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Nonlinear anomalous Nernst effect in strained graphene induced by trigonal warping
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It has recently been reported that a nonlinear anomalous Nernst current (NANC), induced by Berry curvature
near the Fermi surface, can be generated as a second-order response to a longitudinal temperature gradient in
a wide variety of time-reversal invariant and noncentrosymmetric materials. So far, NANC in two-dimensional
Dirac systems has been reported to be finite only in materials with substantial spin-orbit coupling and titled
Dirac cones formed from low-energy Dirac quasiparticles. Here, we prove that NANC can also emerge in two-
dimensional Dirac materials even in the complete absence of titled Dirac cones and spin-orbit coupling. It’s
found that the NANC has a quantum origin from the trigonal warping of the Fermi surface. NANC in both
trigonal-warping monolayer and bilayer graphene in the presence of uniaxial strain is theoretically investigated.
The magnitude of NANC in trigonal-warping bilayer graphene is comparable to those reported which originated
from tilted mechanisms in strained MoS2 and bilayer WTe2.
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I. INTRODUCTION

The Hall (Nernst) effects, referring to a generation of
transverse voltage in response to a longitudinal electric field
(temperature gradient), represent important paradigms in con-
densed matter physics [1–3]. Most Hall effects, for example,
conventional Hall effect, quantum anomalous Hall effect
[4–7], anomalous Hall effect [8–13], and thermal Hall ef-
fect [14–18], etc., require time-reversal symmetry broken
by a magnetic field or magnetism. The recently discov-
ered nonlinear anomalous Hall effect (NAHE) [19–28] as a
second-order response to an electric field, which originates
from the dipole moment of Berry curvature in momen-
tum space (namely Berry curvature dipole [19–25]), does
not require time-reversal symmetry breaking but inversion
symmetry breaking. NAHE has been predicted in a lot of
noncentrosymmetric materials, such as two-dimensional (2D)
transition-metal dichalcognides [19,25,26], strained graphene
[23], and three-dimensional Weyl semimetals [19,24], etc.,
and successfully observed in Weyl semimetal WTe2 [27,28],
Dirac semimetal Cd3As2 [29], strain monolayer WSe2 [30],
nonmagnetic Weyl-Kondo semimetal Ce3Bi4Pd3 [31], and
Weyl semimetal TaIrTe4 [32]. The NAHE can be generalized
to more unconventional responses when the discrete and crys-
tal symmetries are broken and have attracted broad interest in
nonlinear anomalous transport phenomena, such as nonlinear
spin Hall effect [33,34], the magnus Hall effect [35], magnus
thermal Hall effect [36,37], nonlinear thermal Hall effect [38],
and the nonlinear anomalous Nernst effect [39].

The nonlinear anomalous Nernst effect (NANE) describes
the phenomenon that a nonlinear transverse current can be
generated as a second-order response to the longitudinal tem-
perature gradient (Fig. 1) and has a quantum origin arising

*yuxiaoqin@hnu.edu.cn

from Berry curvature, a local (geometrical) properties of wave
function, near the Fermi surface. So far, NANE has been
reported in strained MoS2 [39] and in bilayer WTe2 [40].
The nonvanishing nonlinear Nernst effect in these materials
attributes to substantial spin-orbit coupling and the presence
of low-energy Dirac quasiparticles forming titled Dirac cones.
Recently, it was reported that nonzero Berry curvature dipoles
can emerge in strained graphene [23] in which the spin-
orbit coupling and titled Dirac cones are completely absent.
It’s found the presence of Berry curvature dipole in strained
graphene is ascribed to the higher order warping of Fermi
surface and gives rise to NAHE. It’s natural to ask whether,
in the absence of titled Dirac cones and SOC, the warping of
the Fermi surface would also give rise to nonzero NANE.

In this paper, we theoretically investigate the NANE in
strained graphene with a Fermi surface warping effect. This
paper is organized as follows. A pseudovector quantity �T

d ,
quantizing the nonlinear Nernst current, is recalled and its
component along arbitrary direction is derived and determined
in Sec. II. The effect of trigonal warping on NANE is analysed
for strained monolayer graphene in Sec. III. The behavior of
NANE in trigonal-warping bilayer graphene in the presence
of uniaxial strain is discussed in Sec. IV. Finally, we give a
conclusion in Sec. V.

II. THEORETICAL REVIEW AND DERIVATION

The relation between nonlinear anomalous Nernst current
and the Berry curvature near the Fermi surface has been
recently determined through the semiclassical framework of
the electron dynamics [39,40]. We start out by recalling this
relation. When applying a temperature gradient, a nonlinear
Nernst current jnl

A (where the subscript A/ superscript nl refer
to anomalous/nonlinear, respectively) in the a direction, as
the response to second order in temperature gradient, has the
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form [
jnl
A

]
a = εabc

τe

h̄2 ∂bT ∂d T �T
cd , (1)

with

�T
cd = −

∫
[dk]

(Ek − μe)2

T 2

∂ f0

∂kd
�c(k), (2)

where ∂a = ∂/∂ra, εabc is the Levi-Civita symbol,
∫

[dk] is
shorthand for

∫
dk/(2π )d , τ refers to momentum relaxation

time, μe represents the chemical potential, h̄ denotes the
Planck’s constant, �c(k) indicates the component of Berry
curvature in c direction, and f0 = (e(εk−μe )/kBT + 1)−1 repre-
sents the equilibrium Fermi-Dirac distribution function with
kB indicating Boltzmann constant.

In 2D materials, the Berry curvature � is reduced from
a pseudovector to a pseudoscalar and only the component
vertical to the plane, namely, �c=z, is nonzero. The pseu-
dotensorial quantity �T

cd , therefore, behaves as a pseudovector
contained in the 2D plane:

�T
d = −

∫
[dk]

(Ek − μe)2

T 2

∂ f0

∂kd
�z(k), (3)

where d = x, or y indicating the component of � in d di-
rection. The component of the pseudotensorial quantity �T

l
in arbitrary direction el = (cos θ, sin θ ), where θ is the az-
imuthal angle of vector l with respect to the x axis, behaves
as a pseudovector contained in the 2D plane that can be
determined by

�T
l = �T

x cos θ + �T
y sin θ

= −
∫

[dk]
(Ek − μe)2

T 2

∂ f0

∂kl
�z(k).

(4)

To obtain the latest line, the relation ∂ f0/∂kl =
cos θ∂ f0/∂kx + sin θ∂ f0/∂ky has been used. It should be
noted that a symmetry/antisymmetry of an arbitrary function
A(kl , kl⊥ ) with respect to the kl⊥ − kz plane, where l⊥ indicates
a vector orthogonal to vector l in the 2D plane, corresponds
to even/odd parities with respect to arbitrary axis kl , namely,
A(kl , kl⊥ ) = A(−kl , kl⊥ )/ A(kl , kl⊥ ) = −A(−kl , kl⊥ ). Accord-
ing to Eq. (4), when both energy band Ek and Berry curvature
�z(k) are symmetric with respect to plane kl⊥ − kz, the
integrand in Eq. (4) will be odd for �T

l since the partial deriva-
tive of Fermi-Dirac distribution function gkl = ∂ f /∂kl ∝
∂Ek/∂kl will be antisymmetric with respect to plane kl⊥ -kz,
namely, g(kl , kl⊥ ) = −g(−kl , kl⊥ ), indicating that the quantity
�T

l = 0.
The largest symmetry of a 2D crystal that allows for non-

vanishing �T is a single mirror line (a mirror plane that is
orthogonal to the 2D crystal). Yu et al. [39] have shown that
the presence of mirror symmetry accompanying time-reversal
symmetry would force the �T

d to be orthogonal to the mirror
plane. The current jnl

A in vector notation can be written as

jnl
A = eτ

h̄2 (ẑ × ∇T )∇ T · �T
)
. (5)

The presence of single mirror symmetry would require that
the linear thermally driven transport coefficient tensor has
its principal axis aligned with the mirror line. Subsequently,
according to Eq. (5), when applying a temperature gradient

FIG. 1. Schematic illustration of the generation of nonlinear
Nernst current jnl

A as a second-order response to the temperature
gradient ∇T in two-dimensional materials. The purple dash dot de-
notes the mirror line. �T is an pseudovector to quantify the nonlinear
Nernst effect and is orthogonal to the mirror line.

∇T aligned to �T (orthogonal to the mirror line), all the cur-
rent flowing vertically to temperature gradient would originate
solely from �T (Fig. 1).

III. NONLINEAR ANOMALOUS NERNST EFFECT IN
STRAINED TRIGONAL-WARPING MONOLAYER

GRAPHENE

The C6v symmetry of a graphene sheet is comprised of
a twofold rotation C2, a threefold rotation C3, and a mirror
symmetry. The appearance of these additional symmetries
(namely, C2 symmetry and C3 symmetry) would force the
pseudovector quantity �T to vanish. However, applications
of substrate and uniaxial strain can reduce this symmetry and
leave only a single mirror operation, in which the nonlinear
Hall effect would be observed. In fact, when placing the
graphene sheet on the substrate, for example, lattice-matched
h-BN [41], a staggered chemical potential 	 (Semeoff mass
[42]) between the two honeycomb sublattices will be gener-
ated and the inversion symmetry will be broken, resulting in
symmetry reduction of graphene from C6v symmetry to C3v

symmetry. The C3v symmetry can be further reduced to leave
only mirror symmetry through applying a uniform uniaxial
strain to the honeycomb lattice along one of the two main
crystallographic directions.

In previous works, the nonvanishing nonlinear Nernst ef-
fect has been shown to originate from the tilt mechanism
(namely, the contribution from a term ∝ τkxσ0) in materials
with substantial spin-orbit coupling. In the following, we will
show that the warping effect of the Fermi surface can also
give rise to a finite nonlinear Nernst effect instead of tilt
mechanism. Taking into account the trigonal warping to the
k2 term, the effective Hamiltonian of monolayer graphene to
the second order in momentum and the first order in strain is

Ĥml
warped = M1(k)σ̂x + M2(k)σ̂y + 	

2
σ̂z, (6)

with

M1(k) = τvvxkx + λ1k2
y − λ2k2

x ,

M2(k) = vyky + 2τvλ3kxky, (7)

where the subscript ml refers to monolayer, τv (= ±1) is
the valley index, σ̂ represents the Pauli matrices for the two
basis functions of energy band, 	 refers to Semenoff mass,
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vx = vF [1 − β(3uxx + uyy)/4] and vy = vF [1 − β(uxx +
3uyy)/4] are two strain-dependent Fermi velocities and
depend on the strain tensor uxx and uyy, λ1,2,3 are the warping
related parameters which, in general, are not equivalent
when considering strain-momentum coupling terms, and
determined through λ1 = λ3 = λ0[1 − β(3uxx + uyy)/4]
and λ2 = λ0[1 − β(5uyy − uxx )/4], where β is a materials-
dependent parameter (in graphene β ≈ 2). The energy
eigenvalues are

Eml
τv ,n(k) = n

√
	2

4
+ M2

1 (k) + M2
2 (k), (8)

where n is the band index. The Berry curvature is determined
by �n(k) = ẑ · ∇k × 〈
n|i∇k|
n〉 for 2D materials, where
∇k means directional derivatives with respect to the momen-
tum k, and 
n is the eigenstate of the Hamiltonian. For the
effective Hamiltonian in Eq. (6), the Berry curvature is

�ml
τv ,n(k) = −n

	
(
∂kx M1∂ky M2 − ∂ky M1∂kx M2

)
4
(√

	2

4 + M2
1 + M2

2

)3 , (9)

where ∂k j is the shorthand for ∂/∂k j ( j = x, y) and the
variable k in bracket of Mi=1,2(k) has been neglected for
simplification. The energy (Berry curvature) at the two valleys
takes same (opposite) values when reversing kx value, namely,
EK (kx, ky) = E−K (−kx, ky) and �K (kx, ky) = −�−K (−kx, ky)
(Fig. 6), respectively, which is entailed by time-reversal
symmetry. Hence gτv

(k) = ∂ f0/∂kx ∝ ∂Eτv
/∂kx has opposite

signs on the opposite side of Fermi energy for different
valleys, namely, gK (kx, ky) = −g−K (−kx, ky). Therefore, �T

x
from different valleys has the same sign and contribute addi-
tively, resulting in the total �T

x . In the following, therefore, we
will only analyze the �T

x from the K valley for simplification
and the total �T

x is obtained by multiplying 4 (considering
both valley and spin contribution).

As illustrated in Figs. 2(a) and 2(c), in the absence of trig-
onal warping effect (i.e., λ0 = 0), although the shapes of the
energy band and Berry curvature for the K valley are distorted
by uniaxial tensile strain or compressive strain, the symme-
tries of the energy band and Berry curvature with respect to the
kd⊥ − kz plane (where d = x or y) are still guaranteed, which
hints �T

x = 0 and �T
y = 0 (for details, see Sec. II), indicating

the vanishing nonlinear Nernst effect in the absence of trigonal
warping effect.

In the presence of trigonal warping effect but without
strain, both the Fermi surface and Berry curvature for the K
valley become trigonal-like [the green line in Figs. 2(b) and
2(d)] from the circle [the green line in Figs. 2(a) and 2(c)] and
are invariant under the following two operators: (1) mirror re-
flection Mky about the kx − kz plane, and (2) threefold rotation
C3 about the kz axis, which hints that both of the energy band
Ek and Berry curvature �(k) are symmetric with respect to
plane kl − kz (where kl = kx,C3kx, and C2

3 kx). Thus, we can
have �T

y = 0, �T
C3y = 0 and �T

C2
3 y

= 0 (see details in Sec. II).

Accompanying with the equality �T
C3y = −�T

x /2 + √
3�T

y /2
[Eq. (4)], one can also have �T

x = 0. Therefore, in the absence
of strain, there is also no nonlinear current generated vertically
to the temperature gradient regardless of the direction of ap-
plied temperature gradient.

FIG. 2. Schematic of energy contour [(a), (b)] and Berry cur-
vature [(c), (d)] of the conduction band for K valley with or
without tensile (compressive) strain for non-trigonal-warping mono-
layer graphene [(a), (c)] and trigonal-warping monolayer graphene
[(b), (d)], respectively. The blue dash dot line (black dash line) and
the green solid line indicate energy band or Berry curvature with
uniaxial tensile (compressive) strain and without strain, respectively.
All lines are the same energy. The color background in (c) and
(d) represent the Berry curvature of non-trigonal-warping monolayer
graphene. Momenta are measured in units of the inverse of the lattice
constant a.

Hence, it’s evident that both trigonal warping effect and
strain are necessary conditions to produce nonvanishing �T

for monolayer graphene. Once applying uniaxial tensile/
compressive strain uxx along zigzag direction (x direction), the
trigonal-like shape of energy band and Berry curvature will be
stretched/compressed along kx direction [Figs. 2(b) and 2(d)].
It’s obvious that the threefold rotation C3 about kz is broken by
strain but the mirror symmetry Mky is still survived [Figs. 2(b)
and 2(d)], indicating that the y component of quantity �T

could still be zero but the x component could no longer be
zero.

Figures 3(a) and 3(b) show the dependence of quantity �T
x

on the Fermi energy and strain. It’s interesting to point out
that although the maximum of the Berry curvature appears
at the Dirac point, the signal of �T

x is almost zero at Dirac
point in low temperature. This nearly disappearing signal of
�T

x at the Dirac point can be understood as follows: when the
Fermi energy gets close to the Dirac point (E − 	/2 = 0 eV),
the Fermi surface manifests itself as a circle and the trigonal
warping is not apparent [Figs. 6(a) and 6(b)], resulting in an
almost vanishing nonlinear anomalous effect. Modulating the
Fermi energy through gate voltage to an appropriate value, the
signal of �T

x can reach its maximum [Fig. 3(a)]. The appear-
ance of the peak in Fig. 3(a) can be qualitatively attributed
to the joint result of Berry curvature and trigonal warping
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FIG. 3. The quantity �T
x dependent on Fermi energy EF , strain

parameter uxx , trigonal warping parameters λ0, and temperature T .
(a) �T

x versus EF with and without tensile (compressive) strain.
(b) �T

x versus uxx for different Fermi energies. (c) �T
x versus λ0

for different Fermi energies. (d) Quantity �T
x versus T for differ-

ent Fermi energies. The temperatures in (a)–(c) are taken at 5 K.
uxx = 5% is fixed in (b)–(d). The trigonal warping parameters λ0 is
2.118 Å2 × eV in (a), (b), and (d). The Semenoff mass is taken as
20 meV.

effect. Increasing the value of Fermi energy EF , the Berry
curvature will decrease, which tends to weaken the signal of
nonlinear anomalous Nernst effect and the Fermi surface, on
the other hand, will start to deviate from circle and become
more trigonalike (Fig. 6), namely, the trigonal warping effect
gradually becomes more profound which tends to give rise to
enhancement of nonlinear anomalous Nernst effect in pres-
ence of strain. The combination of these two factors leads to
the signal of �T

x that increases rapidly first and then gradually
decreases due to the decrease of Berry curvature, giving rise
to a peak feature.

The quantity �T
x shows linear dependence on the strain

parameters uxx [Fig. 3(b)] and undergoes a sign change when
modulating the tensile strain into compressive strain. The tem-
perature T dependence of �T

x at different Fermi energy levels
is shown in Fig. 3(d). As expected, when the Fermi energy is
located in the gap (EF = 0 meV) or the bottom of the conduc-
tion band (EF = 10 meV), the nonlinear anomalous Nernst
effect tends to be zero when T approaches zero since there
is no charge carriers. However, when modulating the Fermi
energy to the conduction band (EF > 10 meV), �T

x tends to
be a constant when the temperature approaches zero (see Ap-
pendix B for a detailed discussion). When the Fermi energy is
located in the gap or the bottom of the conduction band, with
the temperature increasing, the quantity �T

x increases first,

owing to the thermal broadening effect of the nonequilibrium
Fermi distribution and then decreases gradually due to the
factor 1/T 2 appearing in Eq. (3).

IV. NONLINEAR ANOMALOUS NERNST EFFECT IN
STRAINED TRIGONAL-WARPING BILAYER GRAPHENE

Having investigated the nonlinear Nernst effect in uniax-
ially strained trigonal-warping monolayer graphene, we now
study the nonlinear Nernst effect in bilayer graphene in the
(AB) Bernal-stacked structure. The inversion symmetry of
bilayer graphene can be broken through applying an exter-
nal electric field perpendicular to the layers. The applied
electric field actually induces a spectral gap 	 and reduces
the point-group symmetry from D3d to C3v . Like monolayer
graphene, point group C3v can be further reduced to Cv with
the additional application of a uniaxial strain, resulting in a
nonvanishing quantity �T . In the presence of uniaxial strain,
the strain-dependent Hamiltonian of bilayer graphene [43,44]
can be written as

Ĥbl
warped = τv

	

2
σ̂z +

(
− h̄2

(
k2

x − k2
y

)
2m

+ w

)
σ̂x

− h̄2kxky

m
σ̂y + ĥw,

ĥw = τvv3h̄kxσ̂x − τvv3h̄kyσ̂y, (10)

where ĥw comes from the skew hopping between the layers
and introduces a triangular distortion of Fermi circle around
K/ (−K) point [Fig. 4(d)], namely, trigonal warping, v3

represents the Fermi velocity related to the skew hopping
between the layers, the effect of strain is involved through
term w = 3

4γ3(uxx − uyy)(β3 − β0), with γ3 ≈ 0.3, β0 ≈ 2.18
and β3 ≈ 0.21 for bilayer graphene [44], m denotes an ef-
fective mass directly dependent on the interlayer coupling,
and σ̂i=x,y,z is pauli matrix for sublattice A/B. It should be
noted that the wave function � describing amplitude on A
and B sites is (φ(A), φ(B)) in valley K (τv = +1), whereas in
valley −K (τv = −1), the order of components are reversed,
namely, �τv=−1 = (φ(B), φ(A)), which can actually explain
the appearance of valley index τv in the term τv	σz/2. The
energy band and Berry curvature are found to be

Ebl
τv ,n(k) = n

√
	2

4
+ N2

1 (k) + N2
2 (k), (11)

�bl
τv ,n(k) = −τvn

	
(

h̄4(k2
x +k2

y )
m2 − v2

3 h̄2
)

4
(√

	2

4 + N2
1 + N2

2

)3 , (12)

where N1(k) = − h̄2(k2
x −k2

y )
2m + τvv3h̄kx + w, N2(k) =

− h̄2kxky

m − τvv3h̄ky, and the subscript bl in Ebl
τv,n(k) and

�bl
τv ,n(k) refers to bilayer. Being analogous to monolayer

graphene, the �T
x from both valleys will have the same sign

and magnitude guaranteed by time-reversal symmetry (see
details in Sec. III). Thus, the NANE from the K valley will
be analyzed for simplicity in the following whereas the final
magnitude of �T

x will include the contributions from both
valley and spin through multiplying 4. In the absence of the
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FIG. 4. Schematic of energy contour and Berry curvature � of the conduction band for K valley of trigonal-warping bilayer graphene:
w = −3εL [(a), (g)], w = −1.5εL [(b), (h)], w = −1εL [(c), (i) ] w = 0εL [(d), (j)], w = 1εL [(e), (k)], and w = 3εL[(f), (l)]. The dashed lines
in (g)–(l) describe the Fermi surface at which the Litshitz transition happens. The vertical line located in kx = −1 is a reference line to show
the shift of the left two Dirac point for w � 3 and disappearance of left two Dirac cones for w > 3 The gap 	 is fixed at 2 meV. Momenta are
measured in units of kL and the energies are measured in units of εL , respectively.

trigonal effect (namely, v3 = 0), both energy contour and
Berry curvature are symmetric under the exchange ky → −ky

(or kx → −kx), hinting the vanishing nonlinear Nernst effect.
Figure 4 illustrates the energy contour and Berry curva-

ture of trigonal-warping bilayer graphene at different values
of strain in the absence of inversion symmetry (	 	= 0). It’s
easy to observe that the strain-free (w = 0) bilayer graphene
[Fig. 4(d)] features a Lifshitz transition at energy 1.41εL

(where εL = mv2
3/2 ≈ 1 meV), in which the Fermi surface

splits from a single connected pocket into four different ones
as the energy and momentum are decreased: the electronic
dispersion consists of one central Dirac cone located at the K
(−K) point of the Brillouin zone and three leg Dirac cones. A
characteristic momentum kL = mv3/h̄(≈ 0.035 nm−1) can be
defined through the distance between the different cones. In
the presence of the strain [Figs. 4(a)–4(c) and 4(e)–4(f)], not
only do the Dirac cones move from their unstrained positions
but the topology of Fermi surface changes though merging
the cones together. For −εL < w � 3εL, there are always
four Dirac points, two located at kL(1 ± √

1 + w/εL, 0) along
the kx axis in the Brillouin zone and the remaining two at
kL(−1,±√

3 − w/εL). At w = −εL, the two Dirac cones in
the kx axis merge into a point kL(1,0), bringing about a local
minimum with E =

√
2/4 + (1 + w/εL )2 in the dispersion re-

lation which survives until w � −9εL. For w > 3εL, instead,
the two leg Dirac cones located at kL(−1,±√

3 − w/εL) will
disappear and only the cones in the kx axis are survived. The
rich fermiologies of bilayer graphene induced by strain can
also be visible in the plots of Berry curvature [Figs. 4(g)–4(l)].

One can notice that the plots of energy and Berry curvature
[Fig. 4] are symmetric with respect to plane kx − kz guaran-
teed by the combination time-reversal symmetry and mirror
symmetry, hinting that �T

y = 0 (see details in Sec. II). In the
absence of strain, the nonlinear Nernst coefficient �T

x will
also be zero, which is constrained by the threefold C3 rotation

symmetry. However, It should be note that while the central
Dirac cone has a disappearing �T

x like the unstrained trigonal-
warping monolayer graphene, the three leg Dirac cones do
have a nonzero �T

x when counting by themselves. The perfect
cancellation of these three nonzero contributions to �T

x is lost
in the presence of uniaxial strain owing to the breaking of
threefold rotation symmetry by strain. Moveover, in the pres-
ence of finite uniaxial tensile (compressive) strain, shapes of
the energy and Berry curvature of the central Dirac cone will
be stretched/compressed and lead to a nonzero contribution
to �T

x . Therefore, the presence of uniaxial tensile will give
rise to a net nonlinear Nernst coefficient �T

x [Fig. 5] due to
the deformation of the cones of the trigonal-warping bilayer
graphene.

The deformation of Dirac cones and the rich fermiology of
the trigonal-warping bilayer graphene give rise to the richer
features of �T

x dependent on the Fermi energy EF and the
strain w than the trigonal-warping monolayer graphene as
shown in Figs. 5(a), 4(c), and 5(d). The sign of �T

x is no longer
simply dependent on the properties of strain (namely, tensile
strain or compressive strain). When fixing the Fermi energy,
the sign of �T

x would also be changed by varying the magni-
tude of compressive strain (w < 0) [Fig. 5(a)]. Besides, when
tuning the compressive strain to the appropriate value, one
would also reverse the sign of the �T

x by modulating the Fermi
energy through gate voltage [Fig. 5(b)], thus inverting the
direction of the generated transverse current when applying
temperature gradient. It’s interesting to point out that although
the nonvanishing signal of �T

x in trigonal-warping bilayer
graphene only appears near the bottom of conduction band
with a few meV, the maximum of �T

x for 	 = 2 meV at w =
3εL (corresponding roughly to uxx = 0.6% strain) reaches 100
k2

B Å, which is four orders larger than that of monolayer
graphene. It should be mentioned that the magnitude of �T

x
in bilayer graphene can be further enlarged by decreasing 	
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FIG. 5. (a) The quantity �T
x as a function of Fermi energy EF and

strain parameter w. (b) The quantity �T
x versus T for different Fermi

energies. (c) The quantity �T
x versus EF for different w’s. (d) The

quantity �T
x versus w for the selective Fermi energy. Momenta are

measured in units of kL . T = 0.1 K is fixed in (c) and (d). w = 3 meV
is taken in (b). Parameter used: 	 = 2 meV.

and reach almost 500 k2
B Å for 	 = 0.25 meV (Fig. 7). The

early reported �T
x , stemmed from tilted Dirac cones, ranges

from −10 to 10 k2
B Å at 20 K for bilayer WS2 [40] and is

in the range of 0.001 − 1000 k2
B Å for MoS2 [39]. Therefore,

the magnitude of �T
x in trigonal-warping bilayer graphene is

comparable to those originated from tilted Dirac cones. The
temperature dependence of �T

x in bilayer graphene is similar
to that in monolayer graphene. When locating Fermi energy in
the conduction band, the quantity �T

x will tend to be a constant
as T approaching zero.

When applying the temperature gradient in the x direc-
tion, the nonlinear anomalous Nernst current is found to be
jnl
A,y = eτ�T

x (∇xT )2/h̄2 [Eq. (5)], which corresponds to a

voltage drop 	VNANE = w jy/σ = (τ/σ ) × ew�T
x (∇xT )2/h̄2

in the open-circuit case. To numerically estimate the signal of
NANE in bilayer graphene, we use the following typical val-
ues: ek2

B/h̄2 ≈ 2.215 nA/K−2ps, �T
x ≈ 500 k2

B Å [Fig. 7(a)]
taken for 	 = 0.25 meV, and the ratio τ/σ = estimated by
τ/σ = m/(nce2), because the scattering relaxation time τ can
be estimated by m/e2 and the conductivity σ is determined
through ncμe. The effective mass m for bilayer graphene is
0.037me [45]. The carrier density nc near the bottom of con-
duction band ranges from 108 to 1011 cm−2 when varying the
gap value 	 [23]. We use nc ∼ 109 cm−2 for 	 = 0.25 meV.
In experiments, the temperature gradient can already reach
1.5 Kμm−1 [46]. Thus, a voltage drop 	VNANE generated from

FIG. 6. Schematic of energy contour En [(a), (b)] and Berry cur-
vature �n [(c), (d)] of the conduction band for K and −K valley for
trigonal-warping monolayer graphene in presence of uniaxial strain,
respectively. Momenta are measured in units of the inverse of the
lattice constant a, and Berry Curvature measured in units of a2.

nonlinear anomalous Nernst effect can reach 2 mV with the
width of sample w = 50 μm, which is measurable [47].

V. CONCLUSION

In summary, we have shown that a nonzero nonlinear
Nernst current would be generated as a second-order response
to temperature gradient even in the complete absence of tilted
Dirac cones and spin-orbit coupling in 2D materials as a result
of the trigonal effect. The nonlinear Nernst effect in trigonal-
warping monolayer and bilayer graphene in the presence of
uniaxial strain have been theoretically and systematically in-
vestigated. In bilayer graphene, the nonlinear Nernst effect is
strongly enhanced and the quantity �T

x quantifying the non-
linear Nernst effect is comparable to those reported in strained

FIG. 7. (a) The quantity �T
x as a function of Fermi energy for dif-

ferent gaps 	 in bilayer graphene. (b) The quantity �T
x as a function

of Fermi energy for different gaps 	. Parameter used: T = 0.1 K and
w = 3 meV.
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MoS2 and bilayer WS2 which originated from tilted Dirac
cones. The study shows that both trigonal warping effect and
uniaxial strain are necessary conditions to produce nonvan-
ishing �T in both monolayer and bilayer graphene. �T

x shows
linear dependence on strain in monolayer graphene but mani-
fests itself a nonmonotonical dependence on strain in bilayer
graphene due to the rich fermiology of the trigonal-warping
bilayer. It’s interesting to point out that when Fermi energy is
located in the conduction band, �T

x extends to be a constant
in both bilayer and monolayer graphene as the temperature
approaches zero.
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APPENDIX A: THE SAME CONTRIBUTION TO �T
d FROM

DIFFERENT VALLEYS IN MONOLAYER GRAPHENE

The quantity �T
d characterizing the nonlinear Nernst effect

from τv valley for graphene in conduction band is given as

�T
d,τv

= −2
∫

[dk]
(Eτv

(k) − μe)2

T 2

∂ f0

∂kd
�τv

(k), (A1)

where 2 is for spin and τv ± 1 denotes valley index with τv =
+1(−1) for K (−K ) valley, respectively. Figure 6 illustrates
the energy band and Berry curvature of monolayer graphene
with strain and hexagonal warping effect. One can eas-
ily observe that EK (kx, ky) = E−K (−kx, ky) and �K (kx, ky) =
−�−K (−kx, ky), which is entailed by time-reversal symmetry.
Therefore, gτv

(k) = ∂ f0/∂kx ∝ ∂Eτv
/∂kx has opposite signs

on the opposite side of Fermi energy for different valleys,
namely, gK (kx, ky) = −g−K (−kx, ky). Therefore, �T

x from
different valleys has the same sign and contributes additively,
resulting in the total �T

x .

APPENDIX B: SOMMERFELD EXPANSION

In this Appendix, we apply the Sommerfeld expansion to
investigate the temperature dependence of �T

d at low temper-
ature. The evaluation of integrals of the form

A(T, EF ) = −
∫

dE
∂ f (E )

∂E
H (E ), (B1)

where f (E ) = (e(E−EF )/kBT + 1)−1 represents the Fermi-
Dirac distribution function and H (E ) is a general function of
E , can be done approximately with the Sommerfeld expansion

A(T, EF ) � H (EF ) + π2

6
(kBT )2H (2)(EF )

+ 7π4

360
(kBT )4H (4)(EF ) + O(T 4), (B2)

where H (n) denotes the nth derivative of H (E ) with respect to
E evaluated at E = EF . The expression for pseudovector �T

cd
in Eq. (2) can be rewritten as

�T
cd = − 1

T 2

∫
[dk](Ek − EF )2�k,c

∂ f0

∂kd

= −
∫

dEG(E )
∂ f0

∂E
,

(B3)

with

G(E ) = (E − EF )2

T 2

∫
[dk]δ(E − Ek )�k,c

∂Ek

∂kd
. (B4)

Applying Eq. (B2), the pseudovector �T
cd is found to be

�T
cd = π2k2

B

3
G2(EF ) + 7π4k4

B

60
T 2G(2)

2 (EF ) + O(T 4), (B5)

where

G2(E ) =
∫

[dk]δ(E − Ek )�k,c
∂Ek

∂kd
. (B6)

It should be noted that when the Fermi energy EF is located
in the gap, G2(EF ) will equal zero since there is no energy
state to carry electrons. According to Eqs. (B5) and (B6),
consequently, the pseudovector �T

cd tends to be a constant
[∝ G2(EF )] at low temperature and is independent of the
temperature gradient when the Fermi energy is located in the
conduction band or the valence band.

APPENDIX C: THE GAP DEPENDENCE OF QUANTITY �T
x

FOR BILAYER GRAPHENE

Figure 7(a) displays the gap dependence of the quantity �T
x

as a function of Fermi energy. The maximum value of quantity
�T

x is enlarged by decreasing the value of gap 	 [Fig. 7(a)].
Figure 7(b) illustrates the variation of �T

x versus 	. When
increasing 	 value, the quantity �T

x increases first and then
decreases, giving rise to a peak feature. The appearance of
the peak feature in Fig. 7(b) might be explained as follows:
(a) The quantity �T

x quantifying NANC stems from the Berry
curvature near the Fermi level. (b) The maximum of Berry
curvature appears at Dirac point or the bottom of the conduc-
tion band (namely, E = 	/2). (c) When increasing the value
	, the bottom of the conduction band will first get close to the
fixed Fermi level, giving an enhancement of �T

x , and then get
away from the Fermi level, leading to a decrease of �T

x and
further the peak feature.

In addition, it’s found that at a lower Fermi energy, the
value of the peak becomes larger and the position of the peak
appears at smaller 	 [Fig. 7(b)]. The appearance of such large
�T

x at small 	 might be attributed to the enhanced Berry
curvature. Decreasing the value of 	, the Berry curvature will
be increased, which tends to strengthen the signal of nonlinear
anomalous Nernst effect.

[1] E. H. Hall, Am. J. Math. 2, 287 (1879).
[2] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154

(1954).
[3] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,

494 (1980).

[4] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K.
Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J.
Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang et al. Science
340, 167 (2013).

[5] M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003).

195427-7

https://doi.org/10.2307/2369245
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1126/science.1234414
https://doi.org/10.1103/PhysRevLett.90.206601


YING-LI WU, GE-HUI ZHU, AND XIAO-QIN YU PHYSICAL REVIEW B 104, 195427 (2021)

[6] Z. Qiao, S. A. Yang, W. Feng, W. K. Tes, J. Ding, Y. Yao, J.
Wang, and Q. Niu, Phys. Rev. B 82, 161414(R) (2010).

[7] G. Xu, H. M. Weng, Z. J. wang, X. Dai, and Z. Fang, Phys. Rev.
Lett. 107, 186806 (2011).

[8] A. A. Burkov, Phys. Rev. Lett. 113, 187202 (2014).
[9] H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 112,

017205 (2014).
[10] N. Kiyohara, T. Tomita, and S. Nakatsuji, Phys. Rev. Appl. 5,

064009 (2016).
[11] A. J. Bestwick, E. J. Fox, X. F. Kou, L. Pan, K. L. Wang, and

D. Goldhaber-Gordon, Phys. Rev. Lett. 114, 187201 (2015).
[12] M. Blinov, A. Aryal, S. Pandey, I. Dubenko, S. Talapatra,

V. Prudnikov, E. Lahderanta, S. Stadler, V. Buchelnikov, V.
Sokolovskiy, M. Zagrebin, A. Granovsky, and N. Ali, Phys.
Rev. B 101, 094423 (2020).

[13] N. N. Zhao, K. Liu, and Z. Y. Lu, Phys. Rev. B 103, 205104
(2021).

[14] A. Freimuth and B. Zeini, Phys. Rev. B 67, 052504 (2003).
[15] M. Stone, Phys. Rev. B 85, 184503 (2012).
[16] A. Gromov and A. G. Abanov, Phys. Rev. Lett. 114, 016802

(2015).
[17] K. Sugii, M. Shimozawa, D. Watanabe, Y. Suzuki, M. Halim,

M. Kimata, Y. Matsumoto, S. Nakatsuji, and M. Yamashita,
Phys. Rev. Lett. 118, 145902 (2017).

[18] C. M. Varma, Phys. Rev. B 102, 075113 (2020).
[19] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
[20] T. Low, Y. Jiang, and F. Guinea, Phys. Rev. B 92, 235447

(2015).
[21] Z. Z. Du, C. M. Wang, H.-Z. Lu, and X. C. Xie, Phys. Rev. Lett.

121, 266601 (2018).
[22] Z. Z. Du, C. M. Wang, Shuai Li, Hai-Zhou Lu, X. C. Xie, Nat.

Commun. 10, 3047 (2019).
[23] R. Battilomo, N. Scopigno, and C. Ortix, Phys. Rev. Lett. 123,

196403 (2019).
[24] J. I. Facio, D. Efremov, K. Koepernik, J.-S. You, I. Sodemann,

and J. van den Brink, Phys. Rev. Lett. 121, 246403 (2018).
[25] J.-S. You, S. Fang, S.-Y. Xu, E. Kaxiras, and T. Low, Phys. Rev.

B 98, 121109(R) (2018).
[26] Y. Zhang, Y. Sun, and B. Yan, Phys. Rev. B 97, 041101(R)

(2018).
[27] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-R. Chang,

A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu, S. Fang, Q. D.
Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras,

H.-Z. Lu, H. Lin, L. Fu, N. Gedik et al., Nature (London) 565,
337 (2018).

[28] K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nat. Mater. 18,
324 (2019).

[29] O. O. Shvetsov, D. V. Esin, A. V. Timonina, N. N. Kolesnikov,
and E. V. Deviatov, JETP Lett. 109, 715 (2019).

[30] M.-S. Qin, P.-F. Zhu, X.-G. Ye, W.-Z. Xu, Z.-H. Song, J. Liang,
K. Liu, and Z.-M. Liao, Chin. Phys. Lett. 38, 017301 (2021).

[31] S. Dzsaber, X. Yan, M. Taupin, G. Eguchi, A. Prokofiev, T.
Shiroka, P. Blaha, O. Rubel, S. E. Grefe, H. H. Lai, Q. Si, and
S. Paschen, Proc. Nat. Acad. Sci. 118, e2013386118 (2021).

[32] D. Kumar, C. H. Hsu, R. Sharma, T. R. Chang, P. Yu, J. Wang,
G. Eda, G. Liang, and H. Yang, Nat. Nanotechnol. 16, 421
(2021).

[33] K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto, and N.
Nagaosa, Phys. Rev. B 95, 224430 (2017).

[34] Y. Araki, Sci. Rep. 8, 1 (2018).
[35] M. Papaj and L. Fu, Phys. Rev. Lett. 123, 216802 (2019).
[36] D. Mandal, K. Das, and A. Agarwal, Phys. Rev. B 102, 205414

(2020).
[37] S. K. Das, T. Nag, and S. Nandy, Phys. Rev. B 104, 115420

(2021).
[38] C. Zeng, S. Nandy, and S. Tewari, Phys. Rev. Res. 2, 032066(R)

(2020).
[39] X.-Q. Yu, Z.-G. Zhu, J.-S. You, T. Low, and G. Su, Phys. Rev.

B. 99, 201410(R) (2019).
[40] C. Zeng, S. Nandy, A. Taraphder, and S. Tewari, Phys. Rev. B.

100, 245102 (2019).
[41] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu,

H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, A. V.
Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, Y. N.
Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H. J.
Gao, A. K. Gemi et al., Nat. Phys. 10, 451 (2014).

[42] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[43] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).
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