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We study the construction of programable integrated circuits with the help of disordered Chern insulators.
Specifically, the schemes for low dissipation logic devices and connecting wires are proposed. We use the
external-gate-induced step voltage to construct spatially adjustable channels, where these channels take the place
of the conventional wires. Our numerical calculation manifests that the external gates can be adopted to program
the arbitrary number of wires (n-to-m connections). We find that their electron transport is dissipationless and
robust against gate voltage fluctuation and disorder strength. Furthermore, seven basic logic gates distinct from
the conventional structures are proposed. Our proposal has potential applications in low power-integrated circuits
and enlightens the building of integrated circuits in topological materials.
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I. INTRODUCTION

The integrated circuits made up of metallic wires and logic
devices have significantly improved information processing
efficiency and dramatically rebuilt our lifestyle [1-3]. How-
ever, the power dissipation for such devices is one of the
most focused challenges, where lots of energy is wasted due
to the existence of resistance. In conventional printed circuit
boards [see Fig. 1(a)], the connections between electronic
components are exclusively determined by conductor pattern
(metallic wires), in which electron transport is inevitably
dissipated [4—6]. Furthermore, the complicated structure of
logic devices also suffers from heavy joule heat, which also
induces overheating troubles [7,8]. To overcome those prob-
lems, topological insulators attracted great interest over the
past decades [9-17]. These systems are predicted to possess
the dissipationless topological edge states and are considered
as candidates of ideal wires in integrated circuits [18,19].
Nevertheless, the edge state always sits at the boundary, and
its shape is only determined by the geometry of the sample,
which limits its applications.

Fortunately, the conducting channels also emerge at the in-
terfaces between two topologically distinct materials [20-23].
Especially at the interfaces between quantum anomalous Hall
phases with different Chern numbers, the one-dimensional
chiral states with dissipationless transport are available
[24,25]. Compared to the topological edge states, the interface
states exhibit higher tunability, engineered spatially. Recently,
we proposed the existence of a chiral interface state with
quantized transport in disordered CIs [26]. Generally, the Hall
conductivity oy, for a disordered CI is % /h inside the mobility
gap, while it sharply jumps to 0 at two mobility edges since
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all the bulk states are localized by Anderson disorder [26-32].
When a step potential is adopted by an external gate, the Chern
number of two adjacent areas (separated by external gates)
can be 0 and 1, respectively. Hence, the dissipationless chiral
channels, which are spatially adjustable by external gates,
emerge at the interface [26].

In this paper, we show that the interface channels with
arbitrary trajectories can be constructed by controlling the
external gates in disordered CIs, and its robustness against
backscattering is also preserved. Utilizing such perfect trans-
port properties, we propose a programable circuit board. As
shown in Fig. 1(b), the central region of the sample is divided
into several blocks, among which appropriate gate voltage
arrangements are considered to program the required wires
to connect the corresponding devices. Our numerical results
manifest that the partition of the current can also be realized
in this programable circuit, and the number of branch wires
can be adjusted by external gate voltage manipulation. Sig-
nificantly, the programable chiral interface channels can also
be adopted to construct all seven basic logic gates [33-36].
These structure-simplified logic gates are compatible with
wires, which take full advantage of disordered Chern insula-
tors’ (CIs) topological nature. Our proposal of dissipationless
wires and basic logic gates provide a route to build integrated
circuits in topological systems.

II. MODEL AND METHOD

Our investigation is based on Qi-Wu-Zhang CI model [37],
and the Hamiltonian in the square lattice reads

to to.
H= Z [CT(TZ — iv0y>c,-+;c + c:f (72 - ivax)c,ury + H.C.]
i

+ ) lej m = 2)0zc; + [ (Vi + Wiozei], (1)
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FIG. 1. (a) Schematic plot of a conventional printed circuit board. The orange areas are the background. The solid green lines are the wires
and the logic devices are marked in yellow circles. (b) Schematic plot of a programmable integrated circuit based on disordered ClIs. The
central region is divided into several cyan and gray blocks. The red arrows denote the current directions.

where ciT (c;) 1s the creation (annihilation) operator on site i.
Oy,y,. are Pauli matrices and oy is the 2 x 2 identity matrix.
The parameters are fixed at v = 0.5¢, m = ¢, where v, m and ¢
are Fermi velocity, mass, and hopping energy, respectively. V;
shows the profile of the gate-induced potential, and W; is the
Anderson disorder uniformly distributed within [—%, %]. w
is the disorder strength.

The nonequilibrium Green’s function method [38,39]
is adopted to simulate the transport properties with
Gpy = %Tr[l"pG’FqG“] the conductance between termi-
nals p and q. G/* = [Er £i0" — H — Zp ¥,]7! are the
retarded/advanced Green’s function, and I', = i[ %, — E;] is
a linewidth function with X, the self-energy of terminal p.
The local current flow vector is calculated by

262V

Jij = ——Im[H; j(G'T1G");;]. 2)

H; j is the coupling matrix between i and j sites. The local
current flow vector for site 7 is J; = [Jim itz + Jisits]-

III. PROGRAMMABLE CIRCUIT WIRES

The wires and the logic gates are basic building blocks
for conventional integrated circuits. We first propose the re-
alization of programable “wires” with the help of disordered
CIs. The transport properties of a typical device are stud-
ied as illustrated in Fig. 2(a). The central region is divided
into 6 x 6 little blocks, where each block is attached with
an external gate. The blocks’ potential can be manipulated
by the corresponding gates independently. To simulate the
typical cases in printed circuits’s boards, the gate voltage
takes two discrete standard values V, and V), for white and
blue blocks, respectively. Furthermore, 12 logic devices are
considered, which are labeled as (U, U, Uz), (D1, D, D3),
(L1, Ly, L), and (Ry, R, R3) connecting the up, down, left,
and right boundaries, respectively.

Three cases are investigated to illuminate the highly pro-
gramable wires based on the dissipationless chiral-interface
states. For simplicity, the standard gate voltage for the white
(blue) blocks are chosen as V, = —2.8¢ (V, =0, if exists)
with the Chern number C = 0 (C = 1) [26]. In the first case,
all gate voltages in blocks are set as V,, [see Fig. 2(b)]. The
entire sample belongs to the Anderson insulator with C = 0.
One can see from the typical local current density distribution
[Fig. 2(b)] and the conductance G = 0 [Fig. 2(c)], all logic
devices in the circuit board are completely disconnected due
to Anderson localization. In the second and the third cases,
the gate voltages of blocks are programed as configurations
in Figs. 2(d) and 2(g). The Chern number is C = 1 in the
blue blocks with V;, = 0, and their difference between blue
and white blocks guarantees the emergence of chiral interface
channels labeled by the solid red lines with arrows. As shown
in Figs. 2(d) and 2(g), channel connecting device L3 (L2) and
R2 (D2) is obtained. Therefore, it is appropriate to summarize
that any two devices of a circuit can be switched into “on” and
“off” by properly arranging the gate voltage V,, V},.

In realistic samples, the disorder strength W and gate volt-
age V,/V, may deviate from the standard values because of the
immature fabricating processes. To examine the robustness of
wires in the programable circuit boards, we investigate the
differential conductance G versus W for different V,,/V,. As
shown in Fig. 2(c), the localization behaviors for states in
Fig. 2(b) are insensitive to the variation of V, and W. The
plots in Figs. 2(e) and 2(f) and Figs. 2(h) and 2(i) correspond
to the configurations in Figs. 2(d) and 2(g), respectively. The
quantized G = ¢?/h plateau exists for different gate voltages
and a wide range of disorder strength, indicating the transport
of these interface channels are robust against the variation of
gate voltages and disorder strength. To be specific, when V,
(V) takes the standard value —2.8¢ (0¢), the G = ¢ /h plateau
holds within a wide disorder strength range W € [2.4¢, 4.4¢].
When the gate voltages on blue and white blocks deviate from
the standard value, the plateau width shrinks slightly. Never-
theless, it is worth noting that as long as V, € [—3¢, —2.6¢]
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FIG. 2. (a) Schematic of programable circuit device. The central region is divided into 6 x 6 blocks with size 100a x 100a, where a
is lattice constant. (b), (d), (g) Local current density distribution corresponding to (a) with disorder strength W = 3.5¢ under different gate
voltage configuration. Here, the gate voltage on white and blue blocks are V, and V,, which take the standard values V, = —2.8¢, V}, = 0 if not
specified. The red arrows denote the chiral interface channels. (c) Differential conductances G of case (b) versus W under different V. [(e),(f)]
and [(h),(i)] are similar to those in (c), except G for cases (d) and (g), respectively.

and V;, € [—0.4¢, 0], one can always achieve the quantized
G = ¢*/h plateau with disorder strength W € [2.4¢, 3.6¢].
This phenomenon indicates that the dissipationless program-
able circuit “wires” have a high fault tolerance feature for both
gate voltage and disorder.

Furthermore, we also study the gate voltage configura-
tions shown in Figs. 3(a) and 3(e). These two gate voltage
configurations enable the simultaneous connection of two
and three sets of devices [i.e., (L1-R2/L2-R3) in Fig. 3(b)
and (L1-R1/L2-R2/L3-R3) in Fig. 3(f)]. Figures 3(c) and
3(d) and Figs. 3(g) and 3(h) manifest that the quantized
G capture the double (G = 2¢?/h) and triple (G = 3¢*/h)
disspationless channels, respectively. Compared to those in
Fig. 2, the parameter regions of W and V,/V, for quan-
tized plateaus 2¢?/h (3¢*/h) are nearly unchanged. It means
that the parameter’s optimization is not needed when the
single wire is replaced by the multiple wire. Hence, such
disordered-Cls-based programable wires possess fantastic
potential applications due to their flexibility for device con-
nection (V-tunable) and the robustness against parameter
variation.

One can also program the chiral interface channels as cur-
rent splitters, leading to a one-to-many connection between
devices. Such a connection requires a more careful arrange-

ment of gate voltages. For example, as shown in Figs. 4(a)
and 4(d), one-to-two and one-to-three connections are ob-
tained. The corresponding local current density distributions
[see Figs. 4(b) and 4(e)] agree with the current flowing in the
directions marked by red arrows.

To quantitatively study one-to-many wire connections, we
pay more attention to the dependence of the current partition
on the gate voltage V,, [see Figs. 4(c) and 4(f)]. The differen-
tial conductance between different devices are studied, where
Gpi12 signals the currents partitioned into device Ri from
device L2. And the summation G = Zie[l,2,3] Gri.12 gives the
total conductance. From Figs. 4(c) and 4(f), one finds that G
still holds the quantized value &2 /h with Gg; 1> unquantized
for V,, € [—-0.4¢, 0.4¢]. Specifically, when V, takes the stan-
dard gate voltage (V), = 0¢), all Gg; 1> take the large values. It
means that each branch wire is well connected. Furthermore,
the conductance Gg; 1, varies with V},, which provides a possi-
ble way to manipulate the current partition relations between
branches.

We close this section by discussing the voltage and en-
ergy loss for such a configuration. As shown in Fig. 4(b),
the incident electrons are scattered at the bifurcation point.
The backscattering is forbidden at the bifurcation point due
to the spatial separation of the backscattering channels [38].
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FIG. 3. [(a),(e)] Schematic of programable circuit devices, which have two and three chiral interface channels, respectively. [(b),(f)] Local
current density distribution corresponding to cases [(a),(e)] with gate voltage V, = —2.8¢, V, = 0 and disorder strength W = 3.5¢. [(c),(d)] and
[(g),(h)] Conductances G vs W for different V, and V,,, respectively.
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FIG. 4. [(a),(d)] The schematic diagram of gate voltage configuration to realize two and three branches of current in integrated circuits
devices, respectively. The blue circles denote bifurcation points of current. [(b),(e)] Local current density distribution corresponding to [(a),(d)],
respectively, with V, = 0, V, = —2.8¢ and disorder strength W = 3.5¢. [(c),(f)] The branch conductance Gg; 12, Gr2.12, Gr3.12, and the total
conductance G vs V, withV, = 0 and W = 3.5¢.
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FIG. 5. (a)-(g) The schematic diagram of seven basic logic gates and the corresponding truth tables. The central region is divided into one,
two, or three blocks labeled by S1, S2, or §3, respectively. A and B denote voltage input terminals, connected to the gate on the corresponding
block S1, S2, or §3. Y denotes voltage output terminal. V;; and V;; represent supply and source voltage. L1 and L2 or L3 represent the left and
right terminals connected to the central region. When the voltage signal V4 = Vi = 0, the initial Fermi energy in the blue block is E; = 0 (i.e.,
the CI with Chern number C = 1), and in the white block is E; = —2.8¢ (i.e., the Anderson insulator with C = 0).

Since we only focus on the elastic scattering rather than in-
elastic scattering in our numerical calculations, the resistance
is only determined by the backscattering. Therefore, the ab-
sence of backscattering results in a vanishing resistance at
the bifurcation point, and consequently the voltage drop at
the bifurcation point is zero [38]. Also, there is no energy
loss at the bifurcation point, and the dissipationless proper-
ties of the circuit boards are consistent with the quantized
total conductance G = e?/h [see Fig. 4(c)]. According to all
studied configurations, one concludes that the external gates
can be adopted to program the wires with arbitrary (n-to—m)
connections in disordered CIs.

IV. DISORDERED-CIS-BASED NEW LOGIC GATE

Apart from being used as programable dissipationless wire,
disordered ClIs also have a promising application in designing
logic devices. Generally, the logic devices are constructed by
seven basic logic gates. At present, the conventional logic
gates have relatively complicated structures. Taking the CMOS-
based logic gate AND gate as an example, it is constructed
by the combination of NAND gate and NOT gate. The NAND
gate requires two pairs of PMOS and NMOS, while the NOT
gate requires one pair of PMOS and NMOS. Comparing with
the conventional logic gates, the structures of disordered-CIs-

based logic gates are greatly simplified by taking advantage of
gate-voltage-programable chiral edge and interface states.
Figures 5(a) to 5(g) illustrate the construction schemes of
seven basic logic gates and the corresponding truth tables.
Each of these seven logic gates has a central region, divided
into several blocks. A and B denote two input terminals with
voltage signals V4 and V. V4 and Vi, are supply and source
voltages, respectively. The initial Fermi energy in the blue
block is Ey = 0 (i.e., the Chern number C = 1) and in the
white block is Ef = —2.8¢ (i.e., the Anderson insulator with
C = 0). For clarity, the Fermi energy Es; (Es» and Eg3) and
Chern number Cs; (Cs, and Cs3) for block S1 (§2 and S3)
are shown in the truth table. The corresponding logic gate for
different cases of voltage input are V4, V. Importantly, we set
Vasp = Vaq = 2.8t as the rated high level (i.e., logical “1”) and
Vasp = Vi = Ot as the rated low level (i.e., logical “0”).
Here, we take two of these seven logic gates as examples
for a detailed analysis. Figure 5(d) illustrates how the OR gate
works. When V4 = Vi = 0¢, S1 and S2 have the Fermi energy
Egsy = Egp = —2.8¢, and the corresponding Chern number is
Cs; = Csp = 0. Thus, there is no current flowing into L2,
and one has Vy = Vj; (i.e., the logical operation: 0 4+ 0 = 0).
When V, = 2.8¢, Vp = Ot, the Chern number of S1 becomes
Cs1 = 1 (Csp remains 0). The chiral interface channel emerges
between S1 and S2. The current input from L1 will flow into
L2 along this channel, and thus Vy = V4, (i.e., 1 + 0 = 1). For

195416-5



WU, WANG, ZHANG, AND JIANG

PHYSICAL REVIEW B 104, 195416 (2021)

the last two cases Vy = 0, Vg = 2.8¢ (i.e., Cs; =0, Csp = 1)
or Vy = Vp =2.8¢t (i.e., Cs; = Csp = 1), the current will flow
into L2 along the lower edge of S1, and thus Vy =V, (i.e.,
O+1=1land1+1=1).

Similarly, Fig. 5(g) illustrates how the XOR gate works.
The central region is divided into three blocks S1, S2, and
§3. Signal input terminal A is connected to the gates on both
S1 and S3, B is connected to the gate on S2. In the case of
V4 = Vg = O¢, the entire central region is an Anderson insu-
lator (Cs; = Csp = Cs3 = 0) with no current flowing through
it i.e., 0-04+0-0 =0). When V4 = V3 = 2.8¢, the Chern
number of the entire central region is 1 (Cs; = Cs, = Cs3 =
1), the current will flow into L3 along the lower edge of region
S3, rather than L2. Thus, L2 is always switched off for both
cases with Vy =V, (i.e,, 1-141-1=0). However, when
Vy =2.8t, Vg =0t (V4 =0t, Vg = 2.8¢), the Chern number
for S§2 always differs by 1 compared to those for S1 and
S3. The chiral interface channel emerges between S1 and S2
(52 and S3). Generally, the current will flow into L2 along
the interface channel between S1 and S2 or between S2 and
S3withVy =Vy Ge., 1-04+41-0=10r0-14+0-1=1).
The rest of the other logic gates can be analyzed in a similar
manner.

Here, the feasibility of our logic gates proposal also orig-
inates from the spatial programable of chiral interface states.
Compared to the conventional logic gates, the dissipationless
transport features of chiral interface states can, in principle,
significantly lower the power of logic gates in our cases.
Specifically, we also analyze the logical operation of OR gate
by investigating the conductance versus disorder strength in
the Appendix. The numerical results show that the logical
operation is dissipationless and immune to disorder. Finally,
the wires are compatible with the logic gates because they can
be built based on one disordered CI sample. It will greatly
simplify the integrated circuits fabricating process.

V. CONCLUSION AND DISCUSSION

In summary, we study the realization of a programable
integrated circuit based on disordered CIs. Due to the localiza-
tion features, we propose the chiral interface channels as ideal
wires. Significantly, dissipationless wires, which connect the
arbitrary required devices, can be obtained by programming
samples’ gate voltage arrays. In addition to the wires, the dis-
ordered CIs can be utilized to construct the basic logic gates.
Compared to the conventional counterparts, the simplified
logic gates’ structures will greatly promote the compaction
of integrated circuits. Moreover, combined with the dissi-
pationless characteristics of the wires as well as the logic
devices, our proposal will enable circuits with lower power
consumption, higher integration, and reliability.

Notably, since the Anderson phase transition is basic and
only determined by the system’s dimension and symmetry
ensemble, our results apply to all two-dimensional Cls that
exhibit a direct transition from the CI to the normal insulator.
Furthermore, to construct such a programable integrated cir-
cuit, one only needs two discrete standard gate voltages (V,
and V}) corresponding to the topologically nontrivial insulator
and the normal insulator, respectively. The proposal is still
available if V can drive the transition from CI to a band

1k _
~
<
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) _ _
051 —— V,=2.8t V=0t |
G . —A— V=0t Vy=2.8t
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4
Wit
FIG. 6. Differential conductances G versus disorder strength W
for OR gate.

insulator in some systems [40,41]. This also means that it does
not matter if there exists a metallic phase during the Anderson
transition since one can skip the voltage windows correspond-
ing to the metallic phase [42]. Therefore the CIs can be further
broadened to other topological nontrivial systems such as the
quantum spin Hall effect, and so on [43—-45]. Finally, we dis-
cuss the scaling of the integrated circuits, which is limited by
the size of gate blocks. For a typical quantum anomalous Hall
effect system with Fermi velocity vy &~ 5 x 103 m/s and en-
ergy gap A =~ 20 meV, the decay length is A ~ hAﬂ ~ 50 nm.
The limited scaling can be smaller than 0.5 um since the
gate block will work well if the size is one order of magni-
tude larger than A. Experimentally, our proposal only depends
on the size scale for the Anderson transition in CIs. Fortu-
nately, the Anderson localization has been recently observed
in MnBi, Te4 samples of 20 4 m x 20 um [15,46], indicating
the proposed integrated circuits are feasible under the state-
of-the-art experimental techniques.
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APPENDIX: LOGICAL OPERATION OF OR GATE

We take the OR gate as an example and calculate the
conductance G versus disorder strength W for four cases of
voltage input (Vy4, V), as shown in Fig. 6. When the output
level is logical “1” [i.e., (i) V4 =2.8¢, Vp=0¢; (i) V4 =
Or, Vg = 2.8t; (iii) V4 = 2.8¢, Vg = 2.8¢], the quantized G =
% /h plateau exists within a wide range of disorder strength
W e [2.4t,4.4t]. When the output level is logical “0” (i.e.,
Va=0t, Vg =0t), G =0 for the same disorder region. It
means that the logical operations of the OR gate are dissi-
pationless and robust against disorder.
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