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Three-electron bunches in occupation of a Coulomb cluster with N = 5 sites
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Attraction of like charges in a localized system implies that, upon increasing the Fermi energy, the occupation
of the system changes as n → (n + 2), while the occupation, (n + 1), is skipped. In this way, the attraction
translates into the bunching of electrons. For a localized system of N = 4 sites, attraction of electrons manifests
itself in skipping of n = 2 occupation. The origin of the attraction is the rearrangement of the occupations of the
surrounding sites, which plays the role of a polaronic effect. We consider a Coulomb cluster with N = 5 sites,
and we demonstrate that, with screened Coulomb repulsion, three-electron bunching becomes possible, i.e., the
change of occupation n = 1 → n = 4 with n = 2 and 3 occupations skipped.
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I. INTRODUCTION

The question of whether two electrons can attract each
other without lattice dynamics being involved has been posed
in many papers. Another formulation of this question is
whether the formation of negative-U centers [1], which are
believed to be due to phonons, is possible as a result of
electron-electron repulsion. One of the appeals of having
purely electronic negative-U centers is that such centers can
be viewed as precursors of a purely electronic superconduct-
ing state.

On the theory side, electron attraction in repulsive systems
was invoked to (i) explain the valence-skipping phenomenon
(see, e.g., Refs. [2–6]), i.e., when the valence of certain ele-
ments does not occur in the compounds that they form; (ii)
derive pairing within certain limits of the Hubbard model [7],
which essentially amounts to replacing phonons by magnons
[8]. Also, as demonstrated in Ref. [9], the formation of
charge-2e excitations, i.e., “trimers,” is favored in doped
transition-metal dichalcogenide bilayers near half-filling. The
origin of pairing in Ref. [9] with two types of sites having
different energy is the reduction of electrostatic energy, which
dominates over kinetic energy. A minimal model of a trimer
requires four sites. Note that such a four-site model of pairing
was previously studied in Ref. [10] in a different relation.

On the experimental side, early experiments brought at-
tention to the issue of the possible attraction of localized
electrons [11–13]. These experiments addressed one-by-one
magnetotunneling events of electrons from an electrode into a
big semiconductor island. A certain portion of events revealed
bunching of electrons into pairs. There is a problem with
attributing this bunching to the attraction of electrons within a
four-site model because incoherent tunneling of two electrons
takes too much time. Later experiments [14,15] suggested that
two-electron events take place at the edge and are related to
the formation of the edge states in magnetic field.

Demonstration of pairing due to repulsion on a truly mi-
croscopic level was reported in Ref. [16]. The experimental
setup in Ref. [16] was very similar to the four-site cluster

(two-site polarizer and double-well quantum dot). In a certain
domain of gate voltages, one dot of a double-well system was
either empty or accommodated a pair of electrons as a result
of reoccupation of the dots constituting the polarizer.

Due to the flexibility of their nanotube-based technique, the
authors of Ref. [16] suggested several variants for scaling-up
their setup. In particular, their approach can tackle the ques-
tion of whether more complex many-particle processes can be
realized experimentally.

In the present paper, we demonstrate that adding one
extra site to the four-site model opens the possibility of
three-electron bunches. To establish a criterion for such three-
electron bunches, we introduce En

N , which is a minimal energy
of n electrons in a cluster of N sites. The next electron enters
the cluster when the Fermi level position in the surrounding
system is equal to

μ1 = En+1
N − En

N . (1)

Two electrons enter the cluster at

μ2 = En+2
N − En

N

2
. (2)

The formation of a 2e pair takes place when μ2 < μ1, i.e.,
when the usual condition (En+2

N + En
N ) < 2En+1

N , illustrated in
Fig. 1, is met. Continuing this reasoning, three electrons enter
the cluster at

μ3 = En+3
N − En

N

3
. (3)

Then a 3e-bunch is favored over a single electron, and a 2e-
bunch is favored under the conditions μ3 < μ1 and μ3 < μ2.

II. TWO-ELECTRON BUNCHING
IN A FOUR-SITE CLUSTER

For didactic reasons, in this section we review the steps
unveiling the two-electron bunching in the four-site model.
An extension to the five-site model involves all the same steps.
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FIG. 1. A criterion, En
N + En+2

N < 2En+1
N , of the attraction of two

electrons implies a concavity of the curve En
N . As a result, the popu-

lation evolves as n → (n + 2).

On the other hand, the flow of logics offers an insight about
possible extensions.

Step I. A four-site cluster is illustrated in Fig. 2(a). We
examine the evolution of the minimal energy of configura-
tions with varying n. The four-site cluster is completely filled
when n = 4, i.e., only one configuration is possible. It is also
obvious that, for n = 1, the minimal energy corresponds to
filling the central site with energy ε0 < ε1. Thus E1

4 = ε0.
When n = 2, the electron in the center can either stay there
or move to the vertex in order to reduce the potential energy.
Thus, the candidates for E2

4 are

Ẽ2
4 = ε0 + ε1 + W or ˜̃E

2

4 = 2ε1 + V. (4)

Equally, there are two candidates to minimize the energy when
the population of the cluster is n = 3, namely

Ẽ3
4 = ε0 + 2ε1 + 2W + V or ˜̃E

3

4 = 3ε1 + 3V. (5)

Step II. At this step, we make two crucial assumptions:

Ẽ2
4 < ˜̃E

2

4 and Ẽ3
4 > ˜̃E

3

4, which translate into the following
inequalities:

2ε1 + V > ε0 + ε1 + W,

3ε1 + 3V < ε0 + 2ε1 + V + 2W. (6)
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FIG. 2. (a) Illustration of the four-site model. The energy of the
central site, ε0, is smaller than the energies of the corner sites, ε1.
For a purely Coulomb system, the repulsions W and V are related
as 31/2. For a gate-screened interaction, they are related as 33/2.
(b) Illustration of the five-site model. The repulsions W , U , and V
are related as 2 : 21/2 : 1 for a purely Coulomb interaction, and as
23 : 23/2 : 1 for the gate-screened interaction.

FIG. 3. Different domains of the dimensionless imbalance, ε1−ε0
W ,

of the site energies: (a) Four-site model. In the domain of imbalances,

{1 − V
W , 2(1 − V

W )}, the energy of the two-electron configuration is
minimal when one electron occupies the central site, while for the
three-electron configuration the energy is minimal when all three
electrons reside in the vertices. In the gray region, the condition
of concavity, illustrated in Fig. 1, is satisfied, so that 2e-pairing
occurs in the domain marked with red. (b) Five-site model. In the red
domain, the occupation of the cluster with chemical potential evolves
as n = 1 → n = 4.

These inequalities imply that it is energetically unfavorable
for two electrons to vacate the center, but it is favorable for
three electrons to vacate the center. Note that Eq. (6) can be
presented in a concise form,

1 − V

W
<

ε1 − ε0

W
< 2

(
1 − V

W

)
. (7)

When the conditions Eq. (6) are met, we have

E2
4 = Ẽ2

4 , E3
4 = ˜̃E

3

4. (8)

Step III. At this step, we require that the dependence En
4 is

“concave,” as illustrated in Fig. 1. Using Eq. (8), the pairing
condition E1

4 + E3
4 < 2E2

4 takes the form

ε0 + 3(ε1 + V ) < 2(ε0 + ε1 + W ). (9)

Note that the above condition restricts the energy difference
between the center and the vertex sites: ε1−ε0

W < 2 − 3V
W .

Step IV. We now go back to the assumptions made above,
Eq. (7), and test whether they are consistent with concavity.
This test is illustrated in Fig. 3. We see that the second inequal-
ity is satisfied automatically. To satisfy the first inequality, one
needs V < W

2 . As seen from Fig. 2(a), for purely Coulomb
interaction, the relation between V and W is V = W

31/2 . Thus,
the first condition is not satisfied. It can be satisfied, however,
if the gate is present at a distance, d , above the plane of
the cluster. Then the Coulomb interaction, V (ρ) = e2

ρ
, gets

modified to V (ρ) = e2[ 1
ρ

− 1
(ρ2+4d2 )1/2 ]. Then, for ρ � d , we

have V = W
33/2 < W

2 , so that in the domain

W − V < ε1 − ε0 < 2W − 3V, (10)

shown in Fig. 3(a) with red, 2e-pairing is possible.
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III. THREE-ELECTRON BUNCHING
IN A FIVE-SITE CLUSTER

We now generalize the reasoning from the previous section
to the five-site model illustrated in Fig. 2(b). The central site is
surrounded by four vertexes. Three repulsion energies, shown
in the figure, are related as U < V < W in accordance with
distances between the corresponding sites. Similarly to the
four-site model, we assume that the energy, ε0, of the central
site is lower than ε1, the energy of the vertex sites. Obviously,
E1

5 = ε0. Our strategy in a search for three-electron bunching
is based on the argument that, by placing electrons in the
vertexes, the configuration loses its on-site energy, but gains
due to the reduction in potential energy.

Step I. There are three candidates for the double occupation
of the cluster. They are

Ẽ2
5 = ε0 + ε1 + W or ˜̃E

2

5 = 2ε1 + V or (
˜̃̃

E )2
5 = 2ε1 + U .

(11)

Since V > U , the energy Ẽ2
5 is smaller than ˜̃E

2

5, leaving us
with only two candidates. One can also see that there are three
candidates for the triple occupation, namely

Ẽ3
5 = 3ε1 + 2V + U or ˜̃E

3

5 = 2ε1 + ε0 + 2W + U, or

(
˜̃̃

E )3
5 = 2ε1 + ε0 + 2W + V. (12)

We can now compare ˜̃E
3

5 to (
˜̃̃

E )
3

5 and realize that the latter
has higher energy since V > U . This again leaves us with two
candidates for Ẽ3

5 .
Finally, the occupation of the cluster with four electrons

is possible in two configurations having different energies.
These energies are

Ẽ4
5 = ε0 + 3ε1 + 3W + 2V + U or ˜̃E

4

5 = 4ε1 + 4V + 2U .

(13)
Obviously, the state with energy Ẽ4

5 is fourfold-degenerate
depending on which vertex is empty.

Step II. At this point, we make three crucial assumptions:

(1) ˜̃E
2

5 > Ẽ2
5 ,

(2) ˜̃E
3

5 > Ẽ3
5 ,

(3) ˜̃E
4

5 < Ẽ4
5 .

The assumptions are made in order to ensure that the
ground state with n = 2 includes the center site, while the
ground states with n = 3 and 4 include the sites in the ver-
texes. Using Eqs. (11), (12), and (13), the above assumptions
can be rewritten as

ε0 + ε1 + W < 2ε1 + U ⇒ 1 − U

W
<

ε1 − ε0

W
, (14)

ε0 + 2ε1 + 2W + U > 3ε1 + 2V + U

⇒ 2
(

1 − V

W

)
>

ε1 − ε0

W
, (15)

ε0 + 3ε1 + 3W + 2V + U > 4ε1 + 4V + 2U

⇒ 3 − 2V

W
− U

W
>

ε1 − ε0

W
. (16)

FIG. 4. Illustration of three-electron bunching in the cluster of N
sites. The bunch is possible under the conditions 1

3 (En+3
N − En

N ) <
1
2 (En+2

N − En
N ) < En+1

N − En
N .

Now it is convenient to restructure the above inequalities into
two separate ranges as

1 − U

W
<

ε1 − ε0

W
< 2

(
1 − V

W

)
,

1 − U

W
<

ε1 − ε0

W
< 3 − 2

V

W
− U

W
. (17)

Whether the three-electron bunches are allowed or not
depends on whether or not the domains Eq. (17) overlap, as
illustrated in Fig. 3(b). After making the above assumptions,
we can specify the ground-state configuration for each n,
namely

E2
5 = Ẽ2

5 , E3
5 = Ẽ3

5 , E4
5 = ˜̃E

4

5. (18)

Step III. We now require that the ground-state energies En
5

are arranged as shown in Fig. 4, or, in other words, we require
that these energies satisfy the conditions

1
3

(
E4

5 − E1
5

)
< 1

2

(
E3

5 − E1
5

)
< E2

5 − E1
5 . (19)

The first and the second conditions can be cast into a tradi-
tional form

ε1 − ε0

W
> 2

V

W
+ U

W
,

ε1 − ε0

W
< 2 − 2

V

W
− U

W
. (20)

We see that, in the same way as Eq. (17), the necessary
requirements for 3e bunches restrict the asymmetry in single-
electron energies both from below and above.

Step IV. Now a nontrivial question arises: is there a domain
in which the conditions Eqs. (17) and (20) are consistent with
each other? It is apparent that for purely Coulomb repulsion,
the requirements Eq. (20) cannot be met. Indeed, with purely
Coulomb interaction, one has U

W = 1
2 , while V

W = 1
21/2 . Then

the right-hand side in the second inequality Eq. (20) requires
that the asymmetry, ε1−ε0

W , exceeds 1.54, while the second
inequality requires that this asymmetry is smaller than 0.46.
Turning to screened Coulomb repulsion, we have U

W = 1
8 ,

while V
W = 1

23/2 . Then Eq. (20) restricts the asymmetry to the
interval (0.83, 1.17). At the same time, Eq. (17) restricts this
interval to (0.875, 1.29). We see that two restricting intervals
overlap proving that 3e-bunches are allowed.
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Turning to the general form of the electron-electron, we
compare the right-hand sides of Eqs. (17) and (20). This com-
parison suggests that the most stringent upper limitation on the
asymmetry of the on-site energies reads ε1−ε0

W < 2 − 2V
W − U

W .
Assuming that the interaction of localized electrons falls off
with distance as r−α , we find that the repulsions W , U , and V
are related as 2α : 2

α
2 : 1. In other words, the relation U

W =
( V

W )2 holds for any α. We can now address the following
question: how fast should the repulsion fall off with distance
to allow for the 3e bunches? At critical α the upper bound on
asymmetry coincides with the lower bound, ε1−ε0

W > 2 V
W + U

W .

Equating the two bounds, we find α = αc = ln(3+23/2 )
ln 2 ≈ 2.55.

In this regard, it is instructive to compare the conditions for
2e-bunching and 3e-bunching in the five-site model. The anal-
ysis of the criterion (E1

5 + E3
5 ) < 2E2

5 for 2e-bunching leads
to the restriction

2
V

W
− U

W
<

ε1 − ε0

W
< 2 − 2

V

W
− U

W
, (21)

which yields the criterion α > 2. Naturally, this criterion is
“softer” than the criterion for 3e-bunching.

IV. CONCLUSION

The conditions for the formation of the 3e-bound state in
the repulsive system are more restrictive than the conditions
for the formation of the 2e-bound state. We do not know
whether bunches containing more than three electrons are
possible, but our finding motivates us to search for them. It
is straightforward to expect that such a bunching manifests
itself in the counting statistics of electron transfer; see, e.g.,
Refs. [17–19]. As a final remark, we note that, even in the
absence of the gate, the modification of the Coulomb repul-
sion can take place as a result of polarization charges induced
in a neighboring plane [20,21]. If the plane is separated from

the localized sites by a distance, r0, the Coulomb repulsion
at distances r � r0 is modified from 1/r to 1/r3. This rapid
fall-off of the repulsion allows for 3e bunching.

In our study we have completely neglected the hopping be-
tween the sites. This neglect is applicable when the tunneling
amplitude, t , is much smaller than the Coulomb repulsions
U , V , and W . As t increases, the effect of bunching disap-
pears. A general argument in favor of this disappearance is
that the bunching relies on the discreteness of electrons. On
the other hand, the allowance of tunneling between the sites
tends to “homogenize” the electron density, and consequently
suppresses the discreteness. The above argument is similar
to the criterion for the formation of the Wigner crystal, i.e.,
the kinetic energy should be smaller than the potential energy.
Finite t plays the role of kinetic energy.

Demonstration of bunching in a five-cite model suggests
that, similar to the honeycomb lattice of transition-metal
dichalcogenide [9], a phase-centered square lattice undergoes,
at a certain filling, a transition into an inhomogeneous state.

As was mentioned in the Introduction, in experiment the
bunching of electrons manifests itself in two setups. In the
first setup, discrete jumps in the capacitance of a big semi-
conductor island [11–13] are observed upon gradual increase
of the bias between the island and the gate. In the second
setup, transport through a system of two quantum dots defined
electrostatically in a carbon nanotube [16] is measured. Nor-
mally, this transport is characteristic of a Coulomb blockade.
However, in the presence of a polarizer, represented by an-
other nanotube crossing the bare nanotube and containing two
additional dots between which an electron can hop, the picture
of transport changes. Then the measured stability diagram
indicates a crossover from interdot repulsion to interdot attrac-
tion. This suggests that occupation of the combined system of
a nanotube plus a polarizer crosses from one to three. The
most natural realization of the four-site model is the system
[16] to which one dot is added.
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