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Suppression of ballistic helical transport by isotropic dynamical magnetic impurities
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Dynamical magnetic impurities (MI) are considered as a possible origin for suppression of the ballistic helical
transport on edges of two-dimensional (2D) topological insulators. The MIs provide a spin-flip backscattering
of itinerant helical electrons. Such a backscattering reduces the ballistic conductance if the exchange interaction
between the MI and the electrons is anisotropic and the Kondo screening is unimportant. It is well known that
the isotropic MIs do not suppress the helical transport in systems with axial spin symmetry of the electrons.
We show that, if this symmetry is broken, the isotropic MI acquires an effective anisotropy and suppresses the
helical conductance. The peculiar underlying mechanism is a successive backscattering of the electrons which
propagate in the same direction and have different energies. The respective correction to the linear conductance is
determined by the allowed phase space of the electrons and scales with temperature as T 4. Hence, it disappears
at small temperatures. This qualitatively distinguishes effects governed by the MIs with the induced and bare
anisotropy; the latter is temperature independent. If T is smaller than the applied bias, finite eV , the allowed
phase space is provided by the bias and the differential conductance scales as (eV )4. We point out regimes
where the combined effect of the MI and the broken spin symmetry dominates over that governed by electron
interactions.

DOI: 10.1103/PhysRevB.104.195414

I. INTRODUCTION

Suppression of the edge transport in two-dimensional (2D)
topological insulators [1–4] has attracted considerable atten-
tion from the community and remains a popular topic even
after a decade of the intensive research because of the ab-
sence of a fully self-consistent theoretical explanation. The
time-reversal symmetry and the nontrivial topology of the
bulk guarantee helicity (lock-in relation between spin and
direction of propagation) of the gapless one-dimensional (1D)
edge modes [5–7]. Helicity prohibits an elastic single-particle
backscattering by a spinless potential. Thus, at least in the
absence of interactions, the helical modes are not liable to
effects of material imperfections, e.g., localization. Many
physical mechanisms, which are beyond the simplest single-
particle picture and can suppress the helical conductance,
have been suggested to explain experimental data: multiparti-
cle backscattering [8,9], electron-electron or electron-phonon
interactions and inelastic scattering of the helical electrons
[10–16], and their exchange interaction with nanomagnets
[17,18] or localized dynamical magnetic moments [magnetic
impurities (MI)] [19–30], to name just a few. We focus on
the latter mechanism below. By using the term “dynamical,”
we emphasize the difference between the MIs possessing the
spin dynamics and the frozen impurities without the internal
dynamics.

An exchange interaction of the helical electrons with the
MIs can result in energy-preserving backscattering accompa-
nied by the spin flip. That is why the MIs were considered

as a serious obstacle for the ballistic helical transport in the
topological insulators even with the spin axial symmetry of
the electrons [31]. As a matter of fact, the MIs, which are
isotropically coupled to the itinerant electrons (the isotropic
MIs for brevity), cannot themselves break the spin U(1) sym-
metry and, therefore, cannot influence the dc conductance
[32]; see also Refs. [21,22,33,34]. The anisotropically coupled
MIs (the anisotropic MIs for brevity) violate the spin conser-
vation and are able to suppress the ballistic conductance but
only if they are not Kondo screened. This requires either a
high density of the MI array [21,22,33,34], where the Kondo
effect is overwhelmed by the MI correlations [35], or the tem-
perature and/or the applied bias being larger than the Kondo
temperature, max{T, (eV )} > TK , or a large value of the MI
spin, S > 1/2 [36–38].

The situation is crucially different in the topological insu-
lators without axial spin symmetry of the electrons [10,12,14].
The absence of the spin symmetry can be caused, e.g., by
the Rashba spin-orbit interaction, and does not contradict the
concept of the helical modes on the edges of the topological
insulators [39]. In these systems, the helical electrons acquire
a dependence of the spin orientation on their energy, the so-
called spin texturing (ST) [40]. The well-known effect of the
ST is the suppression of the helical conductance caused by the
inelastic backscattering of the interacting electrons [10,12].
Another effect of the ST, which has not been addressed in
the literature, is an influence of the isotropic (unscreened)
MI on the helical transport of the noninteracting electrons.
Since the scattering of a given electron by the MI does not
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FIG. 1. Successive scattering of two right-moving helical elec-
trons (shaded circles), which have different energies, by the MI
(shaded square); see the explanation in the text.

change the electron energy, one could surmise that the ST is
unimportant and the isotropic MI could not have any effect on
the linear helical conductance similar to the model with spin
axial symmetry [32]. This guess holds true but only at zero
temperature.

We show in the present paper that, even in the absence of
the electron interactions, the isotropic (unscreened) MI yields
negative corrections to the dc differential helical conductance
at finite temperatures, eV < T , or at a finite bias, T < eV .
The underlying mechanism is an energy-preserving succes-
sive backscattering of the helical electrons which propagate in
the same direction and have different energies. We elaborate
this mechanism at qualitative and quantitative levels, derive
the ST correction to the helical conductance, which scales in
the proper limiting cases as δG ∝ max{T 4, (eV )4}, compare
our results with the suppression of the conductance caused
by the anisotropic MI, and point out regimes where the effect
predicted in the present paper dominates over its counterpart
governed by electron interactions.

We would like to keep the discussion at the most trans-
parent level and, therefore, use the representative example of
the spin-1/2 MI weakly coupled to the noninteracting helical
electrons at temperatures above TK . The derivation of the
differential conductance in this setup suffices to explain the
combined effect of the MIs and the ST on helical transport. We
touch upon more complicated situations, including Kosterlitz-
Thouless-like renormalizations of the MI-electron coupling,
very briefly and at a qualitative level.

II. QUALITATIVE DISCUSSION

The succesive backscattering of the helical electrons by
the isotropic MI is illustrated by Fig. 1, where the cases
with and without the ST are compared. Let us consider, for
example, scattering of two right-moving helical electrons; see
left panels of Fig. 1.

If there is no ST, the MI spin becomes parallel to that
of all incoming right-moving electrons already after the first
backscattering. This blocks consecutive spin flips and, there-
fore, the MI is unable to backscatter one after another two
electrons; see the upper panel of Fig. 1. Two electrons can be

backscattered by the MI successively only if they have differ-
ent chiralities and, as a result, the dc helical conductance is not
changed [32]. It is a well-known example of systems where
transport is ballistic despite backscattering of the individual
electrons.

If, on the contrary, there is the ST, the first backscattering
aligns the MI spin with that of the first incoming electrons
before it is backscattered. Due to the ST, incoming electrons
with another energy have different orientation of the spin.
Therefore, the MI can backscatter two helical electrons of
the same chirality one after another (see the lower panel of
Fig. 1), which results in the suppression of the ballistic helical
conductance. This requires a finite energy shell of partially
filled electron states around the Fermi energy. In the linear
response regime, the allowed phase space of the electrons
decreases with lowering temperature and the probability of
the above described successive backscattering vanishes in the
limit of small T .

Before presenting a more rigorous description, the scaling
of the MI governed correction to the dc conductance can be
deduced from a phenomenological approach. Expressions for
the backscattering current and for the respective correction to
the differential conductance read as follows:

J = e∂t (NR − NL ) = 2e∂t NR, δG = ∂VJ ; (1)

where e and NR,L are the electron charge and numbers of the
right- or left-moving chiral electrons, respectively, and we
have taken into account the particle conservation law which
relates chiral currents, JR = −JL. As we have already men-
tioned in the introduction, the backscattering caused by the
isotropic MI cannot lead to the backscattering current if the
spin axial symmetry is present. Breaking this symmetry leads
to the ST and to the effective anisotropy of the MI. In the case
of a weak ST, the anisotropic part of the coupling between
the MI and the itinerant electrons is ∼ k2, with k being the
electron momentum [10]. The corresponding (leading in the
electron-MI coupling constant) contribution to J ∝ ∂t NR is
governed by the product of the external voltage multiplied
by the square of the anisotropic part of the coupling con-
stant, J ∼ eV × k4. The typical deviation of the momentum
from the Fermi point (allowed phase space) can be estimated
as �k ∼ max{T/vF , eV/vF }. Hence, one may expect δG ∼
T 4F (eV/T ), which is reduced to

δG ∝ max{T 4, (eV )4}, (2)

in corresponding limiting cases. Such an argumentation lead-
ing to the scaling in Eq. (2) is rather general and does not
depend on the value of the MI spin at max{T, eV } � TK . On
the other hand, the above phenomenology is based on the
intuition suggested by the Boltzmann kinetic equation, whose
validity is a priori not clear. The kinetic equation must include
distribution functions of the helical electrons and of the MI.
The latter can be used only if the MI density matrix is diag-
onal. This is generically not correct in an arbitrarily chosen
basis [37] while the proper basis is unknown in advance; see
calculations below. Besides, the power counting is unable to
predict the scaling function F (eV/T ) describing the crossover
regime, T ∼ eV , which might be of interest for comparison
with experimental results. Hence, one needs a more rigorous
theory of the backscattering current governed by the MI. We
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develop it in the next section by using the master equation
approach for our main example of the spin-1/2 MI.

III. MODEL AND METHOD

Massless 1D fermions propagating on the edge of the 2D
topological insulators are described by the standard Dirac
Hamiltonian

H0 = vF

∑
k

k(�†
ch(k)σ̂ z�ch(k)). (3)

Here �T
ch = {ψR, ψL}, σ̂ z ≡ diag(1,−1), ψR/L are chiral

fermionic operators of right- or left-moving modes, and vF

is the Fermi velocity. The Hamiltonian of the exchange inter-
action between the fermions and the MI is naturally written in
the spin fermionic basis, �T

sp = {ψ↑, ψ↓}:

Hint =
∑

j

∑
k1,2

Jj�
†
sp(k1)Ŝ j σ̂ j�sp(k2), j = x, y, z; (4)

with Ŝ j and σ̂ j being the localized spin-1/2 operator and the
Pauli matrices, respectively. The MI is located at position
x = 0. For our purposes, it suffices to assume the diagonal
coupling matrix with small diagonal entries, Jj � vF . The
spin and chiral bases are related by the k-dependent rotation
[10,41]

�sp(k) = B̂(k)�ch(k), B̂(k) ≡ cos(θ (k)) + iσ̂ y sin(θ (k)).
(5)

We have introduced the angle of the spin rotation caused by
the ST: θ (k) ≡ (k/k0)2. This ratio of momentums character-
izes the strength of the ST which is typically weak, k/k0 � 1.
However, using Eq. (5) [without an expansion of B̂ in powers
of θ (k)] is technically more convenient. Equation (4) in the
chiral basis reads

Hint =
∑
k1,2

�
†
ch(k1)Ĝ(k1, k2)�ch(k2), (6)

Ĝ(k1, k2) =
∑

j

J j Ŝ
j (B̂†(k1)σ̂ j B̂(k2)). (7)

Equation (7) shows that the ST-caused rotation by the matrix B̂
changes (or even induces in the isotropic case) the anisotropy
of the coupling. This effective anisotropy depends on the
electron momentum and gives rise to the suppression of the
helical conductance.

The expression for the number of the chiral electrons,
which enters Eq. (1) for the backscattering current, reads

Nα =
∑

k

Tre,MI{ψ†
α (k)ψα (k)ρ̂(t )}, α = R, L. (8)

Trace in Eq. (8) is calculated with respect to the helical
electrons, Tre, and the MI, TrMI ; ρ̂(t ) denotes the total (de-
scribing the electrons and the MI) density matrix in the
interaction representation with respect to H0. In the standard
approach, which involves the Markovian approximation (see,
e.g., the textbook [42]), ρ̂(t ) obeys the evolution equation
∂t ρ̂ = −i[Hint (t ), ρ̂(−∞)] + L[ρ̂(t )], where

L[ρ̂(t )] ≡ −
∫ t

−∞
dt ′ [Hint (t ), [Hint (t

′), ρ̂(t )]], (9)

and, in the second order in Hint, ρ̂ in Eq. (9) can be factorized
ρ̂ � ρ̂eρ̂MI . Here ρ̂e is the density matrix of the free electrons
coupled to the leads, and ρ̂MI ≡ Tre{ρ̂} is the reduced density
matrix of the MI. The latter matrix obeys the master equation
∂t ρ̂MI = Tre{L[ρ̂eρ̂MI (t )]} (the linear in Hint term does not
contribute to Tre).

The effect which we study is governed by real processes.
Virtual processes lead to renormalizations, which are unim-
portant at max{T, eV } � TK . Therefore, we neglect the virtual
processes and focus on the energy-preserving scattering of the
electrons by the MI. The master equation takes the following
form:

∂t ρ̂MI = − π

(2πvF )2

∑
α,β

∫
d ε

{
f α
e (ε)

[
1 − f β

e (ε)
]

× [{Ĝαβ (ε)Ĝβα (ε), ρ̂MI}+ − 2Ĝβα (ε)ρ̂MI Ĝαβ (ε)]
}
.

(10)

Here α, β = R, L; Ĝ(ε) ≡ Ĝ(ε/vF , ε/vF ); f R/L
e are fermionic

distribution functions

f R/L
e (ε) = 1

exp [(ε − μR/L )/T ] + 1
; (11)

μR/L are chemical potentials of the corresponding leads;
and we assume μR/L = ±eV/2 ⇒ δμ ≡ μR − μL = eV . The
stationary solution of Eq. (10), ρ̂st

MI , determines the backscat-
tering dc current: Jdc = 2eTre,MI{ψ†

RψR L[ρ̂eρ̂
st
MI ]}. Similar to

Eq.(10), we find

Jdc = 4πe

(2πvF )2

∫
dε

× (
f L
e (ε)

[
1 − f R

e (ε)
]
TrMI

{
ĜLR(ε)ĜRL(ε)ρ̂st

MI

}
− f R

e (ε)
[
1 − f L

e (ε)
]
TrMI

{
ĜRL(ε)ĜLR(ε)ρ̂st

MI

})
. (12)

IV. RESULTS AND DISCUSSION

A. Linear response

Let us first study the linear response, V → 0, and find the
temperature-dependent correction to dc linear conductance,
δGL(T ) ≡ δG(T,V = 0).

After a straightforward algebra, we obtain the answers for
the stationary density matrix of the MI,

ρ̂st
MI = 1

2
+ δμ

T
J̃y

×
(

J̃xIc(T )

J̃2
x + J̃2

y

Ŝz − J̃zIs(T )

J̃2
z + J̃2

y

Ŝx

)
+ o(δμ), (13)

and for δGL,

δGL

G0
= −1

2

(
J2

x − J2
y

)2

J2
x + J2

y

+ J̃2
x − J̃2

z

4
[1 − Ic(2T )]

+ 2J̃2
y

[
J̃2

x

J̃2
x + J̃2

y

(
I2
c (T ) − 1

) + J̃2
z

J̃2
z + J̃2

y

I2
s (T )

]
.

(14)

Here T ≡ 2(2T/vF k0)2; J̃x,y,z ≡ Jx,y,z/vF ; G0 = e2/h is
the helical ballistic conductance; and we have introduced two
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FIG. 2. Temperature dependence of the MI-generated correc-
tion to the linear ballistic helical conductance for four cases: (i)
isotropic MI, J̃x,y,z = 0.25 (black curve); (ii) anisotropic MI J̃x =
0.25, J̃y = 0, J̃z = 0.35 (blue curve); (iii) easy xz-plane anisotropic
MI, J̃x,z = 0.25, J̃y = 0 (green curve); (iv) easy x-axis anisotropic
MI, J̃x = 0.25, J̃y,z = 0 (red curve). Note that to focus on our main
topic, we draw only the correction governed by the ST and do not
take into account possible outcomes of the Kondo screening.

functions:

Ic(x) =
∫ ∞

0
dε

cos (xε2)

cosh2(ε)
, Is(x) =

∫ ∞

0
dε

sin (xε2)

cosh2(ε)
.

Since δGL depends on T/vF k0, its temperature-independent
part corresponds to the limit of small temperature and, simul-
taneously, of the vanishing ST.

If the MI is isotropic, J̃x,y,z = J̃ , Eqs. (13) and (14) reduce
to

ρ̂st
MI � 1

2
+ δμ

2T
(Ic(T )Ŝz − Is(T )Ŝx )

� 1

2
+ δμ

2T

([
1 − 14

15

( πT

vF k0

)4]
Ŝz − 2

3

( πT

vF k0

)2

Ŝx

)
;

(15)

δG(iso)
L = −J̃2

{
1 − [

I2
c (T ) + I2

s (T )
]}

G0

� −4J̃2G0

45

(
2πT

vF k0

)4

. (16)

Equation (16) confirms that the isotropic (unscreened) MI
is able to suppress the helical ballistic conductance in the
topological insulators with broken axial spin symmetry of the
electrons.

The exponent of the power-law T dependence of
δG(iso)

L is anticipated from the phase space arguments of
the above qualitative discussion and, simultaneously, the
value δG(iso)

L (T/vF k0 = 0) = 0 agrees with the prediction of
Ref. [32] on the vanishing effect of the isotropic MI in the
absence of the ST.

The bare XY anisotropy of the coupling constants makes
δGL|T →0 in Eq. (14) finite (still assuming T > TK ), which is in
agreement with previous works [36–38]; see the comparison
of the isotropic and anisotropic cases in Fig. 2. Curiously, the
ST can decrease the effect of the magnetic anisotropy and
make GL(T = 0) < GL(T �= 0) [with GL(T ) certainly being
smaller than G0 at T/k0vF � 1 where the model, which we
use, is valid]. This happens, for instance, at Jy = 0 in the range

0 < Jz < Jx, the red curve in Fig. 2. If Jy = 0, Jz = Jx �= 0,
the ST does not change GL, which is finite and temperature
independent; see the green curve in Fig. 2. In the regime Jy =
0, Jz > Jx �= 0, the ST enhances the effect of the magnetic
anisotropy such that GL(T = 0) > GL(T �= 0), the blue curve
in Fig. 2. Thus, an unusual growth of the subballistic helical
conductance with increasing temperature might indicate the
combined effect of the anisotropic MI and the ST.

Let us identify regimes where the combined effect of the
MI and the ST dominates over that generated by the electron
interaction in the presence of the ST [10]. For transparency,
we assume that all coupling constants entering estimates of
different contributions are small and of the same order, J ∼
U0 ∼ V0 � vF , with U0 and V0 being the strength of the
electron interaction and of a spinless impurity, respectively,
in notations of Ref. [10]. If the system is clean, a correc-
tion to the linear conductance governed by the combined
effect of the ST and the electron interactions, δGint, acquires
a smallness [with respect to δG(iso)

L ∝ (T/vF k0)4] at small
temperatures. In particular, δGint ∝ (T/vF k0)5 at kF = 0 and
δGint ∝ (vF k0/T ) exp(−vF |kF |/T ) at vF |kF | � T . If the sys-
tem is dirty, the correction to the linear helical conductance
governed by the electron interactions, the ST, and the rarified
spinless impurities, δGint+imp, has the same temperature de-
pendence, T 4, as δG(iso)

L . However, δGint+imp starts only from
subleading terms of the scattering theory and, therefore, it
acquires a noticeable smallness at the small ST: The contri-
bution of one spinless impurity to δGint+imp is of the order of
(kF /k0)8(T/vF k0)4 at vF /L � T � vF kF , with L being the
system length. Hence, this contribution is much smaller than
δG(iso)

L at kF � k0. We note that this additional smallness does
not appear in the special case kF � 0 (a vicinity of the Dirac
point) [12].

If one takes into account virtual processes, the coupling
constants in Eqs. (14) and (16) acquire an additional tempera-
ture dependence due to Kosterlitz-Thouless-like renormaliza-
tions, which are very weak and can be safely ignored at T �
TK [19,31]. Moreover, in a particular case Jx,y = 0, the renor-
malizations are absent at the level of the first loop of the renor-
malization group. Therefore, the answer (14) is expected to
approximately hold true down to ultralow temperatures in the
case of the easy z-axis anisotropy of the exchange coupling.

B. Nonlinear response caused by isotropic MI

Equations (10) and (12) describe the combined effect of
the MI and the ST on helical transport also at a finite bias.
This effect does not vanish if the temperature approaches
zero but the bias is finite, TK � eV . In this case, the phase
space, which is needed for the successive backscattering of
the helical electrons with the same chirality, is provided by eV
instead of T . It is reflected by a crossover of the differential
conductance from the T 4 scaling to the (eV )4 scaling. In par-
ticular, the correction to the nonlinear conductance governed
by the isotropic MI reads as

δG(iso)(T � eV ) � − J̃2G0

18

( eV

vF k0

)4

= 5

8

( u

π

)4
δG(iso)

L ; u ≡ eV

2T
. (17)
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FIG. 3. Main panel: Crossover of the correction to the differen-
tial conductance, Eq. (18), between limits of the linear response,
eV � TK � T (dash-dotted line), and the finite bias, T, TK � eV
(dashed line). Inset: Polarization of the MI spin along x axis (i.e.,
along the helical edge), Eq. (19).

The crossover between regimes of the infinitesimal bias,
Eq. (16), and the vanishing temperature, Eq. (17), is described
by a rather complicated function:

δG(iso)(T,V )

δG(iso)
L (T )

� 1 − tanh2(u)

2
+ 15

4

( u

π

)2

×
[

1 + tanh(u)

u
− tanh2(u)

2

]
+ 5

4

( u

π

)4

×
[

1 + 4 + 2u coth(u) − u2

2(1 + u coth(u))2

]
; (18)

see the main panel of Fig. 3.
The complexity of Eq. (18) at T � eV is related to the MI

polarization, which develops with increasing the ratio eV/T .
For instance, the partial mean polarization of the isotropic MI
along the helical edge, Sx = Tr[Ŝxρst

MI ], is given by

Sx(T, eV )

S(0)
x (T, eV )

� 1 + (
u
π

)2 + [
1 + 3

(
u
π

)2] tanh(u)
u

1 + u coth(u)
; (19)

see the inset in Fig. 3 [43]. Here S(0)
x = −(2u/3)(πT/vF k0)2

is the corresponding value of the MI polarization in the linear
regime; cf. Eq. (15).

V. SUMMARY

We have demonstrated that the spin texturing, which re-
flects the absence of the spin axial symmetry of electrons,

noticeably changes the influence of dynamical magnetic im-
purities on the helical transport on edges of 2D topological
insulators. This is particularly pronounced in the emergent
ability of the (unscreened) spin U(1)-invariant MI to suppress
the ballistic dc helical conductance. We have exemplified such
a suppression by considering the example of the isotropic
MI. This effect does not require the energy transfer but,
nevertheless, is temperature dependent. The corresponding
contribution to the linear helical conductance, δG(iso)

L in
Eq. (16), is negative and its magnitude decreases as T 4 while
lowering the temperature. It is related to the underlying phys-
ical mechanism of suppression of the dc conductance: The
isotropic MI can backscatter one after another electrons prop-
agating in the same direction if they have different orientation
of spins due to different energies. If T → 0, transport is car-
ried by the electrons on the Fermi level, the available phase
space of the electrons shrinks, and the predicted effect dis-
appears; namely, the isotropic MI does not affect the helical
conductance similar to the systems with the spin axial sym-
metry (no ST). The predicted correction to the linear helical
conductance δG(iso)

L may be parametrically greater than that
governed by the combined effect of the electron interactions
and the ST [10] either at small temperatures or at weak ST if
the interacting system is clean or dirty, respectively.

If the applied external voltage is finite and T � eV , the
available phase space is provided by the voltage and the
differential conductance scales as G(iso) ∝ (eV )4, Eq. (17).
The crossover between two scaling regimes is described by
Eq. (18). It reflects a partial polarization of the MI caused by
a rather complicated competition of the applied voltage and
the finite temperature.

We note also a curious feature of the combined effect
of the ST and the anisotropic MI: If the bare anisotropy of
the coupling between the MI and the conduction electrons
is of the easy axis type (with the axis being directed along
the edge of the topological insulator), the ST can effectively
weaken the anisotropy and partially restore the ballistics of the
conductance. This effect could manifest itself in an unusual
growth of the subballistic linear helical conductance with
increasing T .
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