
PHYSICAL REVIEW B 104, 195417 (2021)

Magnetic order transition in monolayer MoS2 induced by strong intervalley correlation
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In this paper, we study a model for monolayer molybdenum disulfide, including the intravalley and intervalley
electron-electron interaction. We solve the model at a self-consistent mean-field level and get three solutions: L0,
L+, and L−. As for L0, the spin polarizations are opposite at K and K′ valleys and the total magnetization is zero.
L± describes two degenerate spin-polarized states, and the directions of polarization are opposite for the states
of L+ and L−. Based on these results, the ground state can be deduced to be spin polarized in domains in which
their particular states can be randomly described by L+ or L−. Therefore, a zero net magnetization is induced for
zero external magnetic field B, but a global ferromagnetic ground state for a nonzero B. We estimate the size of
domains as several nanometers. With the increase of the chemical potential, the ground state changes between
L0 and L±, indicating first-order phase transitions at the borders, which is coincident with the observation of
photoluminescence experiments in the absence of the external magnetic field [J. G. Roch, et al., Phys. Rev. Lett.
124, 187602 (2020)].
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I. INTRODUCTION

Transition-metal dichalcogenides (TMDCs) [1,2] are a
class of materials of the type MX2, where M is a transition-
metal atom (Mo, W, V, Hf, etc.) and X is a chalcogen atom
(S, Se, Te, etc.). In recent decades, interest has grown rapidly
in TMDCs due to their impressive electronic [1,3–7], optical
[2,3], and mechanical properties [8], and the broad applica-
tion to electronics [9–11], spintronics [12,13], valleytronics
[14,15], optoelectronics [2,16], and sensing [17]. When bulk
TMDCs are thinned to monolayers, correlation effects be-
come much more important than that in the bulk, because
the three-dimensional Coulomb interaction is only screened
in two dimensions, which results in a weak dielectric screen-
ing [18]. Many experiments have demonstrated the existence
of strong electron-electron (e-e) interaction in monolayer
TMDCs (ML-TMDCs), including interaction-induced giant
paramagnetic (PM) response in ML-MoSe2 [19], biexciton
photoluminescence peaks in ML-WX2 (X = S, Se) [20,21],
enhanced valley magnetic response, and quantum Hall states
sequence transition in ML-WSe2 [22,23]. Optical suscepti-
bility measurements of the molybdenum disulfide (MoS2)
monolayer in van der Waals heterostructures provided by
Roch et al. show that e-e interactions, especially the interval-
ley exchange interaction, result in a first-order phase transition
from a spin-unpolarized ground state to a spin-polarized state
in the presence of an external magnetic field B [24–26]. In
the photoluminescence spectrum, an abrupt change marks this
first-order phase transition when the trion peak (X−) evolves
into the Mahan exciton peak (Q) [25]. This first-order phase
transition attributes to the nonanalytic correction in the free
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energy [25,27]. Without B, the same abrupt change is still ob-
served, which implies that a magnetic order transition occurs
like the case of nonzero B [25]. However, the total magneti-
zation is zero in the whole process, which seems to indicate
that the transition of the magnetic order doesn’t occur. It is
confusing. Roch et al. [25] proposed that the fluctuation be-
tween “puddles” of the spin up and spin down leads to the zero
total magnetization at low electron density. However, there is
no theoretical demonstration of the puddles (the degenerate
spin-polarized states). In previous theoretical studies [28,29]
intervalley e-e interaction was ignored and the spin-spin cou-
plings in the intravalley and intervalley were not appreciated,
which play a vital role, as shown by our results, in determining
the properties of the ground state. We are motivated by the
zero magnetic field experimental observations and the lack of
theoretical explanation. Therefore, we focus on this case and
try to understand the peculiar observations in experiments.
In this paper, we study a model for ML-MoS2, including the
intravalley and intervalley Coulomb interaction, based on the
low-energy noninteracting Hamiltonian derived in previous
studies [13] and develop a self-consistent mean-field method,
emphasizing the effective intervalley spin-spin couplings. It is
found that the ground state is composed of two degenerated
spin-polarized states at a certain electron density, giving rise
to a zero total magnetization. By tuning the electron density
via the chemical potential, a first-order phase transition occurs
between the unpolarized state to the spin-polarized states,
which is consistent with the experiment [25].

II. THE MODEL AND SELF-CONSISTENT CALCULATION
PROCEDURE

Figure 1 shows the crystal structure of ML-MoS2 and its
first Brillouin zone (BZ) [30]. The minima of the conduction
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FIG. 1. (a) Honeycomb lattice of the monolayer MoS2. The red
dot is Mo and the green dot is S. a1 and a2 are the primitive vectors.
(b) Brillouin zone (BZ) of the honeycomb lattice. b1 and b2 are the
primitive vectors of the reciprocal lattice.

band are located at the corners (K, K′). For the description of
the noninteracting case, we use the effective Hamiltonian of
ML-MoS2 around the Dirac cones [13,31] as

Ĥ0 = at (τkxσx + kyσy) + �

2
σz − λτ

σz − 1

2
ŝz, (1)

where τ = ±1 are valley indexes for K and K′ (see Fig. 1).
The spin splitting caused by spin-orbit coupling is 2λ. σα

(α = x, y, z) are the Pauli matrices. a is the lattice constant.
t is the hopping integral. � is the energy gap between the
conduction band and valence band (when λ = 0). ŝz is the
z component of the spin operator. For convenience, BZ is
chosen as the diamond region in the following calculation [see
Fig. 1(b)]. The energy eigenvalues of the Hamiltonian are [32]

Enτ s = λτ s/2 ±
√

(atk)2 + [(� − λτ s)/2]2, (2)

where s = ±1 are the spin indexes for spin up and down, re-
spectively. The up plus (bottom minus) sign in Eq. (2) denotes
the conduction (valence) band [c (v)]. k is the module of the
wave vector. The corresponding eigenstates are denoted as
|nτks〉, where n = c or v.

The Coulomb interaction between electrons is

V(r1 − r2) = e2

4πε0

1

|r1 − r2| , (3)

where e is the elementary charge and ε0 is the vacuum per-
mittivity. It is secondly quantized in the |nτks〉 representation
[33],

V̂ = 1

N

∑
s1s2

∑
k1k2 k3k4

∑
n1n2 n3n4

×
∑

τ1τ2 τ3τ4

Vinta
n1τ1†
k1s1

an2τ2†
k2s2

an3τ3
k3s2

an4τ4
k4s1

, (4)

where Vint denotes the strength of the e-e interaction and N
is the number of unit cells. anτ†

ks (anτ
ks ) is the creation (an-

nihilation) operator in |nτks〉 state. There are three kinds of
e-e interaction: interaction between the conduction electrons,
interaction between the valence electrons, and the interaction
between the conduction electrons and the valence electrons.
Here, we only take the interaction between the conduction
electrons into consideration and eliminate the letter c, which is
used to mark the conduction band, in the following formulas

for convenience. The strength of the e-e interaction in the
conduction band is written as

Vint = 1

2N
〈τ1k1s1, τ2k2s2|V(r1 − r2)|τ4k4s1, τ3k3s2〉. (5)

V̂ in Eq. (A37) is thus expanded explicitly and approximated
as

V̂ ≈ V̂intra + V̂inter, (6)

where

V̂intra = 1

N

∑
k1k2

∑
τ s

Uaτ†
k1sa

τ†
k2 s̄a

τ
k2 s̄a

τ
k1s, (7)

V̂inter = 1

N

∑
k1k2

∑
τ s1s2

U ′aτ†
k1s1

aτ̄†
k̄2s2

aτ
k1s2

aτ̄

k̄2s1
. (8)

V̂intra and V̂inter denote the intravalley and intervalley
e-e interaction, respectively. U and U ′ are the strengths of the
corresponding e-e interactions:

U = 1

2N
〈τk1, τk2|V(r1 − r2)|τk1, τk2〉, (9)

U ′ = 1

2N
〈τk1, τ̄ k̄2|V(r1 − r2)|τ̄ k̄2, τk1〉. (10)

τ̄ (s̄) represents the opposite valley (spin) of τ (s). k (k̄) indi-
cates the relative wave vector with respect to the minimum of
τ (τ̄ ) valley. Quantitatively, it has been estimated in the static
screening limit that due to the small Bohr radius the interval-
ley e-e interaction is comparable to the intravalley interaction
even at high electron density [26]. Hence, it is necessary to
take the intervalley e-e interaction into consideration when
one deals with the Coulomb interaction in TMDCs [26]. For
the purpose of a qualitative discussion, U and U ′ are regarded
as constants. Details of the above approximation are shown in
Appendix A.

We apply the mean-field approximation (MFA) [33] to
V̂intra and V̂inter, respectively. As for V̂intra, it reads

V̂
MF
intra ≈

∑
ks

(
Uτ sa

τ†
ks aτ

ks + Uτ̄ sa
τ̄†
k̄s

aτ̄

k̄s

)
, (11)

where

Uτ s = 2

N

∑
k

U 〈nτ
ks̄〉, Uτ̄ s = 2

N

∑
k

U 〈nτ̄

k̄s̄〉. (12)

nτ
ks = aτ†

ks aτ
ks is the particle number operator. In this paper, we

merely consider the zero temperature case. Therefore, 〈· · · 〉
means the ground-state average. In terms of the spin operators,
Sz

τk = 1
2 (nτ

k↑ − nτ
k↓), S+

τk = aτ†
k↑aτ

k↓, and S−
τk = aτ†

k↓aτ
k↑, V̂inter is

rewritten as

V̂inter = −U ′

N

∑
k1k2

(
nτ

k1
nτ̄

k̄2
+ 4Sτk1 · Sτ̄ k̄2

)
, (13)

where nτ
k = ∑

s nτ
ks. S is the spin operator and

Sτk1 · Sτ̄ k̄2
= Sz

τk1
Sz

τ̄ k̄2
+ 1

2

(
S+

τk1
S−

τ̄ k̄2
+ S−

τk1
S+

τ̄ k̄2

)
. (14)

In Eq. (13), the first and second terms give the intervalley
density-density interaction and the intervalley spin-spin cou-
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pling. We apply the MFA to Eq. (13) and obtain

V̂
MF
inter ≈ −

∑
k

(
U ′

τ̄ nτ̄

k̄ + U ′
τ nτ

k + Mτ̄ Sz
τ̄ k̄

+ Mτ Sz
τk

)
, (15)

where

U ′
τ̄ (τ ) = 1

N

∑
k(k̄)

U ′〈nτ (τ̄ )
k(k̄)

〉
, Mτ̄ (τ ) = 4

N

∑
k(k̄)

U ′〈Sz
τk(τ̄ k̄)

〉
.

In Eq. (13), the direction of S is chosen as the z axis. By
defining

Xτ s = U ′
τ + 1

2
sMτ , Xτ̄ s = U ′

τ̄ + 1

2
sMτ̄ , (16)

where s = ±1 for states with spins parallel and antiparallel to
the S, we obtain

V̂
MF
inter ≈ −

∑
ks

(
Xτ sa

τ†
ks aτ

ks + Xτ̄ sa
τ̄†
k̄s

aτ̄

k̄s

)
. (17)

Therefore, the MFA of the interaction, i.e., V̂MF = V̂
MF
intra +

V̂
MF
inter, is

V̂MF =
∑

ks

(
Fτ sa

τ†
ks aτ

ks + Fτ̄ sa
τ̄†
k̄s

aτ̄

k̄s

)
. (18)

Fτ s and Fτ̄ s are the effective mean fields, which read

Fτ s = Uτ s − Xτ s, Fτ̄ s = Uτ̄ s − Xτ̄ s. (19)

The total mean-field Hamiltonian reads

HMF
total =

∑
ks

(
Ecτ s(k)aτ†

ks aτ
ks + Ecτ̄ s(k̄)aτ̄†

k̄s
aτ̄

k̄s

)
, (20)

where the energy spectrum

Ecτ (τ̄ )s(k) = Ecτ (τ̄ )s(k) + Fτ (τ̄ )s − μ, (21)

where μ is the chemical potential. In above MFA, we omit the
constant terms, which do not affect our general discussions
and qualitative conclusions. The constant terms neglected in
the calculations merely shift all energy bands simultaneously.
This leads us to a zero-energy redefinition. This shift cannot
affect the determination of the solutions which are determined
by the parameters that are not entangled with the absolute
energies but the relative energy with respect to the zero energy.
It is easy then to calculate the free energy:

Efree =
∑
τ s

∫
Ecτ s(k)dk. (22)

The detailed calculations of Efree can be found in Appendix C.
To calculate the effective mean fields, averages 〈nτ

ks〉 need to
be calculated. We thus introduce

ñτ
s = 1

N

∑
k

〈nτ
ks〉. (23)

The total electron number per unit cell at τ valley is ñτ =∑
s ñτ

s , lying in a domain of [0,1]. It is convenient for the
following discussion to define the valley magnetization as

mτ = ñτ
↑ − ñτ

↓, mτ̄ = ñτ̄
↑ − ñτ̄

↓, (24)

which indicate the valley spin polarization. The total magne-
tization is then m = mτ + mτ̄ . When the ground state is spin

polarized, the total magnetization m �= 0. In contrast, m = 0.
In terms of ñτ and mτ , the mean field is rewritten as

Fτ s = U (ñτ + s̄mτ ) − U′(ñτ̄ + smτ̄ ). (25)

The gap of the spin splitting of the conduction band is readily
obtained,

�cτ
E (k) = Ecτ↑(k) − Ecτ↓(k) + �τ

F , (26)

where �τ
F = −2Umτ − 2U ′mτ̄ , which shows the influence

of the e-e interaction on the spin splitting of the conduction
band and indicates the renormalization of the conduction band
minimum (CBM). The renormalized position of the CBM is
self-consistently calculated. Parameters ñτ , mτ , ñτ̄ , and mτ̄

constitute a four-dimensional parameter space. Any point in
the space is denoted as a vector (ñτ , mτ , ñτ̄ , mτ̄ ). At this stage,
we have obtained all of the mean-field equations (MFEs),
which are solved numerically and self-consistently. The pro-
cedure of the numerical calculation is as follows. First, we
give a set of values for ñτ , mτ , ñτ̄ , and mτ̄ , which corresponds
to a vector Pgiven in the parameter space. Then, the effective
mean field Fτ s is obtained by substituting ñτ , mτ , ñτ̄ , and mτ̄

into Eq. (25). Utilizing Eq. (21), we get the energy spectrum.
Finally, we calculate Efree by Eq. (22) and update ñτ , mτ , ñτ̄ ,
and mτ̄ via Eqs. (C12) and (24). Note that parameter ñτ should
be calculated via an integral over the momentum space and
other parameters are not generated from integrals but from
ñτ directly [see Eq. (24)]. ñτ is determined by the relative
position of the energy with respect to the Fermi level (or
the chemical potential) (see Appendix C). Hence, we neglect
constant terms in the mean-field process which shift all en-
ergy bands equally and have no effect on the integral of ñτ

and the self-consistent process. The updated (ñτ , mτ , ñτ̄ , mτ̄ )
corresponds to a new point in the parameter space, denoted by
a vector Pupdate. We define the distance of the two points as the
deviation:

δ = |Pgiven − Pupdate|. (27)

For a given point in the parameter space, if it is a solution
of the set of MFEs, then δ is zero. We thus scan the entire
parameter space and try to find the parameter vectors where
δ converges to zero and we define these parameter vectors as
the solutions.

III. NUMERICAL CALCULATIONS

It is found that the solution of MFEs is not unique (see
Fig. 2) and the solutions are characterized by converged
parameter vectors in the parameter space. In the numerical
calculation, we grid the definitional domain of each parameter
into N subintervals, that is, the parameter space is gridded
into N 4 subspaces. As N goes to infinite, the parameter space
is ergodic exactly. In practice, we take a finite N , and δ is
kept at the order 10−6. In this paper, we take a = 3.193 Å,
t = 1.1 eV, � = 1.66 eV, and 2λ = 0.15 eV, which are the
fitting results to the ab initio calculation [13]. The intraval-
ley Coulomb interaction U is usually unknown in TMDCs.
According to the discussion of R. Roldán et al. [34], elec-
tronic states in the neighbor region of K and K′ points are
characterized by the 4d orbitals of Mo atoms. The order of
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FIG. 2. Solutions of mean-field equations (MFEs). The parame-
ter space is ergodic by gridding the space 150 × 150 × 150 × 150.
We omit the points which have a derivation δ > 0.03. The derivation
δ of ñτ , mτ , ñτ̄ , and mτ̄ , are shown in (a)–(d). L0, L+, and L− are the
three solutions. The points in plane are projections of the red spheres.
we take U = 1.0 eV, U ′ = 0.4 eV, and μ = 1.9 eV

magnitude of U4d is approximated by the ionization energy
of Mo atoms. According to previous investigations of MoS2

[34,35], one usually takes U4d ≈ 2.0 ∼ 4.0 eV. We compare
our definition of the interacting Hamiltonian with that of
Rostami and Asgari [35], we find U = U4d/2. Therefore, the
intravalley Coulomb interaction is about U ≈ 1.0 ∼ 2.0 eV.
Based on the above consideration, we take U = 1.0 eV and
find the result is reasonable when U is combined with other
parameter values.

Figure 2 shows the evolution of Efree and δ with ñτ , mτ ,
ñτ̄ , and mτ̄ in (a)–(d), respectively (N = 150). We obtain
three solutions: one solution L0 and two degenerated solu-
tions L± (with the same free energy). Efree is not the total
free energy because the constant terms have been neglected
in the calculation [see Eqs. (B1) and (B6)]. As for differ-
ent mean-field solutions (L0, L+, and L−), the values of the
neglected constants are different. In Fig. 2, we plot the so-
lutions L0, L+, and L− on Efree for convenience without the
meaning of comparison of free energy. L± are solutions which
haven’t been obtained previously due to ignoring the interval-
ley Coulomb interaction [28,29]. In Figs. 2(a) and 2(c), ñτ (L+)
and ñτ̄ (L+) are very close (the same to the solution of L−). At
the numerical precision δ ≈ 10−6, we obtain the difference
ñτ (L+) − ñτ̄ (L+) is not zero but about an order of 10−4,
indicating a slight valley polarization. However, ñτ = ñτ̄ for
L0 [see Figs. 2(a) and 2(c)]. As for L0, the states of τ and
τ̄ valleys can be spin polarized but in opposite directions,
which contributes a zero net magnetization [Figs. 2(b) and
2(d)]. In contrast, for solutions L+ and L−, spin polarization
for both valleys can be induced as well but in the same
direction, leading to a net magnetization for each solution.
Because L± are two degenerated solutions, the spin-polarized
states (composed of two valleys) from L+ and L− are aligned
opposite, giving rise to a zero net magnetization since the state
of the entire system is randomly composed of the states of
L+ and L− [25]. We further speculate that the states of L±
may manifest themselves by forming spin-polarized domains
in real materials and, globally, there is no net magnetization
without introducing an external magnetic field.

FIG. 3. (a) The dependence of mτ , mτ̄ , and m on μ. U = 1.0 eV,
U ′ = 0 eV. (b), (c) The energy spectrum Ecτ s(k) along kx direction.
U = 1.0 eV, U ′ = 0 eV, and μ = 1.7 eV. The horizontal line shows
the Fermi surface.

We first discuss the U ′ = 0 case, and the effective mean
field becomes Fτ s = 2

N

∑
k U 〈nτ

ks̄〉. We derive the solution L0

that satisfies
∑

k〈nτ
k↑〉 = ∑

k〈nτ̄
k↓〉 and

∑
k〈nτ

k↓〉 = ∑
k〈nτ̄

k↑〉.
These indicate that the spin splitting of the conduction band
at τ and τ̄ is inverted due to time-reversal symmetry (TRS)
[see Figs. 3(b) and 3(c)] [13]. It can be seen from the en-
ergy gap in Eq. (26) at the minimum of the conduction band
(k = 0), �cτ

E (0) = −2Umτ . From Fig. 3(a), we find that mτ =
−mτ̄ , and then �cτ

E (0) always takes the opposite values [see
Figs. 3(b) and 3(c)]. We only derive the L0 solution in this
case, which means an unpolarized state in the absence of
intervalley interaction.

In general, the intervalley e-e interaction is comparable to
the intravalley interaction even at high electron density, due to
a small Bohr radius aB ∼ 0.5 nm [26]. In this case, all of ñτ ,
mτ , ñτ̄ , and mτ̄ appear in the mean field Fτ s [Eq. (25)], i.e.,
carriers in the two valleys interact with each other. Figure 4(a)
shows the dependence of m on μ at various U ′ for the L+
state. The main feature of the L+ state is that there is a

FIG. 4. (a) The dependence of m on μ at various U ′. With the
increase of μ, the solution of MFEs changes between L0 and L±.
When the solutions are L±, we merely chose L+ and calculate m of
L+, because L+ and L− are degenerate. (b)–(m) The spin splitting
of the conduction band along the kx direction. The horizontal lines
represent the Fermi level. U = 1.0 eV.
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region of gate voltage (characterized by chemical potential μ)
in which a net magnetization is developed and characterized
by a finite m. However, the global net magnetization is zero
due to the superposition of the L± states. We may call it a
ferromagnetic (FM) state. Out of this region, m = 0 means a
PM state. Therefore, there are two borders between the FM
and PM states located at a lower and higher μ, which indicate
a PM-FM phase transition and vice versa. However, three
kinds of transitions are found. The first one is shown for U ′ =
0.2 eV, where m grows and disappears with μ continuously,
indicating a second-order phase transition at two borders; the
second one is shown for U ′ = 0.4, 0.6, and 0.8 eV, where
the PM-FM transitions are emergent discontinuously, which
indicate a first-order phase transition consistent with the ex-
perimental observations [25]. The third one (U ′ = 0.1 eV)
shows a second order and a first order at the lower and higher
μ, respectively. As a theoretical investigation, we study the
effects due to various parameters to cover most possibilities.
The validity of the parameters should get support from ex-
perimental observations or other ways. Our results show that
when U ′ � 0.4 eV, the phase transition is clearly of first order,
which agrees with the experimental results [25]. This is also
consistent with the previous prediction that the intervalley in-
teraction is comparable with the intravalley interaction even at
high electron density [26]. We therefore deduce that realistic
intervalley Coulomb interaction should be in this range. The
complicated transition behaviors exhibited in other parameter
ranges might not be a reality. It is still lacking an intuitive
picture for the appearance of such a complicated case.

To understand the existence of the FM state, we show
band structures in Figs. 4(b)–4(m) and the relative positions
of the Fermi level to CBM. The electron Coulomb interaction
renormalizes the band structures (or the position of CBM).
For different U ′, the relative position of the Fermi level (or
chemical potential) to the CBM is different. The PM states
at small μ can be understood because the Fermi level does
not pass through any bands [Figs. 4(b), 4(c), 4(h), and 4(i)].
For the PM states at large μ [Figs. 4(f), 4(g), 4(l), and 4(m)],
the Fermi level deeply lies in all four bands where the e-e
interaction may be weak due to a high electron density, and
the spin splitting due to the e-e interaction is insignificant. In
contrast to these two cases, Figs. 4(d), 4(e), 4(j), and 4(k) show
the band structures for the FM states. It is noted that the spin
splitting of bands is obviously observed and the Fermi level is
not deeply lying in the conduction bands, but lies just around
the bottom of some bands. This result matches our intuitive
picture that the electron Coulomb interaction should be more
important when the Fermi level is close to the CBM [24]. For
Figs. 4(d) and 4(e), it seems a normal FM state in which the
Fermi level is not far away from the bottom of the four bands.
However, for Figs. 4(j) and 4(k), the Fermi level is deeply in
the spin-up bands but shallowly lies in the spin-down bands.
It might be this difference that leads to a different transition
order between the PM and FM existing at lower and higher
μ, respectively. It is obvious that the relative position of the
Fermi level and the CBM is quite crucial for the existence of
the FM states and this relative position is altered dramatically
by including the electron Coulomb interaction and cannot be
qualitatively predicted by thinking about the picture of the
noninteraction case.

IV. DISCUSSIONS AND CONCLUSIONS

The complicated behaviors of the transition induced by μ

may rest themselves into the fact that the energy bands are
altered in the self-consistent MFEs. Comparable to the exper-
iments, it seems that the first-order phase transitions at the
two borders may be consistent with experimental observations
[25]. If this is the case, we can deduce that the U ′ may be in
the range of 0.4–0.8 eV. This energy scale may be converted
to a length scale which corresponds to a Coulomb length for
U ′ and a size of the so-called puddle in experiments, which
is in 1–2 nm. This can be tested in experiments although this
size is said to be small but not given in experiments. So far, we
know that the polarized puddles resemble the domains in usual
ferromagnets. In the zero-B case, the polarizations of these
puddles may be randomly distributed, giving rise to a zero
net magnetization. We may speculate that the polarizations of
puddles may be aligned into one direction when applying a
nonzero B, which brings us a net magnetization. This scenario
is consistent with the experimental observation [24]. A further
measurement on this size can clearly demonstrate our theory.
We should emphasize that an FM state can be induced by
tuning gate voltage due to finite U ′. This reflects the impor-
tant role of intervalley Coulomb interaction. The FM state
can be derived only in the presence of intervalley Coulomb
interaction. In the absence of the Coulomb interaction, Eq. (2)
shows that the ground state is both valley and spin degenerate
at k = 0. The conduction band at τ and τ̄ is inverted as the
requirement of TRS. However, in the presence of the Coulomb
interaction, it is found that the valley and spin degeneracy are
lifted [Figs. 4(d), 4(e) 4(j), and 4(k)]. Note that the energy dif-
ference with the same spin index and various valley index in
Figs. 4(j) and 4(k) is so small |Ecτ s(0) − Ecτ̄ s(0)| ≈ 0.01 eV
that it is hard to be recognized. As shown in Figs. 4(d), 4(e)
4(j), and 4(k), intervalley Coulomb interaction combined with
the suitable Fermi level induces the spin polarization of the
ground state, which does not satisfy the requirement of TRS.
Therefore, the TRS can be broken by the joint effects of inter-
valley Coulomb interaction and the Fermi level. A slight val-
ley polarization (imbalanced of electrons distribution at τ and
τ̄ valley) [14,36] can be induced by the e-e interaction at 10−3

order [see Figs. 4(j) and 4(k)]. When μ increases further, elec-
tron density is increased, e-e interaction is reduced, valley de-
generacy and the TRS recovers again [see Figs. 4(l) and 4(m)].
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APPENDIX A: MODEL

1. Solve noninteracting Hamiltonian

According to the work reported by Xiao et al. [13], the ef-
fective Hamiltonian of ML-MoS2 around Dirac cones without
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FIG. 5. Energy spectrum along kx direction at τ1 (left) and τ2

(right) valleys. a = 3.193 Å, t = 1.1 eV, � = 1.66 eV, and 2λ =
0.15 eV.

Coulomb interaction is

Ĥ0 = at (τkxσx + kyσy) + �

2
σz − λτ

σz − 1

2
ŝz, (A1)

where τ = ±1 is the valley index. The spin splitting caused
by spin-orbital coupling is 2λ. σα (α = x, y, z) are the Pauli
matrices. a is the lattice constant. t is the hopping integral. �

is the energy gap between the conduction band and the valence
band (when λ = 0). ŝz is the z component of the spin operator.
For convenience, we choose a diamond BZ in the following
calculation (see Fig. 6). We explicitly write

ŝz =
(

sz1 0
0 sz2

)
, τ =

(
τ1 0
0 τ2

)
, (A2)

where sz1 = 1 and sz2 = −1 represent spin up and spin down,
respectively, τ1 = 1 and τ2 = −1 indicate the two valleys
located at K and K′. We perform the direct product for the
valley, spin, and band (conduction band and valence band)
index freedom in the Hamiltonian. Ĥ0 is rewritten as

Ĥ0 = at (τ ⊗ kxσx ⊗ 1 + 1 ⊗ kyσy ⊗ 1) + 1 ⊗ �

2
σz ⊗ 1

− λτ ⊗ σz − 1

2
⊗ ŝz, (A3)

FIG. 6. The BZ of ML-MoS2. b1 and b2 are the primitive vectors
of the reciprocal lattice. K and K′ marks two valleys. The black and
green solid circles are the inscribed and circumscribed circles of the
right half of BZ. The corresponding radius is kc and km, as shown
in (a). The inscribed circle is filled with rose color. kτ s

F is the Fermi
radius. k is any vector in BZ. (a) 0 � kτ s

F � kc. The region within
the black dash-dot circle is occupied by the electrons and filled with
yellow color. (b) kc < kτ s

F � km. In this case, electrons occupy the
colored region, which is composed of s1, s2, and s3. ϕ is the angle
between k and the red dot line. ϕm is the maximum of the angle.

where 1 is the identity matrix and ⊗ denotes direct product.
It is obvious that Ĥ0 is an 8 × 8 matrix. Substituting the Pauli
matrix,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(A4)

into Eq. (A3), one obtains

Ĥ0 =
(

α 0
0 β

)
. (A5)

Ĥ0 is a block matrix, where 0, α, and β are 4 × 4 matrices. 0
is a zero matrix,

α =

⎛
⎜⎜⎝

�
2 0 α− 0
0 �

2 0 α−
α+ 0 −�

2 + λτ1sz1 0
0 α+ 0 −�

2 + λτ1sz2

⎞
⎟⎟⎠, (A6)

where α± = at (τ1kx ± iky), and

β =

⎛
⎜⎜⎝

�
2 0 β− 0
0 �

2 0 β−
β+ 0 −�

2 + λτ2sz1 0
0 β+ 0 −�

2 + λτ2sz2

⎞
⎟⎟⎠, (A7)

where β± = at (τ2kx ± iky). It is easy to diagonalize α matrix.
The energy eigenvalues for the τ1 valley reads

E (1)
τ1sz1

= λτ1sz1

2
−
√

(atk)2 +
(

� − λτ1sz1

2

)2

, (A8)

E (2)
τ1sz1

= λτ1sz1

2
+
√

(atk)2 +
(

� − λτ1sz1

2

)2

, (A9)

E (3)
τ1sz2

= λτ1sz2

2
−
√

(atk)2 +
(

� − λτ1sz2

2

)2

, (A10)

E (4)
τ1sz2

= λτ1sz2

2
+
√

(atk)2 +
(

� − λτ1sz2

2

)2

. (A11)

The corresponding eigenvectors are

u(1)
τ1sz1

= N(1)
τ1sz1

(
� − 2E (2)

τ1sz1

2at (τ1kx + iky)
, 0, 1, 0

)T

, (A12)

u(2)
τ1sz1

= N(2)
τ1sz1

(
� − 2E (1)

τ1sz1

2at (τ1kx + iky)
, 0, 1, 0

)T

, (A13)

u(3)
τ1sz2

= N(3)
τ1sz2

(
0,

� − 2E (4)
τ1sz2

2at (τ1kx + iky)
, 0, 1

)T

, (A14)

u(4)
τ1sz2

= N(4)
τ1sz2

(
0,

� − 2E (3)
τ1sz2

2at (τ1kx + iky)
, 0, 1

)T

, (A15)

where the eigenvectors are normalized by

N(1)
τ1sz1

=
√

4(atk)2

(� − 2E (2)
τ1sz1

)2 + 4(atk)2
, (A16)

N(2)
τ1sz1

=
√

4(atk)2

(� − 2E (1)
τ1sz1

)2 + 4(atk)2
, (A17)
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N(3)
τ1sz2

=
√

4(atk)2

(� − 2E (4)
τ1sz2

)2 + 4(atk)2
, (A18)

N(4)
τ1sz2

=
√

4(atk)2

(� − 2E (3)
τ1sz2

)2 + 4(atk)2
. (A19)

In the same way, we diagonalize the β matrix, obtaining the
energy eigenvalues at τ2 valley

E (5)
τ2sz1

= λτ2sz1

2
−
√

(atk)2 +
(

� − λτ2sz1

2

)2

, (A20)

E (6)
τ2sz1

= λτ2sz1

2
+
√

(atk)2 +
(

� − λτ2sz1

2

)2

, (A21)

E (7)
τ2sz2

= λτ2sz2

2
−
√

(atk)2 +
(

� − λτ2sz2

2

)2

, (A22)

E (8)
τ2sz2

= λτ2sz2

2
+
√

(atk)2 +
(

� − λτ2sz2

2

)2

. (A23)

The eigenvectors are

u(5)
τ2sz1

= N(5)
τ2sz1

(
� − 2E (6)

τ2sz1

2at (τ2kx + iky)
, 0, 1, 0

)T

, (A24)

u(6)
τ2sz1

= N(6)
τ2sz1

(
� − 2E (5)

τ2sz1

2at (τ2kx + iky)
, 0, 1, 0

)T

, (A25)

u(7)
τ2sz2

= N(7)
τ2sz2

(
0,

� − 2E (8)
τ2sz2

2at (τ2kx + iky)
, 0, 1

)T

, (A26)

u(8)
τ2sz2

= N(8)
τ2sz2

(
0,

� − 2E (7)
τ2sz2

2at (τ2kx + iky)
, 0, 1

)T

, (A27)

where

N(5)
τ2sz1

=
√

4(atk)2

(� − 2E (6)
τ2sz1

)2 + 4(atk)2
, (A28)

N(6)
τ2sz1

=
√

4(atk)2

(� − 2E (5)
τ2sz1

)2 + 4(atk)2
, (A29)

N(7)
τ2sz2

=
√

4(atk)2

(� − 2E (8)
τ2sz2

)2 + 4(atk)2
, (A30)

N(8)
τ2sz2

=
√

4(atk)2

(� − 2E (7)
τ2sz2

)2 + 4(atk)2
. (A31)

Energy eigenvalues are written compactly as [32]

Enτ s = 1

2
λτ s ±

√
(atk)2 + (

� − λτ s

2
)2, (A32)

where the spin index s = sz1 or sz2. Enτ s is shown in Fig. 5.
The up plus sign denotes the conduction band (c). The bottom
minus sign denotes the valence band (v). n is the band index
(conduction band n = c, valence band n = v). k is the module

of the wave vector, k =
√

k2
x + k2

y . The valley index τ = τ1 or

τ2. The corresponding eigenstate is a superposition state of the
bases [13] with the coefficients defined by the eigenvectors,
which is denoted as |nτks〉 = ψnτ s(k, r).

2. Coulomb interaction

Electron-electron (e-e) interactions have significant effects
on the physical properties of monolayer materials [18]. As
early as 1979, Keldysh investigated Coulomb interaction in
thin semiconductor and semimetal films, and gave an effective
Coulomb interaction, which is expressed by the Neumann and
Struve functions [37]. In this paper, we focused on a qualita-
tive discussion. Therefore, we take the usual bare Coulomb
interaction instead of the complicated potential given by
Keldysh. The bare Coulomb interaction is

V(r1 − r2) = e2

4πε0

1

|r1 − r2| , (A33)

where e is the elementary charge, ε0 is the vacuum permittiv-
ity. It is obvious that in terms of field operators, the Coulomb
interaction is written as [33]

V̂(r1 − r2) =1

2

∑
s1s2

∫∫
dr1dr2V(r1 − r2)

ψ†
s1

(r1)ψ†
s2

(r2)ψs2 (r2)ψs1 (r1). (A34)

We take the transformation

ψ†
s (r) = 1√

N

∑
nτk

ψ∗
nτ s(k, r)anτ†

ks , (A35)

ψs(r) = 1√
N

∑
nτk

ψnτ s(k, r)anτ
ks . (A36)

It is secondly quantized in the |nτks〉 representation [33]

V̂ = 1

N

∑
s1s2

∑
k1k2 k3k4

∑
n1n2 n3n4

×
∑

τ1τ2 τ3τ4

Vinta
n1τ1†
k1s1

an2τ2†
k2s2

an3τ3
k3s2

an4τ4
k4s1

, (A37)

where Vint denotes the strength of the e-e interaction and
N is the number of the unit cell. anτ†

ks (anτ
ks ) is the creation

(annihilation) operator at |nτks〉 state. Because the valence
band is fully filled, we only consider the e-e interaction in the
conduction band, i.e., n = c. In the following derivation, the
superscript c is omitted. We take the summation of τ2, τ3, and
τ4 in Eq. (A37), obtaining

V̂ = 1

N

∑
τ s1s2

∑
k1k2k3k4

8∑
i=1

V(i)
intTi, (A38)

where Ti reads

T1 = aτ†
k1s1

aτ†
k2s2

aτ
k3s2

aτ
k4s1

, (A39)

T2 = aτ†
k1s1

aτ†
k2s2

aτ
k3s2

aτ̄

k̄4s1
, (A40)

T3 = aτ†
k1s1

aτ†
k2s2

aτ̄

k̄3s2
aτ

k4s1
, (A41)

T4 = aτ†
k1s1

aτ†
k2s2

aτ̄

k̄3s2
aτ̄

k̄4s1
, (A42)

T5 = aτ†
k1s1

aτ̄†
k̄2s2

aτ
k3s2

aτ
k4s1

, (A43)

T6 = aτ†
k1s1

aτ̄†
k̄2s2

aτ
k3s2

aτ̄

k̄4s1
, (A44)
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T7 = aτ†
k1s1

aτ̄†
k̄2s2

aτ̄

k̄3s2
aτ

k4s1
, (A45)

T8 = aτ†
k1s1

aτ̄†
k̄2s2

aτ̄

k̄3s2
aτ̄

k̄4s1
. (A46)

It is obvious that T1 gives the intravalley e-e interaction. T2,
T3, T4, T5, and T8 describe the electron transformation from
one valley to the other, which is not considered in this paper.
T7 shows the intravalley transformation of electrons without
exchanges of spin, which is also neglected. T6 gives the
intervalley spin exchange coupling. The interaction-induced
magnetic order transition of the ground state is attributed to
this term, which is taken into consideration carefully. The
strength of the interaction corresponding to Ti reads

V(1)
int = 1

2N
〈τk1, τk2|V(r1 − r2)|τk4, τk3〉, (A47)

V(2)
int = 1

2N
〈τk1, τk2|V(r1 − r2)|τ̄ k̄4, τk3〉, (A48)

V(3)
int = 1

2N
〈τk1, τk2|V(r1 − r2)|τk4, τ̄ k̄3〉, (A49)

V(4)
int = 1

2N
〈τk1, τk2|V(r1 − r2)|τ̄ k̄4, τ̄ k̄3〉, (A50)

V(5)
int = 1

2N
〈τk1, τ̄ k̄2|V(r1 − r2)|τk4, τk3〉, (A51)

V(6)
int = 1

2N
〈τk1, τ̄ k̄2|V(r1 − r2)|τ̄ k̄4, τk3〉, (A52)

V(7)
int = 1

2N
〈τk1, τ̄ k̄2|V(r1 − r2)|τk4, τ̄ k̄3〉, (A53)

V(8)
int = 1

2N
〈τk1, τ̄ k̄2|V(r1 − r2)|τ̄ k̄4, τ̄ k̄3〉. (A54)

τ̄ (s̄) represents the opposite valley (spin) of τ (s). k (k̄)
indicates the relative wave vector with respect to the min-
imum of τ (τ̄ ) valley. As for T1, we take s2 = s̄1. Due to
the Pauli exclusion principle, electrons with the opposite spin
are apt to be spatially closer than those with the same spin.
Therefore, the contribution of the term s2 = s1 is omitted.
The momentum conservation is employed. In the T1 term,
we take k4 = k1 and k3 = k2. As for T6, we are focused on
the spin exchange and neglect the momentum scattering in
the process. Therefore, we take k3 = k1 and k4 = k2. It is
convenient to define U = V(1)

int and U ′ = V(6)
int . The intravalley

and intervalley e-e interaction are then written as

V̂intra = 1

N

∑
τ s

∑
k1k2

Uaτ†
k1sa

τ†
k2 s̄a

τ
k2 s̄a

τ
k1s, (A55)

V̂inter = 1

N

∑
τ s1s2

∑
k1k2

U ′aτ†
k1s1

aτ̄†
k̄2s2

aτ
k1s2

aτ̄

k̄2s1
. (A56)

Therefore, the total Hamiltonian is obtained,

Ĥ = Ĥ0 + V̂intra + V̂inter, (A57)

which includes the intravalley and intervalley interaction. In
the following, Ĥ is solved at the mean-field level.

APPENDIX B: MEAN-FIELD APPROXIMATION

As for V̂intra, we take the MFA directly:

V̂
MF
intra = 1

N

∑
τ s

∑
k1k2

U
(〈

aτ†
k1sa

τ
k1s

〉
aτ†

k2 s̄a
τ
k2 s̄

+ aτ†
k1sa

τ
k1s

〈
aτ†

k2 s̄a
τ
k2 s̄

〉 − 〈
aτ†

k1sa
τ
k1s

〉〈
aτ†

k2 s̄a
τ
k2 s̄

〉)
. (B1)

In the MFA, we neglect the second-order quantum fluctua-
tions. The third term in the above equation is omitted because
it is a constant, which cannot effect the following qualitative
discussion of the result. The MFA of V̂intra reads

V̂
MF
intra ≈ 1

N

∑
τ s

∑
k1k2

U
(〈nτ

k1s〉nτ
k2 s̄ + nτ

k1s〈nτ
k2 s̄〉

)

≈ 2

N

∑
τ s

∑
k1k2

U
〈
nτ

k2 s̄

〉
nτ

k1s

≈
∑
τks

Uτ sa
τ†
ks aτ

ks, (B2)

where

Uτ s = 2

N

∑
k

U
〈
nτ

ks̄

〉
. (B3)

nτ
ks = aτ†

ks aτ
ks is the particle number operator. Here, we merely

consider the zero temperature case. So, 〈· · · 〉 is the ground-
state average. As for V̂inter, we rewrite it in terms of the spin
operators to extract the intervalley spin exchange interaction:

V̂inter = − 1

N

∑
k1k2

U ′(nτ
k1

nτ̄

k̄2
+ 4Sτk1 · Sτ̄ k̄2

)
. (B4)

The spin coupling term reads

Sτk1 · Sτ̄ k̄2
= Sz

τk1
Sz

τ̄ k̄2
+ 1

2

(
S+

τk1
S−

τ̄ k̄2
+ S−

τk1
S+

τ̄ k̄2

)
, (B5)

where Sz
τk = 1

2 (nτ
k↑ − nτ

k↓), S+
τk = aτ†

k↑aτ
k↓, and S−

τk = aτ†
k↓aτ

k↑.
It is obvious that the intervalley spin coupling is extracted.
We chose the direction of S as the z axis and apply the MFA
to Eq. (B4), obtaining

V̂
MF
inter = − 1

N

∑
k1k2

U ′(〈nτ
k1

〉
nτ̄

k̄2
+ nτ

k1

〈
nτ̄

k̄2

〉 − 〈
nτ

k1

〉〈
nτ̄

k̄2

〉
+4

〈
Sz

τk1

〉
Sz

τ̄ k̄2
+ 4Sz

τk1

〈
Sz

τ̄ k̄2

〉 − 4
〈
Sz

τk1

〉〈
Sz

τ̄ k̄2

〉)
≈ −

∑
τk

(
U ′

τ nτ
k + Mτ Sz

τk

)

≈ −
∑
τks

(
U ′

τ + 1

2
sMτ

)
nτ

ks

≈ −
∑
τks

Xτ sa
τ†
ks aτ

ks (B6)
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where

U ′
τ = 1

N

∑
k

U ′〈nτ̄

k̄

〉
, (B7)

Mτ = 4

N

∑
k

U ′〈Sz
τ̄ k̄

〉, (B8)

Xτ s = U ′
τ + 1

2
sMτ . (B9)

Therefore, the MFA of the interaction operator V̂ is

V̂MF = V̂
MF
intra + V̂

MF
inter

=
∑

ks

(
Fτ sa

τ†
ks aτ

ks + Fτ̄ sa
τ̄†
k̄s

aτ̄

k̄s

)
, (B10)

where the effective mean field is

Fτ s = Uτ s − Xτ s. (B11)

At the mean-field level, the total Hamiltonian reads

HMF
total =

∑
ks

(
Ecτ s(k)aτ†

ks aτ
ks + Ecτ̄ s(k̄)aτ̄†

k̄s
aτ̄

k̄s

)
, (B12)

where the energy spectrum is

Ecτ s(k) = Ecτ s(k) + Fτ s − μ. (B13)

It is obvious that the effective mean field Fτ s is obtained upon
the calculation of 〈nτ

ks〉. It is convenient to define

ñτ
s = 1

N

∑
k

〈nτ
ks〉, (B14)

which indicates the ratio of the occupation at τ valley.
Equations (A32), (B3), (B7)–(B9), and (B11)–(B14) consti-
tute a set of mean-field self-consistent equations.

APPENDIX C: CALCULATIONS ON ñτ
s AND Efree

In this Appendix, we calculate ñτ
s and Efree. The BZ of

ML-MoS2 is shown in Fig. 6. b1 and b2 are the two primitive
vectors of the BZ:

b1 =
(

2π√
3a

,
2π

3a

)
, b2 =

(
− 2π√

3a
,

2π

3a

)
. (C1)

It is easy to obtain the area of BZ, SBZ = 8
√

3π2/9a2. For
simplicity and compactness of the formula, we define Aτ s =
λτ s/2 − μ + Fτ s and Bτ s = (� − λτ s)/2. The energy spec-
trum is rewritten as

Ecτ s(k) = Aτ s ±
√

(atk)2 + B2
τ s. (C2)

If Aτ s � 0 and |Aτ s| � |Bτ s|, we are able to solve Ecτ s(k) = 0
and obtain the Fermi radius

kτ s
F = 1

at

√
A2

τ s − B2
τ s. (C3)

As shown in Fig. 6(a), if 0 � kτ s
F � kc, electrons occupy the

yellow region of the BZ. If kc < kτ s
F � km, electrons occupy

the colored region as shown in Fig. 6(b). kc = 2
√

3π/9a and
km = 2kc are the radius of the inscribed and circumscribed
circles of the right half of the BZ. Instead of the summation

of the discrete values in Eq. (B14), we take the value of k
continuously. The definition of ñτ

s is rewritten equivalently as

ñτ
s = Sτ s

occ

SBZ
, (C4)

where Sτ s
occ is the area of the region which is occupied by the

electron. When 0 � kτ s
F � kc,

Sτ s
occ = π (kτ s

F )2
. (C5)

Substituting into Eq.(C4), we obtain

ñτ
s = 3

√
3a2(kτ s

F )2

8π
. (C6)

When kc < kτ s
F � km, Sτ s

occ is divided into two parts: three
triangle areas and three sectorial areas [see Fig. 6(b), regions
divided by dash lines]:

Sτ s
occ = Sτ s

tri + Sτ s
sec. (C7)

As for Sτ s
tri , we have

Sτ s
tri = 3kc

√
(kτ s

F )2 − k2
c . (C8)

The sectorial area is

Sτ s
sec = 3

2
(kτ s

F )2
θ, (C9)

where θ is the angle of the sector. Therefore,

Sτ s
occ = 3kc

√
(kτ s

F )2 − k2
c + 3

2
(kτ s

F )2
θ. (C10)

Substituting into Eq. (C4), we have

ñτ
s = 3a

4π

√
(kτ s

F )2 − k2
c +

√
3

12

(
kτ s

F

kc

)2

θ. (C11)

When kτ s
F > km, Sτ s

occ is half of SBZ. Therefore, ñτ
s = 1/2. Con-

clusively,

ñτ
s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
√

3a2(kτ s
F )2

8π
0 � kτ s

F � kc

3a

4π

√
(kτ s

F )2 − k2
c +

√
3

12

(
kτ s

F

kc

)2

θ kc < kτ s
F � km

1

2
km < kτ s

F ,

(C12)
where

θ = 2arcsin

(
π

3akτ s
F

− 1

2kτ s
F

√
(kτ s

F )2 − k2
c

)
. (C13)

As for the electron which fills the conduction band, its
contribution to the free energy is defined by the integration

Eτ s
free =

∫
Sτ s

occ

dk
(
Aτ s +

√
(atk)2 + B2

τ s

)
. (C14)

Hence, the total free energy reads

Efree =
∑
τ s

Eτ s
free. (C15)
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In Eq. (C14), we neglect the wave vector density. When
0 � kτ s

F � kc, the region occupied by the electrons in BZ is
a circular region. Eτ s

free is calculated directly.

Eτ s
free = −

∫ Ecτ s (kτ s
F )

Ecτ s (0)
πk2dE

= −
∫ Ecτ s (kτ s

F )

Ecτ s (0)

π

(at )2

[
(E − Aτ s)2 − B2

τ s

]
dE

= π

3(at )2

(
A3

τ s − 2B3
τ s − 3B2

τ sAτ s
)
. (C16)

In the above derivation, we use E(kτ s
F ) = 0 and E(0) = Aτ s +

Bτ s. As for the case kc < kτ s
F � km, E τ s

free is composed of three
parts, which are corresponding to the integration over the
region s1, s2, and s3 as shown in Fig. 6(b),

Eτ s
free = Eτ s

1 + Eτ s
2 + Eτ s

3 . (C17)

We calculate the integration individually.
(1) The integration in region s1 is

Eτ s
1 = −

∫ Ecτ s (kc )

Ecτ s (0)
πk2dE −

∫ Ecτ s (kτ s
F )

Ecτ s (kc )
πk2

c dE

= −
∫ Ecτ s (kc )

Ecτ s (0)

π

(at )2

[
(E − Aτ s)2 − B2

τ s

]
dE

+ πk2
cEcτ s(kc)

= π

3(at )2

(
3B2

τ sCτ s − C3
τ s − 2B3

τ s

)
+ πk2

cEcτ s(kc), (C18)

where

Cτ s =
√

(atkc)2 + B2
τ s. (C19)

(2) The integration in region s2 is

Eτ s
2 = 3θ

2π

(
−
∫ Ecτ s (kτ s

F )

Ecτ s (0)
πk2dE − Eτ s

1

)

= θ

2(at )2

(
A3

τ s − 2B3
τ s − 3B2

τ sAτ s
) − 3θ

2π
Eτ s

1 . (C20)

(3) The integration in region s3 is complicated. We have

Eτ s
3 = 6

∫
s3

Aτ s +
√

(atk)2 + B2
τ sdkxdky

= 6
∫ ϕm

0
dϕ

∫ kc/cos(ϕ)

kc

k
(
Aτ s +

√
(atk)2 + B2

τ s

)
dk

= 6
∫ ϕm

0
dϕ

{
1

2
Aτ sk

2
c

(
1

cos2(ϕ)
− 1

)

+ 1

3(at )2

[(
atkc

cos(ϕ)

)2

+ B2
τ s

] 3
2

− 1

3(at )2

[
(atkc)2 + B2

τ s

] 3
2

}

= 3Aτ sk
2
c (tan(ϕm) − ϕm) − 2

(at )2 ϕmC
3
τ s

+ 6Dτ s, (C21)

where ϕm = arccos(kc/kτ s
F ). Dτ s denotes an integration

Dτ s = 1

3(at )2

∫ ϕm

0
dϕ

[(
atkc

cos(ϕ)

)2

+ B2
τ s

] 3
2

. (C22)

It is hard for Dτ s to obtain an analytical formula. Therefore,
Dτ s is calculated numerically. When kc < kτ s

F � km,

Eτ s
free = π

3(at )2

(
3B2

τ sCτ s − C3
τ s − 2B3

τ s

) + πk2
cEcτ s(kc)

+ θ

2(at )2

(
A3

τ s − 2B3
τ s − 3B2

τ sAτ s
) − 3θ

2π
Eτ s

1

+ 3Aτ sk
2
c (tan(ϕm) − ϕm) − 2

(at )2 ϕmC
3
τ s

+ 6Dτ s. (C23)

As for 0 � kτ s
F � kc, the total free energy is obtained by

substituting Eq. (C16) into Eq. (C15). For kc < kτ s
F � km, the

total free energy is calculated by substituting Eq. (C17) into
Eq. (C15).
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