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Ballistic-hydrodynamic phase transition in flow of two-dimensional electrons
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Phase transitions are characterized by a sharp change in the type of dynamics of microparticles, and their
description usually requires quantum mechanics. Recently, a peculiar type of conductor was discovered in which
two-dimensional (2D) electrons form a viscous fluid. In this paper we reveal that such an electron fluid in high-
quality samples can be formed from ballistic electrons via a phase transition. For this purpose, we theoretically
study the evolution of a ballistic flow of 2D weakly interacting electrons with an increase of magnetic field and
trace an emergence of a fluid fraction at a certain critical field. Such a restructuring of the flow manifests itself
in a kink in the magnetic field dependencies of the longitudinal and the Hall resistances. It is remarkable that
the studied phase transition has a classical-mechanical origin and is determined by both the ballistic size effects
and electron-electron scattering. Our analysis shows that this effect was apparently observed in recent transport
experiments on 2D electrons in graphene and high-mobility GaAs quantum wells.
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I. INTRODUCTION

Frequent electron-electron collisions in high-quality con-
ductors can lead to the realization of a hydrodynamic regime
of charge transport [1]. This regime was recently reported
for high-quality graphene [2–6], layered metal PdCoO2 [7],
Weyl semimetals [8], and GaAs quantum wells [9–23]. The
formation of the electron fluid was detected by a specific
dependence of the resistance on the sample width [7], by the
observation of a negative nonlocal resistance [2,3,15,22], gi-
ant negative magnetoresistance [8–14,16,17,23], and the mag-
netic resonance at the double cyclotron frequency [18–21].

Much attention was paid to studies of the transition be-
tween the hydrodynamic and nonhydrodynamic regimes of
electron transport. In Refs. [5,6] precise measurements of
the profiles of the Hall electric field and the current density
of two-dimensional (2D) electron flow in graphene stripes
were performed. This allowed the authors to detect the
Ohmic, the hydrodynamic, and the ballistic flows at varying
temperature, electron density, and magnetic field. In partic-
ular, a peculiar nonmonotonic magnetoresistance reflecting
the ballistic and hydrodynamic transport regimes was ob-
served [5,6]. Similar magnetoresistance was detected in long
samples of high-quality GaAs quantum wells [14,16], that,
apparently, also evidences the ballistic-hydrodynamic transi-
tion. In Refs. [22,23] the transitions from the ballistic to the
hydrodynamic regimes in GaAs quantum wells by changing
the sample geometry, temperature, and magnetic field were
vividly demonstrated.

A theory of 2D electron flow in samples with macroscopic
obstacles was constructed in Ref. [24]. In the absence of
magnetic field, the ballistic-hydrodynamic transition occurs is
such a system by changing the interparticle scattering rate and
has a type of a smooth crossover. Another mechanism can be
realized for 2D electrons in stripes. A numerical theory of the

ballistic-Ohmic transition and the hydrodynamic transport in
long stripes in a perpendicular magnetic field was developed
in Ref. [25]. At weak interparticle and disorder scattering
rates, the longitudinal and the Hall resistances of a stripe as
functions of magnetic field B exhibit kinks at the field B = Bc

above which the diameter of the electron cyclotron orbit 2Rc

becomes smaller than the sample width W . In Ref. [26], for
the same system, profiles of the Hall field were calculated.
It was shown that an increase of the curvature of the Hall
electric field characterizes the transition from the ballistic to
the hydrodynamic regimes.

In Refs. [27–29] it was demonstrated that the interparticle
scattering induces the corrections to the ballistic conductance
of a wide ballistic microcontact between two metal bulk sam-
ples. Such corrections should be regarded as precursors of the
hydrodynamic regime. In Ref. [30] such positive corrections
were observed in a GaAs/AlGaAs based ballistic microcon-
tact. In Refs. [31,32] similar hydrodynamic corrections to the
conductance and the Hall field were theoretically studied for
a long ballistic sample with rough edges.

Here, we demonstrate that the hydrodynamic regime of
transport of 2D electrons in high-quality stripes is formed
from the ballistic regime via a genuine phase transition with
an increase of magnetic field B. For this purpose, we consider
a long stripe with straight but rough edges. First, we reveal that
in the lower vicinity of the critical field, 0 < Bc − B � Bc,
the momentum relaxation due to collisions of electrons with
the stripe edges becomes strongly suppressed due to the bal-
listic size effects, thus even weak electron-electron scattering
begins to be important for the flow formation. Second, we
show that in the upper vicinity of Bc, 0 < B − Bc � Bc, the
emerging “central” electrons, which are not scattered at the
edges, critically change the type of electron distribution and
become the nucleus of a collectivized fluid phase. We develop
a mean-field model based on the classical kinetic equation
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FIG. 1. Two-dimensional electrons in a long sample at (a) low,
W � Rc, (b) intermediate, W ∼ Rc, W < 2Rc, and (c) moder-
ately high, W ∼ Rc, W > 2Rc, magnetic fields. The ballistic-
hydrodynamic phase transition occurs at the critical field Bc

corresponding to 2Rc = W . In its lower vicinity, 0 < Bc − B �
Bc, electrons moving along the skipping orbits close to complete
cyclotron circles undergo slow momentum relaxation. They are pre-
cursors of hydrodynamic flow. Above the critical point, B > Bc, a
group of central electrons appear which do not collide with the edges,
representing the nucleus of the hydrodynamic fluid phase.

to describe these critical transport regimes of the ballistic-
hydrodynamic phase transition. Our analysis of the results
of the experiments [5,6,16] evidences that the formation of
a hydrodynamic regime from a ballistic one was realized in
them via such a phase transition.

Using the developed approach, we also obtain results on
the ballistic transport in stripes at low magnetic fields, B �
Bc. In particular, we show that the interplay of the ballis-
tic effects and the interparticle scattering induces a strongly
nonuniform electron flow and a nontrivial character of the Hall
effect. A similar anomalously large Hall effect was recently
theoretically obtained in Ref. [33] for asymmetric stripes with
one rough and the other specular edges.

II. BALLISTIC REGIME

We consider a flow of 2D degenerate electrons in a long
sample with rough edges in a perpendicular magnetic field B
(see Fig. 1). Electrons are diffusively scattered on the rough
sample edges leading to momentum relaxation. In the bulk of
the sample, electrons collide with each other and their total
momentum is conserved. We assume that the rate γ of the
electron-electron scattering is weak, W � l , where l = vF /γ

is the mean free path and vF is the Fermi velocity. We de-
scribe the transport in this system by the nonequilibrium part
δ f (y, ϕ, ε) of the distribution function f = fF + δ f deter-

mined by the linearized kinetic equation,

vF cos ϕ
∂ δ f

∂y
+ e

m
E · ∂ fF

∂v
− ωc

∂ δ f

∂ϕ
= St[δ f ], (1)

with the diffusive boundary conditions at y = ±W/2. Here,
ε is the electron energy, ϕ is the angle of the electron veloc-
ity v/vF = (cos ϕ, sin ϕ), fF is the Fermi distribution, ωc =
vF /Rc is the cyclotron frequency, e and m are the electron
charge and mass, E = E0 + EH is the total electric field, E0 is
the applied field, EH is the Hall field, and St[δ f ] = −γ (δ f −
P̂[δ f ]) is the simplified interparticle collision operator, in
which P̂ is the projector onto the zeroth and first harmonics
of δ f by ϕ.

At magnetic fields B below the critical field, B < Bc, when
2Rc > W , each electron is predominantly scattered at the
edges. The transport is ballistic in almost all such B, and the
interparticle collisions can constrain the time which electrons
spend on the ballistic trajectories. Our analysis [34] based on
Eq. (1) shows that the ballistic regime has a fine structure,
namely, it is divided into three subregimes.

In the first ballistic subregime of low fields, B � Bc(W/l )2,
the electron trajectories are almost straight. Their maximum
length is limited by the interparticle scattering length l . This
subregime was studied in Refs. [31,32] and in this work [34].
Depending on the arrangement of trajectories, electrons are
divided on the two groups: the “traveling electrons” which,
after scattering on an edge, reach the other edge or scatter
in the bulk, and the “skipping electrons” which return to the
same edge after scattering on it [see Figs. 1(a) and 1(b)]. Most
electrons belong to the first type. Electrons of the second type
are located in the edge vicinities, W/2 − |y| � l2/Rc, and their
velocity angles are ϕ ≈ ±π/2.

In the central part of the sample, W/2 − |y| � l2/Rc, the
Hall electric field EH (y) is related to the dynamics of the
“traveling electrons” [34]. The resulting local Hall resistance,
	xy(y) = EH (y)/ j(y), turns out to be one half of the Hall
resistance of the macroscopic Ohmic samples [32],

	xy = 1

2
R(0)

H B, R(0)
H = 1

n0ec
, (2)

where j(y) is the current density, n0 is the electron density, and
c is the velocity of light. In Ref. [32] this result was obtained
from a straightforward solution of kinetic equation (1). In
this work we reveal [34] the physical essence of result (2).
Namely, the value EH yielding Eq. (2) corresponds to the
balance of the Hall force eEH and the component of the
Lorentz force 
FL,y(t ) = eBaxt/c, averaged over all traveling
electrons in the region W/2 − |y| � l2/Rc. Here, ax = eE0/m
is the acceleration of electrons by the field E0 and t = t (y, ϕ)
is the time passed since the scattering at the edge.

In the vicinities of the edges, W/2 − |y| � l2/Rc, the Hall
field EH (y) and the current density j(y) are strongly affected
by the skipping electrons. The profile EH (y) becomes strongly
inhomogeneous [see Fig. 2(b)]. The profile j(y) is approxi-
mately homogeneous, but the non-perturbative correction to
its mean value is independent on the magnetic field in the
central region, W/2 − |y| � l2/Rc, and depends on B in the
near-edge regions W/2 − |y| � l2/Rc. The resulting values of
EH (y) and j(y) in the edge vicinities determine the resistances

195415-2



BALLISTIC-HYDRODYNAMIC PHASE TRANSITION IN … PHYSICAL REVIEW B 104, 195415 (2021)

FIG. 2. Current density j(y) and Hall electric field EH (y) at various magnetic fields B: (a) the first ballistic subregime, in the limit B → 0
(only the flow in the central part of the sample, W/2 − |y| � l2/Rc, is shown); (b) the middle part of the first ballistic subregime, Rc � l2/W
[schematically; violet lines depict the boundaries of the near-edge regions where skipping electrons propagate, yne ≈ ±(W/2 − l2/Rc )]; (c) the
second ballistic subregime, W � Rc � l2/W ; (d) the middle part of the third ballistic subregime, 0 < 2Rc/W − 1 ∼ 1; (e) the upper part of
the third ballistic subregime near the critical field, W/l � 2Rc/W − 1 � 1; and (f) the hydrodynamic regime with a Poiseuille flow, W � Rc

(schematically).

	xx and 	xy of the whole sample, provided it is sufficiently
long and straight [34].

In the second ballistic subregime, Bc(W/l )2 � B � Bc,
electron trajectories become substantially bent. Their maxi-
mal length is now limited by their geometry. This subregime
was studied in Ref. [25] by a numeric solution of Eq. (1)
and in Ref. [26] by its analytical solution accounting only for
the departure term −γ δ f in the operator St. The resulting
longitudinal and Hall resistances exhibit the singular behavior,
	xx,xy(B) ∼ 1/ ln(

√
Rc/W ), originating from the shortening

of the longest ballistic trajectories with an increase of
B [34].

In the third ballistic subregime, BcW/l � Bc − B � Bc,
the number of skipping electrons becomes relatively large:
comparable to or even greater than the number of travel-
ing ones [see Fig. 1(b)]. In order to satisfy the condition
jy = 0 of the absence of the transverse current, the E0 × B
drift contribution related to all electrons, j (0)

y = n0ecE0/B, is
compensated by the excess and the deficiency of nonequilib-
rium traveling electrons with vy(t ) > 0 and with vy(t ) < 0.
Nonequilibrium skipping electrons do not compensate j (0)

y ,
as vy(t ) > 0 and vy(t ) < 0 symmetrically for each skipping
trajectory. The diffusive reflection of electrons from the edges
occurs with equal probabilities for all ϕ. Thus, at 2Rc/W −
1 � 1, when the skipping electrons dominate, the whole elec-
tron density strongly increases (as compared with the case
2Rc/W − 1 ∼ 1) in order to compensate j (0)

y by the relatively
small part of the traveling electrons.

This dynamics is described by the distribution [34]

δ f (y, ϕ, ε) = χ (y, ϕ) f ′
F (ε)

E0

ωcu
, (3)

where the behavior of the factor χ , χ (y, ϕ) ≈ 1 at −π +
ϕ− < ϕ < ϕ+ and χ (y, ϕ) ≈ −1 at ϕ+ < ϕ < π + ϕ−, re-
flects the domination of the skipping electrons (here, ϕ±(y) =
arcsin[1 − (W/2 ± y)/Rc]). The small parameter u(B) =
(2/π )(2 − W/Rc) � 1 in Eq. (3) shows how close B is to
the critical field Bc. The resulting current density and the Hall
field in the main order by u take the form

j(y) = 2 r(y) j0
πu

, EH (y) = 2 E0

π r(y)u
, (4)

where j0 = n0e2E0W/(vF m) and r(y) =
√

1 − (y/Rc)2. The
magnitudes of j(y) and EH (y) rapidly increase as B ap-
proaches Bc due to the factor u in the denominators of
Eqs. (4). The averaged resistances 	xx = E0/〈 j(y)〉 and 	xy =
〈EH (y)〉/〈 j(y)〉 [the angle brackets 〈·〉 denote averaging by y]
corresponding to distribution (3) in the two main orders by the
small parameter

√
u take the form

	xx(B) = 2 	0 u, 	xy(B) = R(0)
H B F (u), (5)

where 	0 = E0/ j0 and F (u) = 1 − √
u/π . The vanishing of

	xx as ∼u reflects the transitional character of the ballistic
electron dynamics at B → Bc [see Fig. 1(b)].

The evolution of j(y) and EH (y) in the ballistic subregimes
with an increase of B are shown in Figs. 2(a)–2(e).

III. PHASE TRANSITION

At the fields B in the upper and the lower vicinities of
Bc, |B − Bc| � Bc, most of the electrons are the “edge elec-
trons” that move along the skipping trajectories hitting one
of the edges. In the upper vicinity, when W > 2Rc, a small
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group of “central electrons” arise which never touch the edges
[Fig. 1(c)].

In the nearest lower vicinity of Bc, 0 < Bc − B � BcW/l ,
the imbalance densities of the left-edge and the right-edge
skipping electrons increase dramatically, as the ballistic dis-
tribution function (3) and values (4) diverge by u → 0 at
W/l → 0. Therefore the electron dynamics at such B is to be
controlled not only by their scattering on the edges, but also
by interparticle collisions.

To describe such semiballistic flow, first we calculate [34]
the trial distribution function, similar to the purely ballistic
function (3), but additionally accounting for the departure
term −γ δ f in the operator St in Eq. (1):

δ fd (y, ϕ, ε) = χ (y, ϕ) f ′
F (ε)

E0/ωc

u + W/l
. (6)

The averaged current density and the Hall field corresponding
to δ fd rapidly increase at B → Bc up to values limited by the
slow scattering rate γ = vF /l:

jd = j0/2

u + W/l
, EH,d = E0 F (u)

u + W/l
. (7)

Second, to describe the flow at 0 < Bc − B � BcW/l , we
need to account for the effect of the arrival term γ P̂[δ f ]
in Eq. (1). Indeed, the departure term −γ δ f dominates in
the first ballistic subregime [31], and both the departure and
the arrival terms are relatively small in the second and third
ballistic subregimes [26,34], whereas in a well-formed hydro-
dynamic flow at W � Rc they are close to one another [31].
An estimate shows that for function fd (6) at 0 < 2Rc − W �
W 2/l these two terms have values of the same order of magni-
tude. In this connection, we propose a mean-field model based
on the approximation of the arrival term γ P̂[δ f ] [34] by its av-
eraged by y value, whose main part is γ sin ϕ j/(n0/m) (here j
is the actual averaged current density). After this substitution,
the external field E0 in kinetic equation (1) is changed on the
effective one:

E0 → Ẽ0 = E0 + γ
j

n0/m
. (8)

As a result, the self-consistent distribution f and averaged cur-
rent density j are given by semiballistic formulas (6) and (7)
with E0 → Ẽ0. For j we obtain

j = 1

2

j0 + j W/ l

u + W/l
. (9)

This mean-field-type equation accounts for the redistribution
of momentum between the skipping electrons in their colli-
sions with each other, while formulas (6) and (7) imply the
relaxation of momentum in the scattering of electrons in the
bulk. The solution of Eq. (9) is j = j0/[2u + W/l]. To find
the Hall field near the critical point, we should substitute the
renormalization E0 → Ẽ0 in the semiballistic value EH,d (7),
which yields EH = E0F (u)/[u + W/(2l )].

In the upper vicinity of the transition point, 0 < B − Bc �
Bc, when the relative density of the central electrons is small,
αc = (W − 2Rc)/W � 1, each edge electron is still scattered
predominantly on the edges and on the other edge electrons.
Similarly as for the flow in the lower vicinity of Bc, 0 <

Bc − B � Bc, the distribution function of these electrons δ fe

is given by a formula based on the semiballistic distribution

δ fd (6). Therefore the departure and the arrival terms of St in
Eq. (1) with this δ fe are also of the same order of magnitude.
To account for the arrival term γ P[δ f ], we again substitute it
by its averaged value, which is mainly proportional to the av-
eraged current j = je + jc corresponding to δ f = δ fe + δ fc.
As a result, the function δ fe is given by Eq. (6) at u = 0
with the sample width W changed on the width W̃ = 2Rc of
the subregion with the edge electrons and the renormalized
electric field:

E0 → Ẽ0 = E0 + γ
je + jc
n0/m

. (10)

Correspondingly, an analysis shows that for the current com-
ponent je we should use Eq. (9) at u = 0 with j = je + jc and
the density factor αe = W̃ /W .

All the central electrons have almost coinciding trajectories
and are scattered mainly by the edge ones [see Fig. 1(c)]. Thus
the flow of the central electrons is similar to an Ohmic one,
and their component jc is given by the Drude formula with
the density factor αc and the same Ẽ0. In the distribution of
the central electron δ fc the first angular harmonic dominates,
unlike the semiballistic function δ fb (6), which is discontin-
uous in ϕ and thus contains many comparable harmonics by
ϕ [34].

We arrive at the mean-field equations for je and jc [34],

je = (αe/2)( jcr + je + jc),

jc = αc( jcr + je + jc), (11)

where jcr = j0l/W = n0e2E0l/(vF m). These equations are
similar in their meaning to the one-component equation (9),
but account for the appearance at B > Bc of the two electron
species. The solution of (11) yields j = (1 + 2αc) jtr.

The Hall field is also related to the edge and central
electrons: EH = EH,e + EH,c. The first term is calculated by
Eq. (7) at u = 0 with the factor αe and the substitutions
E0 → Ẽ0 and W → W̃ . According to the Ohmic-like form
of the distribution δ fc, the term EH,c is given by the Drude
formula EH,c = ωc jc/(n0/m). As a result, we obtain EH =
(1 + 2αc)(l/Rc)E0.

The described change in electron dynamics above and be-
low the critical field is reflected in the kinks in the obtained
magnetic dependencies j(B) and EH (B). Next, for 	xx in the
main orders by |b| � 1 and W/l � 1 we obtain [34]

	xx(B)

	cr
= 1 − b ×

{
8 l/(πW ), b < 0, |b| � 1,

2, 0 < b � 1,
(12)

where 	cr = E0/ jcr and b = (B − Bc)/Bc. For the Hall re-
sistance 	xy(B) in the main order by W/l and the two first
orders by

√|b| we obtain the same result as in Eqs. (5) at
b < 0, while at b > 0 the above formulas for j and EH yield
	xy(B) ≡ R(0)

H B. The kinks in the obtained longitudinal and
Hall resistances at B = Bc evidence that the formation of the
hydrodynamic flow from the ballistic one is realized via a
phase transition.

Note that the derivative ∂	xx/∂B is proportional to γ in
the hydrodynamic vicinity of the critical point, B > Bc, and is
independent on γ in the ballistic vicinity, B < Bc. This indi-
cates the critically larger role of the interparticle collisions in
the hydrodynamic phase than their role in the ballistic phase.
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(a)

(b)

(d)(c)

FIG. 3. Longitudinal resistance 	xx of long samples as a function of magnetic field B ∝ W/Rc. (a) and (b) present experimental results for
graphene stripes and are taken from Refs. [5,6], respectively. Different curves correspond to varying 2D electron densities, controlled by the
gate voltages. Distortions of the curves in (b), asymmetric in B, can be due to some contribution from the Hall resistance 	xy in the measured
data. (c) Results of our theory for several interparticle scattering rates γ . In (d) we plot the curves from (c), smoothed by convolution with a
Gaussian weight function G
(B) with the width 
W/Rc , that simulates the contribution from sample corners, several sections of a long sample
with varying widths, and other imperfections.

With the increase of B and αc, the collisions between
the central electrons become important, therefore jc becomes
nonuniform by y. The hydrodynamic-ballistic flow at αc ∼ 1
was numerically studied in Refs. [25,26]. At αc � 1 the cen-
tral electrons dominate everywhere except the edge vicinities,
W/2 − |y| ∼ Rc, and the Poiseuille flow jc(y) ∼ (W/2)2 − y2

is formed [see Fig. 2(f)]. The resulting resistance 	xx is deter-
mined by the viscosity 	xx ∼ ηxx/W 2, ηxx ∼ γ /ω2

c , while the
Hall resistance 	xy is close to 	(0)

xy = R(0)
H B [17].

In Fig. 3 we compare the results of experiments [5,6] on
2D electron transport in high-quality graphene stripes with
our theoretical results. Both theoretical and experimental re-
sistances 	xx have similar profiles, including the minimum
at W/Rc � 1, the maximum at W/Rc ∼ 1, and the kink at
W/Rc = 2. Convolution of the calculated dependencies 	xx(B)
with a weight function G
(B), simulating the imperfection
of the sample, leads to a very good agreement of the shapes
of the observed and calculated curves [compare Figs. 3(a)
and 3(d)]. In the Supplemental Material [34] we also com-
pare our results with preceding theories [25,26] and other
related experiments [9–11,16]. The numerical solution [25]
of Eq. (1) for the stripes in which the scattering on disorder
dominates leads to the dependencies 	xx,xy(B) almost identical
to the ones calculated within our theory based on Eq. (1) with
the inter-particle collision operator replaced by the operator
describing the electron scattering on disorder St = Stdis (see
details in the Supplemental Material [34]). Our results for the
second ballistic subregime coincide with the ones obtained in
Ref. [26]. The longitudinal and Hall resistances observed in

Ref. [16] in long samples of GaAs quantum wells are in a good
agreement with the calculated dependencies 	xx,xy(B) [34].

IV. CONCLUSION

The phase transition between the ballistic and the hydrody-
namic transport with the increase of a magnetic field regimes
has been revealed and theoretically studied for weakly in-
teracting 2D electrons in long pure samples. An analysis of
magnetotransport experiments [5,6,16] on high-quality stripes
of graphene and a GaAs quantum well shows that this transi-
tion was apparently observed in them.

We think that the phase transitions of the types considered
here can be possible in a wide class of high-purity 2D and
3D materials for the samples in which defectless regions are
confined by edges of different shapes. These phase transitions
can differ by types of electron energy spectra, character of
the electron-electron scattering, and shapes of the samples.
For example, samples with ballistic microcontacts studied in
Refs. [27–30] may be of great interest. The phase transitions
of such a type are to be characterized by (i) a kink in the de-
pendence of the Hall and the longitudinal sample resistances
on magnetic field and (ii) a change of the type of temperature
dependences of the derivative of the longitudinal resistance
by magnetic field. Therefore they may be considered as a
classical-mechanics analog of the metal-insulator transition
in doped semiconductors as well as of the normal metal-
superconductor phase transition.
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