driven by
waveguide light with Aa0 = 0.3. (a) The AAA stacking with TLT
and (θ, ω) = (2.000◦, 2γ ), (b) the ABC configuration with TLT and
(θ, ω) = (1.040◦, 2γ ), (c) AAA with MLT and parameters (θ, ω) =
(1.450◦, 3γ ), and (d) the ABC stacking with MLT and (θ, ω) =
(1.157◦, 2γ ). The solid lines are for the driven and the dash-doted
lines for the undriven case. Right column: The density of states plots
associated with the configurations on the left column rescaled by the
maximum value DM (E ) of the driven case.

(a) AAA (MLT) (b) ABC (MLT)

FIG. 12. Plot of velocity as function of 1/θ for the center bands
near K1 in the twisted TTG system driven by waveguide light
compared with the undriven case with Aa0 = 0.3, and ω = 3γ .
(a) Starting from AAA stacking middle layer twist (b) starting from
ABC stacking middle layer twist. Here, ṽx is the velocity at θ = 2.0◦.

as the one from this simple approximation. The result is shown
in Fig. 13.

We find that the result even for a very large driving strength
Aa0 = 0.8 and relatively low frequencies ω = 1.5γ is almost
perfect. For weaker driving strengths and higher frequencies
it was even hard to see any discernible difference between the
approximate and exact quasienergies.

VI. CONCLUSIONS

In this work, we have studied four different stacking
configurations of twisted trilayer graphene (TTG). First we
reviewed the equilibrium properties and then went on to
study various nonequilibrium scenarios. In the presence of
a circularly polarized light, we found that we were able to
flatten the two middle bands compared to the equilibrium
case which could open the door to experiments with strongly
correlated nonequilibrium phases. Even more exciting is the
fact that this type of light causes gap openings, which then
allowed us to study the topological properties of the TTG

FIG. 13. Comparison of the band structure for TTG with ABA
stacking and middle layer twisted driven by waveguide light with
θ = 1.3◦, Aa0 = 0.8, and ω = 1.5γ . obtained via the quasienergy
operator Eq. (6) (dashed lines) versus the zeroth order van Vleck
Hamiltonian H0 (solid lines).
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FIG. 14. The Chern number variation for the six central bands in the TTG system with the AAA stacking and top layer. This is associated
with Fig. 7(a).

configurations that are characterized by single-band Chern
numbers. Here, we focused on the six middle bands and
generated topological phase diagrams for a range of dif-
ferent values of the driving strength and the twist angle.
These diagrams revealed that TTG has a rich topological
structure. Moreover, we found that the topological structure

of ABC stacked TTG with a top-layer twist is sensitive to
the handedness of circularly polarized light. This is in stark
contrast with the other three configurations that we have
studied.

The fact that top twisted ABC stacked bilayer graphene
has different topological phase diagrams depending on the
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FIG. 15. The Chern number maps for the central six bands in the TTG with AAA stacking and middle layer twisted. The letter “v” stands
for the case when no gap opening has been observed. Please note that the white plots indicates that the corresponding bands are not isolated.

the polarization of circularly polarized light led us to propose
an experiment where this difference in typologies could be
captured via optical conductivity measurements. Here, one
takes two sources of circularly polarized light with different
handedness and let them shine on TTG such that the two illu-
minated regions intersect. This creates three distinct regions

of different topology, and thus edge states are expected on
the boundaries between these regions and their boundary with
the undriven regions. The different topological properties are
expected to be measurable in optical conductivity measure-
ments.
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FIG. 16. Variations of the Chern numbers for each of the six central bands c1 → c6 for the case of ABC stacking and MLT. The letter v in
the topological map of the sixth band (c6) corresponds to no gap opening.

In addition, to circularly polarized light we also studied
the effects that longitudinally polarized light, coming from
a waveguide, has on the band structure. We found that the
presence of this light source can make the central bands less
dispersive without the introduction of band gap openings like
in the case of circularly polarized light. This means that effec-

tively we were able to shift the magic angle where flat bands
appear without introducing additional side effects that com-
plicate the Hamiltonian description. This observation might
be useful for the realization of strongly correlated phases in
TTG that closely resemble the equilibrium case at a different
twist angle.
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FIG. 17. Topological maps for the six bands for the ABC stacking case with top layer twisting and right-handed circularly polarized light.
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FIG. 18. Reproduction of Fig. 17 but with incident light polarization being left handed.

APPENDIX: INDIVIDUAL CHERN NUMBERS

In this section, we reproduce the results in Figs. 7 and 9 where for each stacking configuration, we plot the variations of the
Chern numbers for each of the six central bands separately as shown in Figs. 14–18.
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