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Based on the tight-binding formalism, we study the effect of side potential on the spin- and valley-related
electronic property of 2D honeycomb lattices with intrinsic spin-orbit coupling, such as silicene and germanene.
The side potential is composed of potential field and exchange field applied on the boundaries of the zigzag
nanoribbon. It is found that the side potential could greatly affect the helical edge states with different spin
indices and the spin and valley are locked to each other. By adjusting the side potential and ribbon width, the
system shows a quantum spin-valley Hall effect, valley-polarized quantum spin Hall effect, and spin-polarized
quantum anomalous Hall effect. Due to the side potential and the coupling of edge states in the narrow ribbon,
a band gap could be opened for specific spin and the time-reversal symmetry could be broken, leading to a
spin-polarized quantum anomalous Hall phase. Various kinds of spin-valley polarized edge states are formed
at the two boundaries. Furthermore, the spin-valley polarized insulating states can be used to realize a perfect
spin-valley switch.
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I. INTRODUCTION

The discovery of graphene initiated an extensive search
for other two-dimensional (2D) monolayer materials, and the
monolayer topological materials in particular. As the close
relatives of graphene, silicene [1–3], germanene [4,5], and
stanene [6] with an atomically thin layer have been experi-
mentally grown on different substrates in the past few years.
Compared to graphene, silicene, germanene, and stanene have
a large intrinsic spin-orbit coupling (SOC) [7,8] and the band
gap can be controlled by applying an electric field due to
the buckled structure [9]. These 2D honeycomb lattices can
be described by the Hamiltonian of graphene with intrinsic
SOC. Therefore, these materials are expected to be quan-
tum spin Hall (QSH) insulators which are characterized by
an insulating bulk and topologically protected gapless edge
states [10,11]. Although the QSH effect was first predicted
in graphene [12–14], it can occur only at unrealistically low
temperatures due to the rather weak SOC [15,16]. Recently,
various detectable topological phases are proposed in silicene,
germanene, and stanene, including the QSH effect [17–19],
the quantum anomalous Hall (QAH) effect [20–23], valley-
polarized QAH effect [24–26], and quantum spin-quantum
anomalous Hall effect [27]. In particular, the inversion sym-
metry breaking could lead to a quantum valley Hall effect
characterized by the Berry phase effect and valley Chern num-
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ber [28]. As an application, the edge state in the QSH system
is important to the low-dissipation devices, and it can be used
in spin filters and field-effect topological quantum transistors
[29,30].

With the advent of monolayer materials, spintronics and
valleytronics have developed rapidly [31–33]. Valleytron-
ics exploits the valley degree of freedom and its potential
applications. Similarly to spintronics, the central issue of
valleytronics is the generation and manipulation of valley-
polarized currents. A lot of research on the control of spin
and valley dependent quantum transport in QSH insula-
tors has been reported [34–54]. In particular, the external
exchange field and electric field are often employed on
zigzag nanoribbons to control the spin and valley degrees of
freedom. Recently, Tao et al. found a new way of generat-
ing spin-polarized current in QSH insulators by tuning the
phase difference between spin-up and spin-down electrons,
conceptually different from the conventional all-electrical ap-
proaches [34]. Considering the extrinsic Rashba SOC, silicene
can host topologically protected spin- and valley-polarized
edge states which can be switched by reversing the electric
field [35]. In zigzag germanene nanoribbon with thermal leads
subjected to local noncollinear exchange fields, a thermoelec-
tric spin-current generator was theoretically proposed [48].
Taking advantage of the modulation of the band gap and the
edge-localized nature of the conduction- and valence-band
states, highly polarized spin currents could be achieved in
stanene nanoribbons [49]. In addition, spintronics has been
extended to spin-valleytronics by incorporating the valley de-
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FIG. 1. (a) Schematic plot of a zigzag nanoribbon system with
potential field U1,2 and exchange field M1,2 along the boundaries. The
ribbon width Ny is defined by the number of silicon atoms in the unit
cell. W1,2 describes the width of the side potentials U1,2 and M1,2. The
unit cell of the nanoribbon is marked by the dashed lines. (b) The
nearest-neighbor bonds and the next-nearest-neighbor bonds marked
by δi and γi in the lattice structure, respectively. The first Brillouin
zone in the momentum space is also plotted. K and K ′ are the Dirac
points.

gree of freedom [27,51–53], such as the spin-valley optical
selection rule [51] and dissipationless spin-valley current [53].
Tabert and Nicol demonstrated that four distinct valley- and
spin-polarized levels and currents can be generated in silicene
and other similar 2D crystals by tuning the electric and mag-
netic fields [52].

In previous literature, the external fields are generally ap-
plied to the whole nanoribbon. Distinctively, in this work, we
place the local potential and exchange fields to the boundaries
of nanoribbon, such as silicene, germanene, and stanene. In
fact, the study on graphene demonstrates that the side po-
tential is an effective method of engineering the electronic
structure [55–58]. When the side potential is antisymmetric,
the energy spectrum of graphene nanoribbons could open up
a gap [56]. However, the study of the side potential on the
spin- and valley-dependent Hall effect in the nanoribbons with
a spin-orbit coupling is still blank. The schematic diagram
of the considered side potential is shown Fig. 1(a), which
could effectively control the helical edge states along the
zigzag nanoribbon. We demonstrate that the quantum spin-
valley Hall states, valley-polarized QSH states, spin-polarized
QAH states, and spin-valley polarized insulating states could
appear by tuning the side potential and the ribbon width.
In particular, the coupling of edge states could open a band
gap and the side potential breaks the time-reversal symmetry.
As a consequence, the QAH effect could be realized in the
narrow ribbon. The system could achieve a remarkable spin-
and valley-polarized current, where the current of certain spin
is from the certain valley.

The paper is organized as follows. In Sec. II we introduce
the considered tight-binding model and the nonequilibrium
Green’s function method for calculating the energy band and
conductance. The numerical results on the band structure and
edge states controlled by the side potential for the wide and
narrow ribbons are presented in Sec. III. We conclude with a
summary in Sec. IV.

II. THEORETICAL FORMULATION

Electrons in 2D honeycomb lattices with an intrinsic SOC
can be well described by the Kane-Mele tight-binding model

[7,12,39]. Considering the side potentials U1,2 and M1,2, the
Hamiltonian reads

H = −t
∑

〈i, j〉,α
c†

iαc jα + i
λSO

3
√

3

∑

〈〈i, j〉〉,α,β

vi jc
†
iα (σz )αβc jβ

+
W1∑

i=1

∑

α

[U1c†
iαciα + M1c†

iα (σz )ααciα]

+
Ny∑

i=Ny−W2+1

∑

α

[U2c†
iαciα + M2c†

iα (σz )ααciα]. (1)

The first term describes the nearest-neighbor hopping with
the hopping energy t , and c†

iα (ciα) is the electronic creation
(annihilation) operator with spin α (α = ↑,↓) at site i. The
second term is intrinsic SOC with strength λSO, which in-
volves spin-dependent next-nearest-neighbor hopping. vi j =
+1 (−1) if the next-nearest-neighbor hopping is anticlock-
wise (clockwise) with respect to the positive z axis. σz is
the Pauli matrix associated with spin degree of freedom. As
shown in Fig. 1(b), the nearest-neighbor bonds and the next-
nearest-neighbor bonds are marked by δi and γi in the lattice
structure, respectively. 〈i, j〉 and 〈〈i, j〉〉 denote the sum over
the nearest-neighbor and the next-nearest-neighbor hopping
sites, respectively. The third and last terms represent the po-
tential field U1,2 and exchange field M1,2, respectively, which
is applied to the lattice sites belonging to the boundaries,
as shown in Fig. 1(a). The side potentials U1,2 and M1,2 are
applied along two boundaries of the zigzag nanoribbon with
the width W1,2, which can be induced by the gate voltages
and the ferromagnetic insulators in experiment, respectively.
Experimentally, a local exchange field with nanoscale on the
2D honeycomb lattices can be induced by the proximity effect,
the value of which could reach to tens of meV [59,60]. Local
gate control of the electrostatic potential with nanoscale and
hundreds of meV in nanoribbon-based devices has also been
achieved by many experimental groups [61–63]. The Hamilto-
nian (1) is generally used to describe silicene, germanene, and
stanene. It is predicted that the hopping energy t = 1.6 eV and
SOC λSO = 3.9 meV = 0.0024t for silicene, and t = 1.3 eV
and λSO = 43 meV = 0.033t for germanene [7]. The first-
principles calculations revealed that t = 1.3 eV and λSO =
0.1 eV = 0.077t for stanene [8]. We take λSO = 0.05t and
t = 1.3 eV as an example in the following calculation. Chang-
ing the value of λSO does not affect the qualitative results.
Therefore, the discussion and conclusion are applicable to
silicene, germanene, and stanene.

For the case of an infinite nanoribbon, the honeycomb
structure along the x direction is assumed to be periodic. The
longitudinal wave vector kx is a good quantum number which
satisfies [H, kx] = 0. Therefore, based on the tight-binding
model and Bloch’s theorem, the band structure of an infinite
nanoribbon can be calculated, the kx-dependent Hamiltonian
of which can be written as

H (kx ) = H00 + H01eikxa + H−10e−ikxa, (2)

where H00 is a unit cell Hamiltonian matrix of one chain, H01

(or H−10) is the coupling matrix with the right-hand (or left-
hand) adjacent cell, and a is the lattice constant.
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The conductance G for an electron with energy E through
the ribbon can be calculated by the nonequilibrium Green’s
function method. A two-terminal system comprises the central
region, the left and right semi-infinite leads. The electrical
conductance can be calculated by means of the Landauer-
Büttiker formula as [13,64]

G(E ) = e2

h
Tr[�L(E )Gr (E )�R(E )Ga(E )], (3)

where �L,R(E ) = i[	L,R(E ) − 	
†
L,R(E )] is the linewidth func-

tion, and Gr (E ) and Ga(E ) are the retarded and advanced
Green’s functions given by Gr (E ) = [Ga(E )]† = 1/(E −
Hc − 	L − 	R) with the Hamiltonian Hc in the central re-
gion. 	L,R is the self-energy caused by the coupling between
the central and lead regions. The self-energy function can
be calculated by 	L = HCLgLHLC = HCLgLH†

CL and 	R =
HCRgRHRC = HCRgRH†

CR, where HCL and HCR are the Hamil-
tonian matrices of the coupling between the central region and
lead regions. gL,R is the surface Green’s function which can be
calculated using the iteration method [65].

III. RESULTS AND DISCUSSION

Is this section, we mainly study the impact of the side
potential with different symmetries on the band structure,
edge states, and transport property. In addition, the influence
of the finite-size effect on the edge states may be significant
for the QSH insulator and QAH insulator [66,67], which can
produce an energy gap in the HgTe/CdTe quantum well.
In narrow zigzag graphene nanoribbons, a braiding of the
conduction and valence bands can be generated by the third-
neighbor hopping [68]. Thus, we also study the size effect of
nanoribbon on the band structure and edge states, which are
crucial for the device application. We consider a wide ribbon
in Sec. III A and a narrow ribbon in Secs. III B and III C.

In order to distinguish the edge states at the upper and
lower boundaries for different spin electrons, an antisym-
metric potential field is considered, which is fixed as U1 =
−U2 = U , while the exchange field may be symmetric or
antisymmetric. Note that the widths W1,2 of the upper and
lower potentials are assumed to be the same for convenience
in the following discussion, i.e., W1 = W2 = W . When the
widths of the upper and lower potentials become different, i.e.,
W1 �= W2, the energy band with respect to E = 0 will become
asymmetric slightly; however, the main conclusion on various
Hall effects is still valid. In addition, for the purpose of clearly
seeing the band for edge states, we only present the local
profile of the band in the figures. The K and K ′ points are
located at kx = 2π/3a and kx = 4π/3a, respectively, while
the � point is located at kx = 0 [see Fig. 1(b)]. In the following
figures, the band structures (or the edge states) for spin-up
and spin-down electrons are highlighted by the red and blue
curves (or arrows), respectively, which can be calculated by
Eq. (2). The hopping energy t is chosen as the energy unit in
the calculation.

A. Spin-valley polarized edge states in wide ribbon

First, we discuss the effect of side potential in the wide
nanoribbon and take the width Ny = 400 as an example. The

FIG. 2. Band structures of the wide zigzag ribbon with (a) W =
8 and U = 0.05t ; (b) W = 8 and U = 0.2t ; (c) W = 80 and U =
0.05t . The black thin curve in (a) is the band structure of a pristine
ribbon, i.e., U = 0.0. The red and blue curves are for spin-up and
spin-down electrons, respectively. The red and blue arrows denote the
propagation directions of the opposite spins at the boundaries. (d), (e)
Probability density of wave function |�|2 for the edge states labeled
by black points in (b) as a function of the site i in the y direction.
Other parameters are set as Ny = 400 and M1 = M2 = 0.0. The inset
in (e) is |�|2 for the ribbon width Ny = 800 and other parameters are
the same as those in (e).

result is more significant for wider nanoribbons. Figure 2
shows (a)–(c) the band structure and (d), (e) the edge states
when only the potential field is applied, i.e., M1 = M2 = 0.0.
The black thin curve in Fig. 2(a) represents the energy band
for the pristine ribbon with U = 0.0 which is spin degenerate,
characterized by the gapless edge states. The spin-up state
at the lower boundary and the spin-down state at the upper
boundary are degenerate with a forward move, while the spin-
up state at the upper boundary and the spin-down state at the
lower boundary are degenerate with a backward move. How-
ever, with the appearance of U , the bands for the spin-up and
spin-down states at the upper boundary are shifted up along
the energy, while the bands for the spin-up and spin-down
states at the lower boundary are shifted down. Consequently,
the spin degeneracy is lifted due to the combined effect of the
potential field and the intrinsic SOC, as shown in Fig. 2(a). As
U increases, the band crossing point splits, and the crossing
point for spin up move to the right; oppositely, the crossing
point for spin down move to the left [see Fig. 2(b)]. With
the further increase of U , the band for spin-up (or spin-down)
edge states would move to the K ′ (or K) valley [see Fig. 2(b)].
Thus, the system is not only a QSH insulator but also a
quantum valley Hall insulator, which is the quantum spin-
valley Hall effect. Figures 2(d) and 2(e) display the probability
density of the wave function for the spin-down and spin-up
edge states, respectively, which are labeled by black points in
Fig. 2(b). One can clearly see that the spin-valley polarized
edge states are formed at the two boundaries, where the edge
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FIG. 3. Band structures of the wide zigzag ribbon with (a) M1 =
M2 = M = 0.2t , (b) M1 = −M2 = M = 0.2t , and (c) M1 = −M2 =
M = −0.2t . Here, Ny = 400, U = 0.0, and W = 8.

states are spin- and valley-polarized simultaneously. Thus,
the currents carried by the upper and lower edge states are
spin-valley polarized, which could be extracted by a local
terminal. Note that for a wider ribbon, the localization of the
edge states will be more remarkable [see the inset in Fig. 2(e)].
Obviously, the side potential mainly affects the band of the
edge state and has very little effect on the band of the bulk
state. The reversal of U can interchange the role of spin-up
and spin-down electrons. In addition, the comparison between
Figs. 2(a) and 2(c) indicates that the width of U can be used
to control the dispersion in the wave vector space and to
modulate the Fermi velocity of the spin-up and spin-down
electrons. It can be seen that the Fermi velocities v = ∂E/∂k
near the Fermi level E = 0 of the forward (or backward) move
for spin up and spin down at the two valleys are different and
the edge modes are anisotropic helical. It is suggested that
the times of reaching the steady state are different for spin up
and spin down. Therefore, the conductance contributed by the
anisotropic edge states can be spin and valley polarized before
reaching the steady state [34].

Figure 3 discusses the band structure when only the ex-
change field is applied with U = 0.0, which is distinct from
the one observed in Fig. 2. For a symmetric exchange field
with M1 = M2 = M, the bands for spin-up states at both
boundaries shift up; inversely, the bands for spin-down states
at both boundaries shift down. As shown in Fig. 3(a) at
M = 0.2t , the spin splits and the crossing points move to the
two valleys. The system always holds the QSH insulator with
valley-polarized edge states, leading to the valley-polarized
QSH effect. More interestingly, the electrons at the K valley
just have motion on the lower boundary, while the electrons
from the K ′ valley have motion on the upper boundary, and so
the system can work as a spin-valley filter. Figure 3(b) exhibits
the band structure under an antisymmetric exchange field with
M1 = −M2 = M. In this case, for the four helical edge states,
the band of states moving to the left (or right) would shift
up (or down), and so the spin remains degenerate. With the
increase of M, the crossing point moves to the right. For a
proper value of M such as M = 0.2t , the valley-polarized
edge states are obtained at the K ′ valley and an energy gap is
generated at the K valley. As a result, another kind of valley-
polarized QSH effect is obtained. Note that a valley-polarized
edge state at the K valley can also be formed when M = −0.2t

FIG. 4. Band structures of the narrow zigzag ribbon with
(a) Ny = 120, (b) Ny = 60, and (c) Ny = 40. Here, U = 0.2t , M1 =
M2 = 0.0, and W = 8. The insets show the probability density of
wave function for spin up at kxa = 1.3π near Dirac cone.

[see Fig. 3(c)]. Therefore, the conductance in the low-energy
region is completely contributed by the edge states at the K
(or K ′) valley, and one can achieve a perfect valley-polarized
conductance by exchange field.

B. Quantum anomalous Hall states in narrow ribbon

Next, we turn to discuss the nanoribbon with a narrow
width Ny. Figure 4 presents the band structure with W = 8
for different values of Ny. One may find that an observable
band gap is opened up at the Dirac points. When the ribbon
width becomes narrow, the gap is broadened gradually. Such
a phenomenon arises from the effect of the side potential as
well as the coupling of the edge states at the upper and lower
boundaries via the tunnel effect. The insets of Fig. 4 show
the probability density of the wave function for spin up at
kxa = 1.3π corresponding to the lowest minibands near the
Fermi level. We can see that as Ny decreases, the coupling of
the edge states becomes stronger and stronger, and so the gap
is enlarged.

The dependence of the band gap on (a) the ribbon width Ny

and (b) the potential field U is shown in Fig. 5 with different
values of width W . As the ribbon width Ny increases, the
band gap is decreased because the coupling of the edge states
at the two boundaries becomes weak [see Fig. 5(a)]. On the
other hand, from Fig. 5(b) one can clearly see that the gap is
zero and the system keeps the QSH insulator at U < λSO. As
U further increases, a spectral gap can be induced, the edge
states disappear, and the system is driven to a trivial band
insulator (BI). Subsequently, the gap could be closed again at
a certain value of U , and then the system converts to a metal.
Thus, the system undergoes a phase transition from the QSH
insulator phase to the BI phase and then to the metal phase
controlled by U , which is distinct from graphene. U = λSO

is the critical value between the QSH insulator phase and BI
phase.

In fact, the electron motion in the low-energy region can be
described by a two-band Hamiltonian,

H = h̄vF (kxτx − ηkyτy) − ησλSOτz + U − σM1,2, (4)

where η = ±1 denotes the K and K ′ valleys and σ = ±1
denotes spin-up and spin-down states. The eigenvalue of
Eq. (4) can be written as E = ±

√
λ2

SO + (h̄vF )2(kx + ky)2 +
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FIG. 5. Band gap versus (a) ribbon width Ny with U = 0.1t and
(b) potential field U with Ny = 80. Probability density of wave func-
tion for spin up with (c) U = 0.04t and (d) U = 0.08t at Ny = 80,
W = 8, and kxa = 1.3π . Here, M1 = M2 = 0.0.

U − σM1,2. Then the transverse wave vector reads
ky =

√
(E − U + σM1,2)2 − λ2

SO − (h̄vF kx )2/h̄vF which
determines the nature of electronic states. Because kx is
the good quantum number and conserved quantity, the
wave functions in the different regions have the form
ψ = Aeikyy + Be−ikyy [56]. General properties of the solution
for iky determine the distribution of the wave functions in
ribbon, which can be adjusted by U and M1,2. When U < λSO

with M1 = M2 = 0.0, the wave vector ky is invariably
imaginary and the eigenstate is an evanescent wave near the
Fermi level E = 0.0. Consequently, the edge states at one
boundary cannot tunnel to another boundary and couple with
other edge states, and so the band gap cannot be opened up.
For U > λSO, ky is real and the eigenstate is a traveling wave
at the two boundaries. Then the edge states could tunnel
and couple with other edge states, leading to the band gap.
As shown in Figs. 5(c) and 5(d), the probability density of
the wave function for the spin-up edge states is plotted at
kxa = 1.3π . When U = 0.04t < λSO in Fig. 5(c), the edge
state at the upper boundary is localized at the a sublattice
(odd-numbered site), while the edge state at the lower
boundary is localized at the b sublattice (even-numbered
site), and there is exactly no overlap between the two edge
modes. Thus, the coupling between them is very weak.
When U = 0.08t > λSO in Fig. 5(d), the edge state at the
a (or b) sublattice of the upper (or lower) boundary tunnels
to the b (or a) sublattice of the lower (or upper) boundary
and they couple with each other, generating a gap in the
band. Based on the the boundary conditions and the energy
dispersion, it is found that a finite energy gap opens which
is approximately proportional to e−kyNy [66]. It is suggested
that the gap decays in an exponential law of Ny; i.e., the
logarithm for the gap decays linearly with Ny, as shown in
Fig. 5(a). The gap could reach 0.1t for the narrow ribbon.
However, for a wider ribbon, the coupling of the edge states
is very weak even though U > λSO and the gap scale is less
than 10−7t trending to zero [see Figs. 5(a) and 2(b)]. For the

FIG. 6. (a) Phase diagram of the narrow zigzag ribbon in the
(U, M ) space. (b) Contour map of conductance G(U, M ) at Ny = 48,
W = 12, and E = 0.0. The length of the central region is Nx = 100.
e2/h is the conductance unit of G; λSO is the energy unit of U and M.
Here, M1 = −M2 = M.

antisymmetric exchange field, the same results on the band
gap can be obtained as shown in Figs. 5(a) and 5(b). In fact,
for the spin-up (or spin-down) electrons, the potential energy
under an antisymmetric exchange field is completely the same
as (or opposite to) the one under an antisymmetric potential
field. This results in an identical energy gap in both fields.

The discussion in Sec. III A demonstrates that the effect of
the antisymmetric exchange field on the band structure of edge
states is different from that of the antisymmetric potential
field [see Figs. 2(b) and 3(b)] for the wide ribbon. However,
in the narrow ribbon, both the antisymmetric potential field
and antisymmetric exchange field could induce a band gap.
Although the size of band gap is spin independent, the band
structure is spin dependent. Taking advantage of a joint con-
trol of the potential and exchange fields, the coupling between
the edge states will become spin dependent. Therefore, one
can open a gap for a specified spin index and destroy its
edge states while another spin remains gapless, where the
time-reversal symmetry is broken and the spin degeneracy is
lifted. Figure 6(a) presents a phase diagram of the narrow
zigzag ribbon in the (U, M ) space when the side potential
is composed of antisymmetric potential and exchange fields,
where U1 = −U2 = U and M1 = −M2 = M. The effective
side potentials on the upper and lower boundaries are U +
σM and −U − σM, respectively. When |U + σM| < λSO,
the system has no gap for both spins and exhibits the QSH
effect, corresponding to the magenta region in Fig. 6(a). When
|U + M| < λSO but |U − M| > λSO (or |U − M| < λSO but
|U + M| > λSO), the spin-down (or spin-up) electron would
open a band gap and lose the edge states, while the edge states
for the spin-up (or spin-down) electron always exist at the
boundaries. As a consequence, a spin-polarized QAH effect
is realized, corresponding to the yellow region in Fig. 6(a).
When |U + σM| > λSO, both spins have a gap and the system
becomes BI, labeled by the white region in Fig. 6(a).

Figures 7(a)– 7(c) display the band structures of the narrow
ribbon with Ny = 48 labeled by black points in the phase dia-
gram of Fig. 6(a). For a special case, i.e., U = M, the effective
potential for spin down is zero, while the potential for spin
up is ±U ± M. As expected, there are only two spin-down
edge states and spin-up edge states are destroyed, confirm-
ing that the system becomes a spin-down polarized QAH
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FIG. 7. Band structures of the narrow zigzag ribbon labeled by
black points in Fig. 6(a). (a) U = 0.08t and M1 = −M2 = M =
0.08t ; (b) U = 0.08t and M1 = −M2 = M = −0.08t ; (c) U = 0.08t
and M1 = −M2 = M = 0.04t . (d)–(f) show the probability density
of wave function |�|2 for the edge states at E = 0.001t in (a)–(c),
respectively. Here, Ny = 48 and W = 12.

insulator [see Fig. 7(a)]. The spin-up polarized QAH states
can also be achieved by changing the sign of the side potential
[see Fig. 7(b)]. Figure 7(c) presents the band structure at the
boundary between the QAH effect and BI. We can find that
the crossing point of spin down moves to the K valley and
the spin up has a band gap, suggesting that the QAH effect is
not only spin polarized but also valley polarized. Figures 7(d)–
7(f) show the probability density of the wave function |�|2 for
the edge states at E = 0.001t in (a)–(c), respectively. There
are only two edge states from a specific spin which is localized
at the a (or b) sublattice of the upper (or lower) boundary.

By connecting the system with two leads consisting of
zigzag nanoribbons, we can study the transport behaviors
in a QAH insulator using Eq. (3). The x direction is finite
and its length is Nx = 100 in the calculation for the trans-
port. The contour map of conductance G(U, M ) is shown in
Fig. 6(b) when the ribbon width is Ny = 48 and Fermi energy
is E = 0.001t . Remarkably, the conductance in Fig. 6(b) is
completely consistent with the phase diagram in Fig. 6(a). In
the QSH effect region, the conductance is 2e2/h contributed
by the helical edge states. In the QAH effect region, the con-
ductance is e2/h contributed by the chiral edge states of one
spin and the conductance for another spin is zero, resulting in
a remarkable spin-polarized conductance.

C. Spin-valley switch in narrow ribbon

The potential field or the exchange field alone cannot gen-
erate a spin-polarized current in a two-terminal device, since
the band structures for the two spins are either antisymmetric
[see Figs. 2(a)–2(c)], or symmetric [see Fig. 3(a)], or degen-
erate [see Figs. 3(b) and 3(c)]. However, the combined effect
of the potential and exchange fields could induce a spin and
valley polarization in transport. In Fig. 8, the band structure
under the side potential composed of antisymmetric potential
field and symmetric exchange field is discussed. In this case,

FIG. 8. Band structures of the narrow zigzag ribbon with (a) U =
0.1t and M1 = M2 = M = 0.05t ; (b) U = 0.15t and M1 = M2 =
M = 0.05t ; (c) U = 0.15t and M1 = M2 = M = −0.05t . Here,
Ny = 48 and W = 12.

the effective potentials at the upper and lower boundaries are
U + σM and −U + σM, respectively. The potential differ-
ence between the upper and lower boundaries is 2U for both
spins. When U > λSO, the band gaps for both spins can be
opened up simultaneously. M determines the symmetry of the
band structure [see Figs. 8(b) and 8(c)]. As a result, the band
structure for the spin-up and spin-down states becomes asym-
metric and the band gap is generated. Figures 8(a) and 8(b)
indicate that the gap can be enlarged properly by adjusting U .
In the vicinity of the Fermi level, the band for spin up (or spin
down) is concentrated at the K ′ (or K) valley. Consequently,
the spin- and valley-polarized insulating states are realized
near the Fermi level, leading to the spin- and valley-polarized
conductance in Fig. 9.

Figure 9 shows (a) the spin-dependent conductance and (b)
its spin polarization P = (G↑ − G↓)/(G↑ + G↓), correspond-
ing to the band structure in Fig. 8(b). By comparing Figs. 8(b)
and 9(a), one may find that the conductance G↑ is mainly of-
fered by the spin-up electron at the K ′ valley and G↓ is offered

FIG. 9. (a) Spin-dependent conductance and (b) spin polariza-
tion versus Fermi energy E , and the parameter values are the same
as these in Fig. 8(b). (c), (d) Contour map of spin polarizations
(c) P(E ,U ) with M1 = M2 = M = 0.05t and (d) P(E , M ) with
U = 0.15t and M1 = M2 = M. The length of the central region is
Nx = 100.
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by the spin-down electron at the K valley. Thus, a spin- and
valley-polarized conductance is realized where both spin and
valley degrees of freedom are polarized simultaneously [see
Fig. 9(b)]. By adjusting the potential field U and Fermi energy
E , one could achieve a polarized conductance contributed by a
certain spin from a certain valley. The oscillations of G↑,↓ and
P result from the resonant mode in the scattering region where
the side potentials are applied. Figures 9(c) and 9(d) show
the contour plot of spin polarizations P(E ,U ) and P(E , M ),
respectively. It can be seen that there is no polarization in the
absence of U or M. When U > λSO, a perfect polarization
platform for a certain spin from a certain valley could be
realized by the side potential. Furthermore, the energy region
for the polarization platform could be controlled by applying
exchange field [see Fig. 9(d)]. The result suggests that the
system can work as a spin-valley switch.

IV. CONCLUSION

In conclusion, we studied the band structure and edge
states of the 2D honeycomb lattices with intrinsic SOC con-
trolled by the side potential and the finite-size effect of a

nanoribbon. The side potential is made up of potential field
and exchange field. For a wide ribbon, the quantum spin-
valley Hall phase by the antisymmetric potential field and
the valley-polarized QSH phase by the symmetric or anti-
symmetric exchange field could be proposed, leading to the
spin-valley-polarized edge states. For the narrow ribbon, the
coupling of edge states would become very strong, and so
the side potential composed of antisymmetric potential field
and antisymmetric exchange field could produce a band gap
for a certain spin. As a result, the system becomes a spin-
polarized QAH insulator. In addition, an effective spin-valley
switch could be realized by antisymmetric potential field and
symmetric exchange field. These results should be conducive
to the potential applications of the spin- and valley-polarized
edge states.
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