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We construct a two-channel scattering model for the triangular network of valley Hall states in interlayer-
biased minimally twisted bilayer graphene from symmetry arguments, and we investigate electronic transport in a
four-terminal setup. In the absence of forward scattering, a single phenomenological parameter tunes the network
between a triplet of chiral zigzag modes and pseudo-Landau levels. Moreover, the chiral zigzag modes give rise to
robust Aharonov-Bohm resonances in the longitudinal conductance in the presence of a perpendicular magnetic
field or an in-plane electric field. Interestingly, we find that when both a magnetic field and an in-plane electric
field are applied, the resonances of different zigzag branches split depending on their propagation direction
relative to the in-plane electric field. We further demonstrate that while the Hall response vanishes in the chiral
zigzag regime, a finite Hall response is obtained without destroying the Aharonov-Bohm resonances in the
longitudinal response by weakly coupling different zigzag branches, which also gives rise to Hofstadter physics
at accessible magnetic fields.
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I. INTRODUCTION

In recent years, twisted bilayer graphene [1,2] has attracted
a great deal of interest from the condensed-matter community.
In this system, two graphene layers are rotationally mis-
matched, giving rise to a moiré pattern in the layer stacking.
In a large part, this interest was motivated by the experimental
discovery of superconductivity and correlated phases [3–13]
at the “magic” twist angle (θ ∼ 1◦). For tiny twist angles
(θ ∼ 0.1◦), also known as minimally twisted bilayer graphene
(mTBG), the moiré pattern grows so large that it becomes
energetically favorable to shrink hexagonal stacking regions
where locally all carbon atoms are eclipsing (AA stacking)
in favor of expanding the Bernal-stacked regions (AB or BA
stacking) where only atoms of different sublattices overlap, at
the expense of intralayer strain [14,15]. The relaxed structure
is then given by a triangular tiling of alternating AB and
BA regions, see Fig. 1(a), whose vertices correspond to AA
regions. The latter act as topological defects, giving rise to
three AB/BA domain walls intersecting at each node [16].
Upon application of an interlayer bias, e.g., due to an electric
field perpendicular to the layers, a local gap is opened in the
Bernal-stacked regions, while the AA regions remain metallic.
When the Fermi level lies in the local gap, one can thus think
of mTBG as a triangular lattice of quantum dots. Moreover,
the AA regions are coupled via the AB/BA domain walls,
which support two chiral modes per valley and spin, and
which are helical in the sense that states in opposite valleys
counterpropagate; see Fig. 1(b). The existence of these chiral
modes can be understood from the change in valley Chern
number �NK = −�NK ′ = ±2 across an AB/BA or BA/AB
domain wall, respectively. Here, the valley Chern number

is defined locally in real space and momentum space, and
therefore it is not necessarily quantized [17,18]. Nevertheless,
the change in valley Chern number across a domain wall is
quantized [17]. From the bulk-boundary correspondence [19],
we require two chiral modes per valley and spin that propagate
along the domain walls, where the propagation direction is
opposite for opposite valleys. The low-energy physics is thus
captured by a triangular network of chiral modes where the
AA regions act as scattering centers [18,20–27], which is
illustrated in Fig. 1(c). Assuming the valleys are decoupled,
we have (for each spin) two triangular networks of opposite
orientation, related by time-reversal symmetry. For a given
valley, this system is reminiscent of a triangular [28] Chalker-
Coddington oriented network [29,30].

Recently, robust Aharonov-Bohm (A-B) oscillations at-
tributed to the network were observed in transport experi-
ments in interlayer-biased mTBG [25]. The A-B oscillations
were observed on top of a constant plateau and persisted at
finite temperatures below the local gap. In addition, oscilla-
tions of the Hall resistivity were also observed. The latter
are not robust against temperature and can be qualitatively
understood in terms of network bands of alternating elec-
tron and hole character. On the theory side, microscopic
calculations demonstrated that the network hosts so-called
one-dimensional (1D) chiral zigzag (ZZ) modes [31,32]. In
this regime, the network (for a given valley and spin) ef-
fectively splits into three independent families of 1D chiral
modes, where each family consists of modes propagating
in parallel, giving rise to a nested Fermi surface between
valleys [33]. Moreover, in the presence of a magnetic field
perpendicular to the graphene layers, scattering between par-
allel ZZ modes gives rise to robust A-B oscillations in the
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FIG. 1. (a) Illustrative example of the TBG lattice for θ = 7.34◦,
where atoms of the top and bottom layers are shown as black and
orange dots. Note that this is not a minimal twist angle. The AB,
BA, and AA stacking domains are shown as gray, white, and brown
regions, and NK = −NK ′ ≈ ±1 is the local valley Chern number in
the presence of an interlayer bias U . (b) Dispersion along domain
walls between two semi-infinite AB and BA regions, calculated with
the four-band continuum model for U/γ⊥ = 0.1, showing two chiral
modes (blue and red lines) per valley and spin. (c) Network of valley
Hall states (for a single valley and spin) where domain walls and
AA regions correspond to links and scattering nodes of the network,
respectively. (d) Unit cell of the network.

longitudinal conductance [32]. However, given the 1D na-
ture of these chiral ZZ modes, one expects a vanishing Hall
response, at odds with experiment. In this paper, we show
that this dilemma is resolved when different ZZ branches are
weakly coupled, in which case the A-B oscillations persist and
the Hall response can be nonzero.

This paper is organized as follows. In Sec. II, we introduce
the network model. We take a phenomenological approach
and obtain the general constraints on the S matrix from sym-
metry arguments. First, we consider the case without forward
scattering at the nodes. In this case, the S matrix depends on a
single parameter, which tunes the network in mTBG between
a triplet of one-dimensional chiral zigzag modes [31–33] and
pseudo-Landau levels [21]. We then allow for forward scat-
tering and discuss different processes between zigzag modes.
Coupling between parallel zigzag channels only warps the
Fermi surface, while a gap is generically opened due to
scattering between zigzag modes that propagate in differ-
ent directions. In Sec. III, we investigate electronic transport
in the chiral zigzag regime in a four-terminal setup in the
presence of a magnetic field perpendicular to the layers, as
well as when a uniform in-plane electric field is applied to
the system. Here, forward scattering gives rise to Aharonov-
Bohm oscillations in the longitudinal conductance, and we
show that resonances of different zigzag branches are split

by the in-plane electric field. This gives rise to magnetoelec-
tric Aharonov-Bohm oscillations. Similar oscillations of this
kind were recently observed in mTBG by scanning tunneling
microscopy measurements [34]. We also discuss magneto-
transport in the percolating regime, i.e., when different zigzag
branches are coupled, giving rise to Hofstadter physics at
experimentally accessible magnetic fields. Finally, we present
our conclusions in Sec. IV.

II. NETWORK MODEL

The network in mTBG consists of scattering nodes (AA
stacking regions) that form a triangular lattice and links be-
tween these nodes (AB/BA domain walls), as illustrated in
Fig. 1(a). Each link hosts two valley Hall channels (for a given
valley and spin) [Fig. 1(b)] such that each scattering node has
six incoming and six outgoing modes, as shown in Fig. 1(c).
We label the nodes by a pair of indices (m, n) with position
ml1 + nl2, where l1,2 = l (−1/2,±√

3/2) are moiré lattice
vectors, with l = a/2 sin(θ/2) ≈ 14(θ◦)−1 nm the moiré lat-
tice constant and a ≈ 0.25 nm the graphene lattice constant of
graphene. The scattering amplitudes of the incoming modes
at node (m, n) are then written as

amn = (a1mn, a′
1mn, a2mn, a′

2mn, a3mn, a′
3mn)t

, (1)

where the numbers 1, 2, and 3 indicate the link as defined
in Fig. 1(d), and the primed amplitudes belong to the second
channel (not to be confused with the valley). The outgoing
amplitudes are defined in the same way, and denoted as bmn.
They are related to the incoming modes via the S matrix,

bmn = Samn, (2)

which characterizes the nodes of the network. Current conser-
vation at a node is expressed as S†S = 16.

In this work we do not consider intervalley scattering, as
the moiré pattern varies slowly on the interatomic scale for
small twists. Hence, we consider two independent networks,
one for each valley, with opposite orientations as the valleys
are related by time-reversal symmetry.

A. S matrix

To find the S matrix, we take a phenomenological ap-
proach, where we constrain its form with unitarity and
the symmetries of mTBG in the presence of an interlayer
bias [35,36]. The symmetries of interlayer-biased TBG are
given by C3 and C2 rotations about the z axis with respect
to the center of an AA region, and time-reversal symmetry
T . While C3 symmetry conserves the valley, both C2 and T
flip the valley index. Within one valley, the symmetries are
therefore given by C3 and C2T . The former corresponds to a
cyclic permutation of the incoming amplitudes a1 → a2 →
a3 → a1; see Fig. 1(d). It follows that the S matrix can be
written as

S =

⎛
⎜⎝

s f sl sr

sr s f sl

sl sr s f

⎞
⎟⎠, (3)

where s f , sr , and sl contain the amplitudes for forward
scattering and right and left deflections by 120◦, subject to
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S†S = 16. Furthermore, when additionally C2 or T is con-
served, it can be shown (see Appendix A) that the amplitudes
of different valleys are related as follows:

C2 : sr(l ) = s′
r(l ), s f = s′

f , (4)

T : sr(l ) = (s′
l (r) )

t , s f = (s′
f )t , (5)

such that when the combined symmetry C2T is conserved, we
have for a given valley

C2T : sr = (sl )
t , s f = (s f )t . (6)

One can show that these conditions reduce the number of
free parameters of the S matrix to six real parameters (not
including a global phase). We demonstrate this explicitly in
Appendix A, where we construct the most general S matrix
using a scattering basis that transforms properly under C3 and
C2.

B. Network bands

The incoming modes of a given node are related to outgo-
ing modes of neighboring nodes,

amn = ei2πE/El (b1m−1n−1, b′
1m−1n−1,

b2m+1n, b′
2m+1n, b3mn+1, b′

3mn+1) (7)

where El = hv/l ≈ 300 θ◦(v/vG) meV is the energy scale
of the network (with vG = 106 m s−1 the Fermi velocity of
graphene). The network modes pick up a dynamical phase as
they propagate along a link with velocity v, which we assume
is equal for the two valley Hall states. For a clean network
with translational invariance, the Bloch theorem gives [20,37]⎛

⎜⎝
b1m−1n−1

b2m+1n

b3mn+1

⎞
⎟⎠

k

= M(k)

⎛
⎜⎝

b1mn

b2mn

b3mn

⎞
⎟⎠

k

, (8)

with M(k) = diag(eik3 , eik1 , eik2 ), where k j = k · l j ( j =
1, 2, 3) and l3 = −(l1 + l2). If we now combine Eqs. (2)
and (8), we obtain

[M(k) ⊗ 12]S ak = e−i2πE/El ak, (9)

such that the network energy bands are given by the phase of
the eigenvalues of [M(k) ⊗ 12]S .

In mTBG, the scattering parameters likely depend on the
Fermi energy, as well as the interlayer bias, twist angle, etc.,
which alter the microscopic details of the chiral modes and
the scattering nodes. In this work, we assume the S matrix
is independent of energy, which we estimate should hold for
energy windows that are small compared to the local gap
induced by the interlayer bias.

C. Chiral zigzag modes and pseudo-Landau levels

As a first approximation, we consider the case without
forward scattering, i.e., s f = 0 in Eq. (3). This is a good
approximation if the localization length of the chiral modes
is not too small relative to the moiré scale. In this case, there
can be a large wave-function overlap between incoming and
outgoing modes for deflections [38]. Hence, we only need

to determine sr subject to srs∗
r = 0 and s†

r sr + s∗
r (sr )t = 12.

These conditions are satisfied up to an overall phase by

sr =
(

eiφ
√

Pd1
√

Pd21

−√
Pd22 −e−iφ

√
Pd1

)
, (10)

with sl = (sr )t , and where Pd1 (Pd21 and Pd22) is the intra-
channel (interchannel) deflection probability, where 2Pd1 +
Pd21 + Pd22 = 1 and Pd1 = √

Pd21Pd22. Hence, there are two
parameters, e.g., Pd1 and φ with 0 � Pd1 � 1/4. Equation (9)
gives the secular equation

1 − λ6 + λ2[λ2α(k) − α(k)∗](1 − 4Pd1 sin2 φ)

+ 2iλ3(2
√

Pd1 sin φ)3 = 0, (11)

with λ = ei2πE/El and α(k) = eik1 + eik2 + eik3 , which is in-
variant under C3. Solving for λ yields the network energy
bands E (k). Since the energy enters via the dynamical phase,
the spectrum is periodic and thus unbounded. In mTBG, the
network exists only in a finite energy range where the gap is
opened by the interlayer bias. We can simplify our analysis
by defining sin φ′ = 2

√
Pd1 sin φ, which has a real solution

for φ′ because 0 � Pd1 � 1/4. Hence, we find that Eq. (11) is
equivalent to Pd1 = Pd21 = Pd22 = 1/4 with φ → φ′, and we
only have to consider this special case. In the following, we
drop the prime for convenience. Furthermore, by inspection,
we observe that all distinct cases are obtained for φ ∈ [0, π/2]
since the substitution φ → π − φ leaves the secular equation
invariant, and φ → −φ is equivalent to λ → −λ, which is a
constant energy shift.

In two limiting cases, we find that Eq. (11) yields an ana-
lytical solution: φ = 0 and φ = π/2. For φ = 0, the network
bands are given by

En j (k) = h̄v

2l
(2πn + k j ), (12)

where n is an integer, j = 1, 2, 3, and which is shown in
Fig. 2(a). The network modes are given in this case by three
chiral modes with velocity v/2 that propagate in the l j di-
rections. When φ > 0, these modes hybridize [Fig. 2(b)].
However, certain crossings at the 	̄, K̄ , and K̄ ′ points in the
moiré Brillouin zone (MBZ) are symmetry-protected by C2T
and C3 symmetry. At the 	̄ point, the secular equation (11)
reduces to

(λ2 + 2iλ sin φ − 1)(λ2 − iλ sin φ − 1)2 = 0, (13)

such that there is always a doubly degenerate mode at the
	̄ point that becomes triply degenerate for the special case
φ = 0. Increasing φ further, an indirect band gap opens at
φ = π/6; see Fig. 2(c). Hence, in the absence of forward scat-
tering, the network is metallic for 0 � φ � π/6 and gapped
for π/6 � φ � π/2. Furthermore, for φ = π/2 − ε, we find
in lowest order of ε

En j± � h̄v

l

[
2πn + π

6
(4 j − 7) ± ε

3
| f (k − k0 j )|

]
, (14)

where k0 j = (4π/3l )( j − 1)ex and f (k) = 1 + eik·l1 +
e−ik·l2 . At φ = π/2 (ε = 0) there are three doubly degenerate
flatbands per period El that are equally separated by El/3.
For finite ε, the degeneracy is lifted and each pair of network
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FIG. 2. Network bands in the absence of forward scattering along high-symmetry lines [see the inset in (d)] for the K valley (solid black)
and K ′ valley (dashed red). Here, we have shifted the energy by an overall constant El/12. (a) Chiral zigzag regime. (b) Coupled zigzag modes.
(c) Indirect gap opening. (d) Regime close to flatbands showing graphenelike bands.

bands resembles those of graphene with only nearest-neighbor
hopping; see Fig. 2(d). However, in this case the spectrum of
each pair is shifted in momentum space by k0 j .

To understand these results physically, we perform a basis
transformation, U = 13 ⊗ e−iπσy/4eiφσz/2. The new basis cor-
responds to superpositions of the two valley Hall states on the
same link,

a± = 1√
2

(aeiφ/2 ∓ a′e−iφ/2), (15)

and we obtain

USU −1 =

⎛
⎜⎝

s̃ f s̃l s̃r

s̃r s̃ f s̃l

s̃l s̃r s̃ f

⎞
⎟⎠, (16)

where s̃ f remains zero, and

s̃r =
(

0 cos φ

0 i sin φ

)
, s̃l =

(
i sin φ 0

cos φ 0

)
. (17)

Thus, in the new basis, we see that for φ = 0 there are
only interchannel deflections to the right (left) for a+ (a−)
modes. This gives rise to a chiral zigzag motion in the net-
work, as shown in Fig. 3(a), where a+ (a−) modes correspond
to solid (dashed) arrows. We call these modes chiral zigzag
(ZZ) modes [31,32]. Moreover, because of the ZZ motion,
they effectively have a velocity of v/2 as it takes twice as
long compared to direct propagation between two nodes. In
the flatband limit (φ = π/2), we find that the network modes
in the new basis form two sets of decoupled trimers, given
by clockwise (counterclockwise) triangular orbits around AB
(BA) regions for a− (a+) modes. Hence, the network is local-
ized and we obtain flatbands which are known in the literature
as pseudo-Landau levels [21]. Note that C2T symmetry is
conserved on the whole, because the orbits rotate in opposite
directions. For a given orientation, we obtain three pseudo-
Landau levels per network period as each orbit consists of

three parts, giving three possible superpositions with a dif-
ferent energy. Furthermore, pseudo-Landau levels of opposite
orientation can be thought of as two sublattices of an effective
honeycomb lattice; see Fig. 3(b). In this way, the spectrum
for φ = π/2 − ε is understood in terms of nearest-neighbor
hoppings t1 = ε/3 and t2 = t∗

3 = ei2π/3ε/3 on a honeycomb
lattice, where ε is the amplitude for a chiral ZZ process.

In the absence of forward scattering, we conclude that
the network model already captures two phenomena which
were known from band-structure calculations: chiral zigzag
modes [31,33] and pseudo-Landau levels [21]. Next, we
demonstrate how the network model can be used to under-
stand interference oscillations in magnetotransport in terms of
couplings between zigzag modes.

D. Coupling of zigzag modes

In the limit of tiny twist angles θ ∼ 0.1◦, the localization
length of the chiral modes decreases as the domain walls
become more sharply defined due to lattice relaxation [15,39].
Hence, we expect that forward scattering becomes more

FIG. 3. (a) Triplet of 1D chiral zigzag modes (φ = 0) along
directions l j ( j = 1, 2, 3) where solid (dashed) lines correspond to
a+ (a−) superpositions of valley Hall states along the same link
[Eq. (15)]. (b) Pseudo-Landau levels (φ = π/2) with the effective
honeycomb lattice superimposed.
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FIG. 4. Regions in the (Pd1, Pd2) plane consistent with unitarity
as well as C3 and C2T symmetry. For a given value of Pf 2, the
allowed region corresponds to the area bounded by the curve and
the Pd1 axis. The density plot shows the total forward scattering
probability Pf = Pf 1 + Pf 2, and the dashed (dotted) line corresponds
to Pd2 = Pd1 (Pd2 = 3Pd1), where the latter gives the maximal value
of Pd2 for a given Pf 2.

likely. Therefore, we consider the following parametriza-
tion [32]:

s f =
(

ei(φ+χ )
√

Pf 1 −√
Pf 2

−√
Pf 2 −e−i(φ+χ )

√
Pf 1

)
, (18)

sr =
(

eiφ
√

Pd1
√

Pd2

−√
Pd2 −e−iφ

√
Pd1

)
, (19)

with sl = (sr )t and where Pf 1 (Pf 2) is the probability for intra-
channel (interchannel) forward scattering, and Pd1 (Pd2) is the
probability for intrachannel (interchannel) deflections. Here,
the phase shift φ is an independent real parameter. The S ma-
trix is unitary for 2(Pd1 + Pd2) + Pf 1 + Pf 2 = 1 and cos χ =
(Pd2 − Pd1)/2

√
Pf 1Pd1, where we take χ � 0. Moreover, χ

has to be real, which implies 2
√

Pf 1Pd1 � |Pd2 − Pd1|. Hence,
we obtain an upper bound on Pd2 as illustrated in Fig. 4,
where we show the allowed regions in the (Pd1, Pd2) plane for
different values of Pf 2 and where we have superimposed the
value of Pf = Pf 1 + Pf 2. These regions are bounded by

Pd2 � 2
√

Pd1(1 − Pf 2) − 3Pd1, (20)

which is independent of φ. Note that this parametrization is
not the most general. An explicit construction of the general
S matrix is given in Appendix A. However, we believe this
parametrization suffices to capture the network physics in
mTBG. Henceforth, we consider four independent scattering
parameters that can be chosen as φ, Pf 1, Pf 2, and � = Pd1 −
Pd2.

To investigate the effect of forward scattering on the chiral
zigzag modes, we make the same basis transformation as in
Eq. (16). In the new basis, we find that the S matrix can be

FIG. 5. (a) Schematic showing scattering processes between par-
allel ZZ channels. (b),(c) Network energy bands in the MBZ for
� = φ = 0 with (b) Pf 1 = 0.04 and Pf 2 = 0, and (c) Pf 1 = 0 and
Pf 2 = 0.04.

written as

s̃ f =
(

f −ig

ig∗ − f ∗

)
, s̃r,l =

(
iδ∓ sin φ δ± cos φ

δ∓ cos φ iδ± sin φ

)
, (21)

with

f = √
Pf 2 cos φ + i

√
Pf 1 sin(φ + χ ), (22)

g = √
Pf 2 sin φ + i

√
Pf 1 cos (φ + χ ), (23)

δ± = √
Pd1 ± √

Pd2. (24)

In the ZZ regime (φ = δ− = 0) we have χ = π/2 and g = 0,
such that only parallel zigzag channels are coupled due to in-
trachannel forward scattering in the a± basis with probability
| f |2, which is illustrated in Fig. 5(a). In this case, the spectrum
becomes ( j = 1, 2, 3)

En j±(k) = h̄v

l

[
2π

(
n + 1 ± 1

4

)
+ k j

2
± arcsin Fj (k)

]
,

(25)

where

Fj = √
Pf 1 cos q j − √

Pf 2 sin q j, (26)

where q j = k j/2 + k j+1 with k4 = k1 and which is shown in
Figs. 5(b) and 5(c). Note that the accidental triple degen-
eracy at the 	̄, K̄ , and K̄ ′ points is not lifted by forward
scattering, such that it cannot open a gap. Indeed, forward
scattering only results in an overall energy shift at the high-
symmetry points, as Fj (	̄) = √

Pf 1 and F1(±K̄ ) = F2(±K̄ ) =
−F3(±K̄ ) = −√

Pf 1. Furthermore, we observe that the Fermi
surface becomes warped depending on the type of for-
ward scattering; see Fig. 5. For example, in the absence of
interchannel forward scattering (Pf 2 = 0) the bands are sym-
metric in ky, which follows from F1(kx,−ky ) = F2(kx, ky) and
F3(kx,−ky) = F3(kx, ky).

In general, however, the three chiral zigzag channels are
coupled through several processes, which are illustrated in
Figs. 6(a)–6(c). For example, one such process is due to in-
terchannel forward scattering in the a± basis with probability
|g|2 [Fig. 6(a)]. Consequently, the bands belonging to different
zigzag branches hybridize except at the 	̄, K̄ , and K̄ ′ points of
the MBZ, where the crossing is protected by C3 and C2T sym-
metry; see Fig. 6(d). Moreover, for φ = 0 there is always an
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FIG. 6. (a)–(c) Scattering between different chiral zigzag
branches. (a) Interchannel forward scattering, where a+ (a−) modes
are solid (dashed) arrows. (b) Intrachannel deflections. (c) Interchan-
nel deflections that are opposite to zigzag processes. (d) Network
bands and density of states (DOS) for φ = 0.2, � = Pd1 − Pd2 = 0,
and Pf 1 = Pf 2 = 0.05 and (e) for φ = 0, � = 0.4, Pf 1 = 0.1, and
Pf 2 = 0. The gray line in the DOS corresponds to the constant DOS
(4/A)(6/El ) in the chiral ZZ regime, where A is the moiré cell area.

accidental triply degenerate crossing at high-symmetry points
regardless of the value of �, which prevents a gap from being
opened, as shown in Fig. 6(e).

The nesting between the Fermi surfaces of opposite
valleys, which was first investigated with the continuum
model [33], can thus be understood from the 1D nature of the
zigzag channels.

By comparing the network energy bands to microscopic
band-structure calculations [31,33], we estimate that φ ≈
� ≈ 0 for mTBG and that forward scattering increases in the
presence of lattice relaxation, as evidenced by the deformation
of the Fermi contour.

III. TRANSPORT IN THE PRESENCE
OF EXTERNAL FIELDS

We now study electronic transport through the network in
the presence of a magnetic field B = Bez perpendicular to the
graphene layers, as well as a uniform in-plane electric field
E = Eex.

In the gauge A = Bxey, a Peierls phase ±�P(x) is accu-
mulated along a downward/upward diagonal link starting at a

FIG. 7. (a) Peierls phase in the Landau gauge A = Bxey accumu-
lated after propagation along links. (b) Staircase potential with step
height V0 along the x direction.

node with horizontal position x, with

�P(x) = π�

�0

(
x

l/2
+ 1

2

)
, (27)

where � = BA is the flux through a moiré cell, A = √
3 l2/2

is the moiré cell area, and �0 = h/e. In this gauge, no Peierls
phase is accumulated along horizontal links. This is illustrated
in Fig. 7(a). We introduce the in-plane electric field in the
network model via the dynamical phase [40] with the substi-
tution E → E − V (x), where V (x) = eE (x − l/4). Note that
the total phase after propagation, e.g., along a diagonal link,

1

h̄v

∫
dsV = 2

h̄v

∫ x0+l/2

x0

dx V (x) = 2πx0

l/2

V0

El
, (28)

with V0 = eE l/2, is the same for the staircase potential

V (x) = V0

∑
n

n[θ (x − nl/2) − θ (x − (n + 1)l/2)], (29)

as shown in Fig. 7(b).
We want to emphasize that both the magnetic and the

in-plane electric field break the symmetries of the triangular
network, i.e., the former breaks time-reversal symmetry and
the latter breaks rotation symmetry. Hence, there are fewer
constraints on the S matrix in general. We therefore consider
the regime where the magnetic length is large compared to the
dimensions of the scattering region. We further assume that
the variation of the potential in the scattering region is small
on the scale of the confinement energy. In this regime, we
expect that the symmetries are conserved locally, such that the
S matrix approximately maintains its form dictated by C3 and
C2T symmetry. At minimal twists θ ∼ 0.1◦, the diameter of
the scattering region is a fraction α(θ ) � 1 of the moiré length
l due to lattice relaxation [14,15,39]. Hence, our assumption is
reasonable for lB > αl , where lB is the magnetic length, which
is equivalent to �/�0 < α−2, as well as V0/El < α−1. Note
that it is still possible that the S matrix gains an x dependence
due to V (x). We do not consider such a dependence in this
work.
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FIG. 8. Four-terminal setup with width W = √
3Ml and length

L = Nl , shown here for M = 2.

A. Four-terminal setup

We calculate the transmission functions in a four-terminal
setup with length L = Nl and width M = √

3Ml , which is
shown in Fig. 8. Hence, we need to calculate the total S
matrix of the open system. To this end, we divide the network
along the x direction in 2N + 1 transverse slices, labeled by
n = 1, . . . , 2N + 1. If each node is equivalent, odd (even)
numbered slices always have S matrix S1 (S2), as illustrated in
Fig. 8. These S matrices are explicitly given in Appendix C.
Hence, the total S matrix can be written as

S = S1 × S2 × · · · × S1 × S2 × S1︸ ︷︷ ︸
2N+1 factors

, (30)

where the operation × refers to combining S matrices and
which is explicitly defined in Appendix C. The total S matrix
then becomes

4M 4M + 2 2N 2N

S =

⎛
⎜⎜⎜⎝

rL tLR tLU tLD

tRL rR tRU tRD

tUL tUR rU tUD

tDL tDR tDU rD

⎞
⎟⎟⎟⎠

4M + 2

4M

2N

2N

, (31)

where tαβ are matrices that contain scattering amplitudes from
lead β to lead α with rα = tαα , and where the labels L, R, U ,
and D correspond to the left, right, up, and down leads; see
Fig. 8. Here, we show the number of rows and columns above
and on the right side of the matrix, respectively. Note that
Eq. (31) gives the S matrix for one valley, and that SK (�) =
[SK ′ (−�)]t . The transmission functions then become

Tαβ (�) =
∑

τ=K,K ′
Tr(t†

αβtαβ )τ = Tβα (−�), (32)

where the transmission of different valleys is generally not
equal in the four-terminal setup. Remember that the total net-
work (disregarding spin) consists of two decoupled networks,
one for each valley, related by time reversal.

In the Landauer-Büttiker formalism, the current at lead α

is given in linear response by [41,42]

Iα =
∑

β

Gαβ (Vα − Vβ ), (33)

where Vα is the voltage at lead α and

Gαβ = 2e2

h

∫
dE Tαβ

(
−∂ f0

∂E

)
T →0→ 2e2

h
Tαβ (EF ), (34)

where f0 is the Fermi-Dirac distribution, EF is the Fermi level,
and α, β = L, R,U, D. We then determine the longitudinal
conductances Gxx and Gyy, as well as the transverse responses
Gxy and Gyx from Eq. (33) for the case in which a current
is applied between opposite leads (IR = −IL and IU = −ID).
More details can be found in Appendix C.

Finally, we briefly address the symmetry constraints on the
conductivity tensor σ . The Onsager reciprocal relations are
given by σi j (�) = σ ji(−�) (i, j = x, y) or σ (�) = σ (−�)t

such that σ is symmetric when time-reversal symmetry is
preserved. In addition, for the bulk network, C3 symmetry
implies σ = R(2π/3)σR(−2π/3) such that σxx = σyy and
σxy = −σyx in the absence of an in-plane electric field. The
latter also hold within a single valley as C3 conserves the
valley. In general, we can write σxy/yx = σS ± σH , where σH =
(σxy − σyx )/2 is the Hall response and σS = (σxy + σyx )/2.
While the Hall response σH vanishes in the presence of time-
reversal symmetry, the symmetric (Drude) part σS can be finite
even when time-reversal symmetry is preserved in the absence
of rotation symmetry [43,44]. Since the four-terminal setup
breaks C3 symmetry, we find that σS is generally nonzero in
the coordinate system of Fig. 8. Furthermore, for a given value
of σS one can always find new coordinates (x′, y′)t = O(x, y)t

with OOt = 1 such that σS → 0, while σH → det O σH trans-
forms as a pseudoscalar.

B. Chiral zigzag regime

In the chiral ZZ regime, different ZZ branches are de-
coupled (φ = � = 0) and the network corresponds to three
decoupled quasi-1D systems (for each valley and spin). We
show the longitudinal conductance in this regime in Fig. 9 as
a function of the magnetic flux through a moiré cell � and
the potential step height V0. We find Aharonov-Bohm (A-B)
resonances that are split in the presence of an in-plane electric
field. Since each ZZ branch propagates in a different direction,
they accumulate a different phase in the potential V (x), while
the phase due to the magnetic field is the same for every
branch. Hence, A-B resonances originating from different ZZ
branches are affected differently by the in-plane electric field.
We demonstrate this explicitly for a small system for which
the transmission can be calculated analytically. Because the
ZZ branches are decoupled, the total transmission function
can be written as T = T1 + T2 + T3, where Tj is the trans-
mission of the ZZ branch that propagates in the l j direction
( j = 1, 2, 3).

Consider a network strip of length L = 3l/2 and infinite
width. The amplitudes of Feynman paths for the l1 branch,
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FIG. 9. Zero-temperature conductance Gxx and Gyy of the four-
terminal setup with N = M = 10 as a function of the magnetic flux
� per moiré cell and the slope of the scalar potential V (x) = 2V0x/l .
Here, G0 = 4e2/h and the scattering parameters are φ = � = 0 and
Pf 1 = Pf 2 = 0.4.

illustrated in Fig. 10(a), are given up to an overall phase by

A1 = f 4, (35)

A2 = f 4(8Pd f ) cos

[
π

(
�

�0
+ 3V0

El

)]
, (36)

...

An+1 = f 4(8Pd f )n cosn

[
π

(
�

�0
+ 3V0

El

)]
, (37)

where the index labels the path length 3nl , such that per
transverse unit cell

T1(V0) =
∞∑

n=1

|An|2 (38)

= P4
f

1 − 4(1 − Pf )2Pf cos2
[
π

(
�
�0

+ 3V0
El

)] , (39)

FIG. 10. Network strip of length L = 3l/2 and infinite width,
where we show the amplitudes of some of the shortest Feynman paths
in the chiral zigzag regime (φ = � = 0) for the l1 (a), l2 (b), and l3

(c) zigzag branches.

and T2(V0) = T1(−V0); see Fig. 10(b). Also, T3 = 2 since
there are two incoming modes per transverse unit cell that
belong to the l3 branch, which are always transmitted as they
are chiral in the transport direction. The total transmission
becomes

T = 2 + T1(V0) + T1(−V0), (40)

which is independent of energy. This follows from the fact
that interfering paths in the chiral ZZ regime always have
the same length, and therefore the dynamical phase enters
as an overall phase factor in the amplitudes. In turn, this
implies that the A-B resonances are not smeared out at finite
temperatures [32,45]; see Eq. (34).

We see that the potential enters in the transmission through
�/�0 → �/�0 ± 3V0/El , which also holds in larger systems
for an arbitrary Feynman path. The resonance condition is
thus given by

�

�0
± 3V0

El
= n

m
, (41)

with n and m �= 0 coprime integers and where the + (−)
sign corresponds to the l1 (l2) ZZ branch. Hence, an in-plane
electric field separates the A-B resonances of different ZZ
modes. This gives rise to the fractal pattern in the conduc-
tance shown in Fig. 9. Moreover, along any resonant path in
the (�0,V0) plane, there are additional resonances when the
resonance conditions of different ZZ branches are satisfied
simultaneously.

In the four-terminal setup, Gxx and Gyy also display broad
antiresonances and resonances corresponding to the dark
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FIG. 11. (a) Hofstadter butterfly for V0 = 0, φ = 1, and Pf 1 = Pf 2 = � = 0. (b) Longitudinal conductance and (c) Hall conductance for
the four-terminal setup with N = M = 10, for the same scattering parameters as in (a) with G0 = 4e2/h.

and bright vertical bands in Fig. 9, respectively, that are
independent of V0. These are due to the l3 ZZ modes, which
propagate along the x direction of the four-terminal setup
shown in Fig. 8. For this ZZ branch, the relative phase of inter-
fering paths is unaffected by the potential V (x). We illustrate
this in Fig. 10(c), where we show a long network strip with
width W = √

3l . Here, the amplitudes of the three shortest
paths for transmission in the y direction of the l3 branch are

B1 = (− f ∗)3, (42)

B2 = (− f ∗)38Pd cos

(
π

�

�0

)
, (43)

B3 = (− f ∗)34Pd

[
16Pd cos2

(
π

�

�0

)
− 1

]
, (44)

up to overall phases. Hence, the resonances are independent of
V0, giving rise to the background in Gyy. The antiresonances
seen in Gxx are understood in the same way, as some of the
l3 ZZ modes that contribute a constant transmission in the x
direction can now also transmit to the up and down leads.

From these results, we can make some predictions of
magnetotransport in the ZZ regime at a potential hill that
varies slowly on the moiré scale. Initially, the increase of the
potential gives rise to resonances along lines in the (�,V0)
plane given by Eq. (41). Resonant paths have either a positive
or negative slope, depending on their respective ZZ branch.
However, at the other end of the barrier, the sign of V0 is
changed. Therefore, resonances across the whole barrier ap-
pear only when two resonant paths of opposite slope intersect,
which occurs only for rational numbers(

�

�0
,

3V0

El

)
=

(
n1

m1
,

n2

m2

)
. (45)

Finally, we find that the total transverse response Gxy =
(GS + GH )/2 vanishes in the ZZ regime. Within a single
valley, the Hall response GH vanishes while the symmetric
transverse response GS is nonzero in the presence of an in-
plane electric field but opposite in each valley. This is allowed
since both the four-terminal setup and the potential V (x) break
C3 symmetry.

C. Percolating regime

When different zigzag branches become coupled (φ �= 0 or
� �= 0), the network corresponds to a true two-dimensional
percolating system. In this case, the presence of a perpendicu-
lar magnetic field gives rise to network Landau levels at small
�/�0 and Hofstadter physics when �/�0 ∼ 1, where

B ≈ 24�

�0
(θ◦)2 T, (46)

such that the Hofstadter regime is experimentally accessible
for minimal twist angles θ ∼ 0.1◦. For simplicity, we only
consider the case without an in-plane electric field in this
section (V0 = 0).

In Figs. 11(a) and 12(a), we show the magnetic network
bands at zero momentum, i.e., the Hofstadter butterfly (see
Appendix B). The case shown in Fig. 11 corresponds to a
gapped network, which requires π/6 � φ � π/2 without for-
ward scattering [46]. Note that there are two bands of states
with opposite spectral flow, indicative of a nontrivial topologi-
cal phase [47,48]. Indeed, the two-channel triangular network
in the presence of C2T symmetry hosts a valley anomalous
Floquet insulator [46]. When the network is metallic at zero
flux, several magnetic gaps develop at finite flux, as shown
in Fig. 12. If the Fermi level lies in the magnetic gap, we
expect a vanishing longitudinal response and a quantized Hall
response. This is shown in Figs. 11(b) and 11(c) for the
gapped network, and in Figs. 12(b) and 12(c) for weakly
coupled ZZ branches. Note that the Hofstadter pattern in the
response matches well to the magnetic bands. However, as
we consider a finite system, the Hall conductance GH is not
perfectly quantized. Indeed, due to tunneling processes the
longitudinal conductance does not vanish completely in the
magnetic gaps. Such finite-size effects also limit the resolution
of the Hofstadter pattern.

Finally, we address the temperature dependence of the
conductance, which is shown in Fig. 13 for the same scat-
tering parameters as in Fig. 12. As we mentioned before,
the A-B oscillations due to chiral zigzag processes are due
to interferences between paths that accumulate the same dy-
namical phase, while contributions from scattering between
different zigzag branches do accumulate a relative phase.
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FIG. 12. (a) Hofstadter butterfly for V0 = 0, φ = 0.5, Pf 1 = Pf 2 = 0.3, and � = 0. (b) Longitudinal and (c) Hall conductance for the
four-terminal setup with N = M = 20, for the same scattering parameters as in (a) with G0 = 4e2/h.

Hence the latter are suppressed at finite temperatures due
to averaging over dynamical phases, which is demonstrated
in Fig. 13(a), where we introduced a network temperature
scale Tl = kB/El ≈ 3400(θ◦) K. On the other hand, the Hall
response shown in Fig. 13(b) is always suppressed with tem-
perature since processes giving rise to the A-B oscillations do
not contribute to the Hall response. At this point, we would
like to point out some similarities to mesoscopic A-B rings.
Similar to the network, one can find two kinds of interferences
in A-B rings, namely those between paths accumulating the
same or a different dynamical phase [49–51]. The latter give
rise to so-called universal conductance fluctuations, which
are sensitive to system parameters such as the electron den-
sity. In contrast, the former are due to time-reversed paths,
and their contributions survive ensemble averaging [52]. In
the network, however, contributions independent of the dy-

FIG. 13. Temperature dependence of the magnetoconductance.
(a), (c) Longitudinal response as a function of the magnetic flux �

per moiré cell for EF /El = 0.1 [horizontal dashed line in Fig. 12(b)]
for the one- and two-channel network, respectively, with Tl ≈
3400(θ ◦) K. Network parameters correspond to Figs. 12 and 14. For
visibility, the curves are shifted by increments of 0.6 with increasing
temperature. (b),(d) Hall response as a function of the Fermi energy
for B = 4(θ◦)−2 T [vertical dashed line in Fig. 12(c)].

namical phase do not correspond to interference between
time-reversed paths because they occur within a single valley.
In this respect, the A-B physics of the network is less robust
since irregularities of the lattice or the electron density can
locally alter the dynamical phase [32].

The one-channel model exhibits a similar phenomenology,
as shown in Figs. 13(c), 13(d), and 14. At temperatures T�Tl ,
all possible periods are present, but as the temperature is
increased, only contributions independent of the dynamical
phase survive. This gives rise to a change in periodicity from
2�0 to �0 as the temperature is increased. There are also
some differences in comparison with the two-channel case.
First, the oscillations in the longitudinal conductance do not
appear on a constant background, and the main periodicity
at zero temperature always corresponds to two flux quanta
per moiré cell, as opposed to one flux quantum in the chi-
ral zigzag regime. Second, the energy bands obtained with
the one-channel theory do not reproduce microscopic band-
structure calculations [31,33]. In contrast, the two-channel
theory reproduces the energy dispersion and predicts robust
A-B oscillations in the longitudinal response. Hence, we be-
lieve that the observed A-B oscillations in the experiment of
Ref. [25] can be understood in terms of scattering between
parallel zigzag channels. Moreover, while the Hall response
vanishes in the chiral zigzag regime, a finite Hall response is
obtained when different zigzag branches are weakly coupled.
At the same time, the A-B oscillations persist and tend to
dominate at sufficiently high temperatures.

IV. CONCLUSIONS

We constructed a two-channel network model for the net-
work of valley Hall states that emerges in minimally twisted
bilayer graphene in the presence of an interlayer bias. To this
end, we constrained the S matrix of a single scattering node
with the symmetries of the bilayer system. In the absence of
forward scattering, we find that the model is characterized
by a single scattering parameter, given by the relative phase
shift that is acquired after deflections at a scattering node.
This parameter tunes the network between pseudo-Landau
levels and chiral zigzag modes, such that both phenomena are
captured by a single network theory. We proceeded to include
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FIG. 14. (a) Hofstadter butterfly of the one-channel triangular network with C2T symmetry for Pf = 0.7. (b) Longitudinal and (c) Hall
response for the four-terminal setup with N = 30 and M = 60, for the same parameters as in (a) with G0 = 4e2/h.

forward scattering, and we studied how additional scattering
processes affect the chiral zigzag modes. We find that there
are two regimes, depending on the couplings between zigzag
modes. In the chiral zigzag regime, only parallel zigzag modes
are coupled, such that the network effectively decouples into
sets of quasi-one-dimensional systems. On the other hand,
scattering between zigzag modes that propagate in different
directions gives rise to a two-dimensional percolating net-
work.

Subsequently, we used the network model to study elec-
tronic transport in the presence of a perpendicular magnetic
field for a four-terminal setup. In the zigzag regime, we find
that forward scattering gives rise to robust Aharonov-Bohm
oscillations in the longitudinal conductance, while the Hall
response vanishes. We also investigated the effect of a uniform
in-plane electric field in this regime. Surprisingly, we find that
the electric field leads to exactly the same oscillations at zero
magnetic field. Moreover, when both the magnetic and electric
field are present, the Aharonov-Bohm resonances of different
chiral zigzag modes can be separated. Hence, this effect could
be a further confirmation of the existence of chiral zigzag
modes in the network. To obtain a finite Hall response, we
introduced a weak coupling between different zigzag modes.
In this case, the network supports Hofstadter physics at ex-
perimentally accessible magnetic fields. Furthermore, when
the coupling between the different zigzag branches is not
too strong, the Aharonov-Bohm resonances survive and are
expected to dominate at finite temperatures.

To conclude, we demonstrated how one can construct a
scattering model for the topological network that emerges in
minimally twisted bilayer graphene under an interlayer bias,
using the symmetries of the system. We then performed four-
terminal transport calculations with this network model. Our
results are consistent with previous transport experiments, and
they suggest possible new experiments to further probe the
nature of the topological network in minimally twisted bilayer
graphene.
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APPENDIX A: GENERAL SCATTERING MATRIX

We first consider the one-channel case. We construct in-
coming modes in a single valley that are angular momentum
Lz eigenstates. These modes form an irreducible representa-
tion of the C3 group,

am = 1√
3

(a1 + ηma2 + η−ma3), (A1)

with η = e−i2π/3, where m = 0,± corresponds to the Lz

eigenvalue. They are thus eigenstates of C3 (a1 → a2 →
a3 → a1) with e−i 2π

3 Lz/h̄am = ηmam. Since the angular mo-
mentum is conserved, we have

⎛
⎜⎝

b+
b0

b−

⎞
⎟⎠ =

⎛
⎜⎝

eiξ+ 0 0

0 eiξ0 0

0 0 eiξ−

⎞
⎟⎠

︸ ︷︷ ︸
S

⎛
⎜⎝

a+
a0

a−

⎞
⎟⎠, (A2)

with ξm real. In the original basis, S = V †SV with

V = 1√
3

⎛
⎜⎝

1 η∗ η

1 1 1

1 η η∗

⎞
⎟⎠. (A3)

If in addition C2 symmetry is present, the eigenstates of the
full S matrix, including both valleys, are given by

a(±)
m = 1√

2
(am ± a′

m), (A4)
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where the prime indicates the other valley, and they transform properly under both C2 and C3. In this basis, we thus have⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(+)
+

b(+)
0

b(+)
−

b(−)
+

b(−)
0

b(−)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiξ (+)
+ 0 0 0 0 0

0 eiξ (+)
0 0 0 0 0

0 0 eiξ (+)
− 0 0 0

0 0 0 eiξ (−)
+ 0 0

0 0 0 0 eiξ (−)
0 0

0 0 0 0 0 eiξ (−)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(+)
+

a(+)
0

a(+)
−

a(−)
+

a(−)
0

a(−)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

where the valleys are decoupled if both eigenstates acquire the
same phase shift ξ (+)

m = ξ (−)
m . Indeed,

bm = 1√
2

(b(+)
m + b(−)

m ) (A6)

= eiξ (+)
m + eiξ (−)

m

2
am + eiξ (+)

m − eiξ (−)
m

2
a′

m. (A7)

The S matrix in the original basis is now obtained with the
transformation

Q = 1√
2

(
V +V

V −V

)
, (A8)

giving S = S ′.
Finally, we consider time-reversal symmetry. Time reversal

flips the valley and Lz, and exchanges incoming and outgoing
modes:

am → (b′
−m)∗, bm → (a′

−m)∗. (A9)

We find the following condition on the S matrix in the angular
momentum basis,

S = PSt P, (A10)

where the underline denotes the total S matrix containing both
valleys, and

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

0 1 0

1 0 0

0 0 −1

0 −1 0

−1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

with P2 = 1 and which implies ξ
(±)
+ = ξ

(±)
− . Moreover, in the

original basis, we have

S = (Q†PQ)[(Qt Q)†St (Qt Q)](Q†PQ), (A12)

where (Qt Q)†St (Qt Q) = S . This yields

s f = s′
f , sr = s′

l , sl = s′
r . (A13)

When both C2 and T are present, we conclude that the S
matrix for the single-channel network has one real parameter
up to a global phase.

We generalize this approach to k channels per link. The S
matrix in the Lz basis now takes the form

S = U+(k) ⊕ U0(k) ⊕ U−(k), (A14)

where Um(k) is a unitary matrix of dimension k, giving 3k2

real parameters. The U matrices describe scattering processes
between channels with the same angular momentum. Simi-
larly as before, the unitary matrices are equal for the even
and odd C2 states in the absence of intervalley coupling, while
T symmetry implies U+(k) = U−(k)t and U0(k) = U0(k)t . If
C2T is conserved, there are [k2 − k(k − 1)/2] + k2 = k(3k +
1)/2 real parameters. For the network in mTBG (k = 2) there
are six parameters (not including a global phase), and an
explicit expression can be obtained with

U (2) = eiϕ/2

(
eiφ1 cos θ eiφ2 sin θ

−e−iφ2 sin θ e−iφ1 cos θ

)
, (A15)

where φ2 = π/2 for U0.

APPENDIX B: MAGNETIC NETWORK BANDS
AND HOFSTADTER BUTTERFLY

In the Landau gauge A = Bxey, the commensuration con-
dition is obtained by demanding that the Peierls phase returns
to itself after a translation x → x + ql , where q is a positive
integer. We find

π�

�0
2q = 2π p ⇒ �

�0
= p

q
, (B1)

where p is an integer and where all possible cases are obtained
by taking p and q coprime. Thus, the magnetic unit cell has
dimensions ql × √

3l , which is illustrated in Fig. 15 for q = 5.
We label the amplitudes of incoming and outgoing modes in
the magnetic cell as

Aq = (a1,1, a′
1,1, . . . , a1,3, a′

1,3, . . . , a2q,3, a′
2q,3), (B2)

Bq = (b1,1, b′
1,1, . . . , b1,3, b′

1,3, . . . , b2q,3, b′
2q,3), (B3)

FIG. 15. Magnetic unit cell (dashed rectangle) of the network in
a perpendicular magnetic field for the Landau gauge A = Bey, shown
for a commensurate flux with q = 5.
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respectively, where the first index labels the scattering nodes
and the second index labels the channels, as shown in
Fig. 1(d). Here, we label the nodes by their horizontal position
x = nl/2 with n = 1, . . . , 2q. In this basis, the total S matrix
becomes

Sq = 12q ⊗ S, (B4)

where S is the S matrix for a single node, which is given in
Eq. (3), and Bq = SqAq. Incoming and outgoing modes are
also related by

e−iεAq = Mq(k,�)Bq = Mq(k,�)SqAq, (B5)

where Mq(k,�) is a 12q × 12q matrix that connects incoming
and outgoing amplitudes of different nodes. For example, we
have

a1,1 = eiεb3,1, (B6)

a1,2 = eiεe−ikxqlb2q,2, (B7)

a1,3 = eiεe−ikxql e−iky

√
3l b2q,3, (B8)

a2,1 = eiεb4,1, (B9)

a2,2 = eiεeiky

√
3l ei�P (1)b1,2, (B10)

a2,3 = eiεe−i�P (1)b1,3, (B11)

and similar for the other channel. The magnetic network bands
are then obtained by calculating the phase of the eigenvalues
of the matrix Mq(k,�)Sq. The Hofstadter butterflies shown in
Figs. 11, 12, and 14 are obtained by collecting the spectra for
different fluxes at k = 0.

APPENDIX C: FOUR-TERMINAL SETUP

Here, we give a detailed overview of the calculation of the
total S matrix for the four-terminal setup of the scattering
network as shown in Fig. 8 with length L = Nl and width
W = M

√
3l , where M, N = 1, 2, . . . . The incoming and out-

going modes at the first column of nodes in Fig. 8 are related

by (
b(1)

L

b(1)
R

)
=

(
r (1)

L t (1)
LR

t (1)
RL r (1)

R

)

S1 in Fig. 8

(
a(1)

L

a(1)
R

)
, (C1)

where a(1)
L (a(1)

R ) contain amplitudes of incoming modes at the
left-hand (right-hand) side of the first section, as shown in
Fig. 8, and similar for outgoing modes. Here, the S matrix
for the first column is given by

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r t ′

. . .
. . .

r t ′

1Nc

t r′

. . .
. . .

t r′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C2)

where any omitted entries correspond to zeros, and which
has dimension (4M + 1)Nc, where Nc is the number of chiral
channels per link. We have also defined

r =
(

0 0

sr sl

)
, t =

(
sl s f

s f sr

)
, (C3)

r′ =
(

0 sr

0 sl

)
, t ′ =

(
1 0

0 s f

)
. (C4)

The second column in Fig. 8 also contains modes of the up
and down leads. Hence, we can write⎛

⎜⎜⎜⎜⎝
b(2)

L

b(2)
R

b(2)
U

b(2)
D

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

r (2)
L t (2)

LR t (2)
LU t (2)

LD

t (2)
RL r (2)

R t (2)
RU t (2)

RD

t (2)
UL t (2)

UR r (2)
U t (2)

UD

t (2)
DL t (2)

DR t (2)
DU r (2)

D

⎞
⎟⎟⎟⎟⎠

S2 in Fig. 8

⎛
⎜⎜⎜⎜⎝

a(2)
L

a(2)
R

a(2)
U

a(2)
D

⎞
⎟⎟⎟⎟⎠, (C5)

with

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sl s f sr

r t ′

. . .
. . .

r t ′

1Nc

sr s f sl

sr sl s f

t r′

. . .
. . .

t r′

sl sr s f

s f sr sl

s f sl sr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C6)
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where again omitted entries are zero and which has dimen-
sion (4M + 3)Nc. Incoming and outgoing modes of different
columns are related by

a(n)
R = αnb(n+1)

L , a(n+1)
L = βnb(n)

R , (C7)

where for the clean network

αn = ei(ε−Vn )/2, βn = ei(ε−Vn )A((−1)n+1n�), (C8)

with ε = El/h̄v the dynamical phase, Vn = 2πV (xn)/El =
2πnV0/El is the value of the scalar potential at xn = (l/2)(n +
1/2) [Fig. 7(b)], and A(z) = 1M ⊗ [exp(−izπσz/�0) ⊗ 1Nc ]
gives the Peierls phase in the Landau gauge A = Bxey. In the
presence of smooth charge disorder, the matrices αn and βn

will also contain random phases.
The total S matrix for the first and second column is de-

noted as (S1 × S2)I. Hence, we can write⎛
⎜⎜⎜⎜⎜⎝

b(1)
L

b(2)
R

b(2)
U

b(2)
D

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

r (I)
L t (I)

LR t (I)
LU t (I)

LD

t (I)
RL r (I)

R t (I)
RU t (I)

RD

t (I)
UL t (I)

UR r (I)
U t (I)

UD

t (I)
DL t (I)

DR t (I)
DU r (I)

D

⎞
⎟⎟⎟⎟⎟⎠

(S1×S2 )I

⎛
⎜⎜⎜⎜⎜⎝

a(1)
L

a(2)
R

a(2)
U

a(2)
D

⎞
⎟⎟⎟⎟⎟⎠, (C9)

where we eliminated a(1)
R , a(2)

L , b(1)
R , and b(2)

L , giving

r (I)
L = r (1)

L + t (1)
LR α1Q(I)

2 r (2)
L β1t (1)

RL , (C10)

t (I)
LR = t (1)

LR α1Q(I)
2 t (2)

LR , (C11)

t (I)
LU = t (1)

LR α1Q(I)
2 t (2)

LU , (C12)

t (I)
LD = t (1)

LR α1Q(I)
2 t (2)

LD, (C13)

t (I)
RL = t (2)

RL β1Q(I)
1 t (1)

RL , (C14)

r (I)
R = r (2)

R + t (2)
RL β1Q(I)

1 r (1)
R α1t (2)

LR , (C15)

t (I)
RU = t (2)

RU + t (2)
RL β1Q(I)

1 r (1)
R α1t (2)

LU , (C16)

t (I)
RD = t (2)

RD + t (2)
RL β1Q(I)

1 r (1)
R α1t (2)

LD, (C17)

t (I)
UL = t (2)

ULβ1Q(I)
1 t (1)

RL , (C18)

t (I)
UR = t (2)

UR + t (2)
ULβ1Q(I)

1 r (1)
R α1t (2)

LR , (C19)

r (I)
U = r (2)

U + t (2)
ULβ1Q(I)

1 r (1)
R α1t (2)

LU , (C20)

t (I)
UD = t (2)

UD + t (2)
ULβ1Q(I)

1 r (1)
R α1t (2)

LD, (C21)

t (I)
DL = t (2)

DLβ1Q(I)
1 t (1)

RL , (C22)

t (I)
DR = t (2)

DR + t (2)
DLβ1Q(I)

1 r (1)
R α1t (2)

LR , (C23)

t (I)
DU = t (2)

DU + t (2)
DLβ1Q(I)

1 r (1)
R α1t (2)

LU , (C24)

r (I)
D = r (2)

D + t (2)
DLβ1Q(I)

1 r (1)
R α1t (2)

LD , (C25)

with

Q(I)
1 = [

12MNc − r (1)
R α1r (2)

L β1
]−1

, (C26)

Q(I)
2 = [

1(2M+1)Nc − r (2)
L β1r (1)

R α1
]−1

. (C27)

Assuming identical scattering nodes throughout the sample,
we obtain the combined S matrix for the (2 j − 1)th and (2 j)th
column in a similar way, where j = 1, . . . , N . For example,
for the third and fourth column, we have⎛

⎜⎜⎜⎜⎜⎝

b(3)
L

b(4)
R

b(4)
U

b(4)
D

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

r (II)
L t (II)

LR t (II)
LU t (II)

LD

t (II)
RL r (II)

R t (II)
RU t (II)

RD

t (II)
UL t (II)

UR r (II)
U t (II)

UD

t (II)
DL t (II)

DR t (II)
DU r (II)

D

⎞
⎟⎟⎟⎟⎟⎠

(S1×S2 )II

⎛
⎜⎜⎜⎜⎜⎝

a(3)
L

a(4)
R

a(4)
U

a(4)
D

⎞
⎟⎟⎟⎟⎟⎠, (C28)

where the scattering matrix in Eq. (C28) contains the same ex-
pressions (C10)–(C25) with phase matrices α1, β1 → α3, β3.
If we now combine the two two-column S matrices in
Eqs. (C9) and (C28), we obtain⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1)
L

b(4)
R

b(2)
U

b(4)
U

b(2)
D

b(4)
D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rL tLR tLU,1 tLU,2 tLD,1 tLD,1

tRL rR tRU,1 tRU,2 tRD,1 tRD,1

tUL,1 tUR,1 rU,11 rU,12 tUD,11 tUD,12

tUL,2 tUR,2 rU,21 rU,22 tUD,21 tUD,22

tDL,1 tDR,1 tDU,11 tDU,12 rD,11 rD,12

tDL,2 tDR,2 tDU,21 tDU,22 rD,21 rD,22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)
L

a(4)
R

a(2)
U

a(4)
U

a(2)
D

a(4)
D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C29)

where the total S matrix for the two columns now has dimen-
sion (4M + 5)Nc. Here, we used

a(2)
R = α2b(3)

L , a(3)
L = β2b(2)

R (C30)

to obtain Eq. (C29), where

rL = r (I)
L + t (I)

LRα2Q2r (II)
L β2t (I)

RL, (C31)

tLR = t (I)
LRα2Q2t (II)

LR , (C32)

tLU,1 = t (I)
LU + t (I)

LRα2Q2r (II)
L β2t (I)

RU , (C33)

tLU,2 = t (I)
LRα2Q2t (II)

LU , (C34)

tLD,1 = t (I)
LD + t (I)

LRα2Q2r (II)
L β2t (I)

RD, (C35)

tLD,2 = t (I)
LRα2Q2t (II)

LD , (C36)

tRL = t (II)
RL β2Q1t (I)

RL, (C37)
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rR = r (II)
R + t (II)

RL β2Q1r (I)
R α2t (II)

LR , (C38)

tRU,1 = t (II)
RL β2Q1t (I)

RU , (C39)

tRU,2 = t (II)
RU + t (II)

RL β2Q1r (I)
R α2t (II)

LU , (C40)

tRD,1 = t (II)
RL β2Q1t (I)

RD, (C41)

tRD,2 = t (II)
RD + t (II)

RL β2Q1r (I)
R α2t (II)

LD , (C42)

tUL,1 = t (I)
UL + t (I)

URα2Q2r (II)
L β2t (I)

RL, (C43)

tUL,2 = t (II)
UL β2Q1t (I)

RL, (C44)

tUR,1 = t (I)
URα2Q2t (II)

LR , (C45)

tUR,2 = t (II)
UR + t (II)

UL β2Q1r (I)
R α2t (II)

LR , (C46)

rU,11 = r (I)
U + t (I)

URα2Q2r (II)
L β2t (I)

RU , (C47)

rU,12 = t (I)
URα2Q2t (II)

LU , (C48)

rU,21 = t (II)
UL β2Q1t (I)

RU , (C49)

rU,22 = r (II)
U + t (II)

UL β2Q1r (I)
R α2t (II)

LU , (C50)

tUD,11 = t (I)
UD + t (I)

URα2Q2r (II)
L β2t (I)

RD, (C51)

tUD,12 = t (I)
URα2Q2t (II)

LD , (C52)

tUD,21 = t (II)
UL β2Q1t (I)

RD, (C53)

tUD,22 = t (II)
UD + t (II)

UL β2Q1r (I)
R α2t (II)

LD , (C54)

tDL,1 = t (I)
DL + t (I)

DRα2Q2r (II)
L β2t (I)

RL, (C55)

tDL,2 = t (II)
DL β2Q1t (I)

RL, (C56)

tDR,1 = t (I)
DRα2Q2t (II)

LR , (C57)

tDR,2 = t (II)
DR + t (II)

DL β2Q1r (I)
R α2t (II)

LR , (C58)

tDU,11 = t (I)
DU + t (I)

DRα2Q2r (II)
L β2t (I)

RU , (C59)

tDU,12 = t (I)
DRα2Q2t (II)

LU , (C60)

tDU,21 = t (II)
DL β2Q1t (I)

RU , (C61)

tDU,22 = t (II)
DU + t (II)

DL β2Q1r (I)
R α2t (II)

LU , (C62)

rD,11 = r (I)
D + t (I)

DRα2Q2r (II)
L β2t (I)

RD, (C63)

rD,12 = t (I)
DRα2Q2t (II)

LD , (C64)

rD,21 = t (II)
DL β2Q1t (I)

RD, (C65)

rD,22 = r (II)
D + t (II)

DL β2Q1r (I)
R α2t (II)

LD , (C66)

with

Q1 = [
12MNc − r (I)

R α2r (II)
L β2

]−1
, (C67)

Q2 = [
1(2M+1)Nc − r (II)

L β2r (I)
R α2

]−1
. (C68)

The S matrix of the total system can therefore be obtained
by first combining pairs of sections given by S1 and S2. Then
we combine all the two-column S matrices with Eqs. (C7) for
even n, as we have illustrated for n = 2. Note that in each step,
the S matrix grows as two more incoming and outgoing modes
are added from the up and down leads. In the last step, we add
one more section given by S1, where we use

a(2N )
R = α2N b(2N+1)

L , a(2N+1)
L = β2N b(2N )

R , (C69)

such that the total S matrix of the four-terminal system has di-
mension (4M + 2N + 1)Nc. The transmission functions then
become

Tαβ (�) = Tr[t†
αβtαβ]K + Tr[t†

αβtαβ]K ′ (C70)

= T (K )
αβ (�) + T (K )

βα (−�) = Tβα (−�), (C71)

with rα = tαα , and where α, β = L, R,U, D label the leads.
Here, the transmission of valley K ′ follows from SK ′ (�) =
[SK (−�)]t . The current at each lead is given in linear response
by [41,42]

Iα =
∑

β

Gαβ (Vα − Vβ ) (C72)

with
∑

α Iα = 0, Vα is the voltage at lead α, and

Gαβ = 2e2

h

∫
dE Tαβ

(
−∂ f0

∂E

)
(C73)

is the conductance between leads β and α, with f0 the
Fermi-Dirac distribution. Since the total current has to vanish,
Eqs. (C72) are overdetermined. Therefore, we take lead R as
the reference, for example, and obtain

⎛
⎜⎝

IL

IU

ID

⎞
⎟⎠ =

⎛
⎜⎝

GLR + GLU + GLD −GLU −GLD

−GUL GUL + GUR + GUD −GUD

−GDL −GDU GDL + GDR + GDU

⎞
⎟⎠

⎛
⎜⎝

VL

VU

VD

⎞
⎟⎠. (C74)

If we now consider the case in which IL = −IR and IU = −ID, one finds [41]

IL = Gxx(VL − VR) + Gxy(VU − VD), (C75)

IU = Gyx(VL − VR) + Gyy(VU − VD), (C76)
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FIG. 16. Zero-temperature conductance Gxx and Gyy of the four-terminal setup as a function of the magnetic flux � per moiré cell and the
slope of the potential V (y) = 2V0y/l for the same parameters as Fig. 9.

where we defined the conductances

Gxx = GRL + (GDL + GUL )(GRD + GRU )

�
, (C77)

Gyy = GUD + (GLD + GRD)(GUL + GUR)

�
, (C78)

Gxy = GLDGRU − GLU GRD

�
, (C79)

Gyx = GDLGUR − GULGDR

�
, (C80)

with

�(�) = GLD + GLU + GRD + GRU (C81)

= GDL + GUL + GDR + GUR = �(−�), (C82)

since
∑

β Gβα = ∑
β Gαβ and Gαβ (�) = Gβα (−�) (α, β =

L, R,U, D).
Hence, we see that the Onsager relations Gi j (�) =

Gji(−�) (i, j = x, y) hold only if we sum up the transmission
of both valleys [Eq. (C71)]. Note that we have written the
longitudinal conductances in Eqs. (C77) and (C78) as the
sum of a direct contribution (i.e., the two-terminal part) and a
contribution that can be interpreted as a weighted probability
to transmit to the longitudinal lead via the transverse leads.

As such, the longitudinal conductance is not given by the
sum of the conductance of each valley separately, since it
also contains incoherent scattering between the valleys via the
leads. In such processes, one first transmits in one valley to a
transverse lead followed by a transmission to the longitudinal
lead in the other valley. Finally, we obtain the Hall response

GH = Gxy − Gyx

2
. (C83)

APPENDIX D: DEPENDENCE ON THE DIRECTION
OF THE ELECTRIC FIELD

To investigate the dependence on the direction of the
in-plane electric field, we also performed four-terminal calcu-
lations for a constant electric field in the y direction, as defined
in Fig. 8. This is shown in Fig. 16. We find that the resonances
in Gxx are similar to those for the electric field along the x
direction, except for the scale on the vertical axis. This is
because the valley Hall channels along diagonal links accu-
mulate a larger phase between nodes for the potential V (y) as
compared to V (x) for the same electric field strength, since
they span a larger distance in the y direction. In contrast, the
zigzag branch that propagates along the x direction is affected
differently, which is clear from the square (anti)resonance
pattern in Gyy (Gxx) as compared to the vertical lines in Fig. 9.
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