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We construct the coordinate Bethe ansatz for all eigenstates of the open spin- 1
2 XXZ chain that fulfill the

phantom roots criterion (PRC). Under the PRC, the Hilbert space splits into two invariant subspaces and there
are two sets of homogeneous Bethe ansatz equations (BAE) to characterize the subspaces in each case. We
propose two sets of vectors with chiral shocks to span the invariant subspaces and expand the corresponding
eigenstates. All the vectors are factorized and have symmetrical and simple structures. Using several simple cases
as examples, we present the core elements of our generalized coordinate Bethe ansatz method. The eigenstates
are expanded in our generating set and show clear chirality and certain symmetry properties. The bulk scattering
matrices, the reflection matrices on the two boundaries and the BAE are obtained, which demonstrates the
agreement with other approaches. Some hypotheses are formulated for the generalization of our approach.
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I. INTRODUCTION

Quantum integrable systems [1–3] play important roles
in various fields, such as low-dimensional condensed-
matter physics, quantum field theory, statistical physics, and
Yang-Mills theory. Many methods have been developed for
the analysis of integrable systems. Among them, the two
most classic ones are the coordinate Bethe ansatz and the
algebraic Bethe ansatz (ABA). The usage of the conventional
coordinate Bethe ansatz and ABA has so far been restricted to
one-dimensional integrable systems with U (1) symmetry that
guarantees the existence of some obvious reference states. For
integrable systems without U (1) symmetry, there are no ob-
vious reference states and the conventional BA fails. Several
methods including Baxter’s T -Q relation [1] and Sklyanin’s
separation of variables (SoV) method [4] have been developed
to approach this remarkable problem.

In this paper we focus on the XXZ spin- 1
2 chain with

open boundaries. The nondiagonal boundary fields break the
U (1) symmetry which makes the problem of constructing
Bethe vectors rather unusual. It was proved in Refs. [5–7]
for the boundary parameters obeying a certain constraint,
that the modified algebraic Bethe ansatz (MABA) can be
applied, and homogeneous conventional T -Q relations exist.
The eigenvalue problem of the open XXZ spin chain with
generic integrable boundary conditions was first solved via
the off-diagonal Bethe ansatz (ODBA) method [8,9]. The
Bethe-type eigenstates were then retrieved in Ref. [10] based
on the ODBA solution and a convenient SoV basis [11–13].
Although the analytical form of the Bethe state with generic or
constrained boundaries has been given, little is known about
their inner structure.

In our recent papers [14,15], we studied the eigenstates of
the open XXZ chain under the phantom roots criterion (PRC).

The PRC is equivalent to the constrained boundary condition
proposed in Refs. [5,6]. The PRC restricts the system param-
eters to a set of manifolds parametrized by an integer number
M but does not introduce any obvious symmetry, such as U (1)
symmetry. Under the PRC, the Hilbert space splits into two
invariant subspaces whose dimensions are determined by the
integer M. Two sets of factorized chiral states are selected
here to span the subspaces, respectively. In Refs. [14,15] we
constructed the phantom Bethe states in some simple cases
and analyzed their properties, such as the chirality and the
corresponding spin current.

In this paper, the coordinate Bethe ansatz method is gen-
eralized in full detail. Here we report on a formulation of
“generalized” chiral coordinate Bethe ansatz (CCBA) in an
open XXZ spin chain with nondiagonal boundary fields. We
do this on the example of the system satisfying the PRC.

Our approach inherits the core ideas of the conventional
coordinate Bethe ansatz method. Its main two features are (i)
We find that it is appropriate to use the basis vectors with
chiral shocks, instead of the usual conventional computational
basis; for this reason we also call it a chiral Bethe ansatz,
(ii) it turns out to be appropriate to enlarge the basis into a
symmetric one by including linearly dependent “auxiliary”
vectors.

The paper is organized as follows. First, we introduce
the open XXZ spin- 1

2 chain under the phantom roots condi-
tions. Two symmetrically enlarged sets of vectors are then
constructed based on which we can expand the phantom
eigenstates of the Hamiltonian. Next, we demonstrate how
the chiral coordinate Bethe ansatz works in terms of these
vectors for the M = 0–2 cases and generalize our method to
the arbitrary M case. In the last part of the main text, we
specifically study the spin helix eigenstates. Some necessary
proofs are given in the appendices.
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II. THE OPEN XXZ MODEL UNDER PHANTOM ROOTS
CONDITIONS

We study the spin- 1
2 XXZ chain with open boundary

conditions,

H =
N−1∑
n=1

hn,n+1 + h1 + hN , (1)

where

hn,n+1 = σ x
n σ x

n+1 + σ y
n σ

y
n+1 + coshη σ z

nσ z
n+1 − coshη, (2)

h1 = sinhη

sinh(α−)cosh(β−)
[cosh(θ−)σ x

1 + i sinh(θ−)σ y
1

+ cosh(α−)sinh(β−)σ z
1 ], (3)

hN = sinhη

sinh(α+)cosh(β+)
[cosh(θ+)σ x

N + i sinh(θ+)σ y
N

− cosh(α+)sinh(β+)σ z
N ], (4)

and α±, β±, θ± are boundary parameters. We parametrize
the anisotropy parameter of the exchange interaction as � ≡
coshη ≡ cosγ with η = iγ .

This model is one of the most famous integrable systems
[1,2,16,17] without U (1) symmetry. The exact solutions of
this model have been given by the ODBA method [8,9]. A
set of inhomogeneous Bethe ansatz equations (BAE) with,
at least, N Bethe roots were constructed [8–10] to solve the
eigenvalue problem, and the Bethe-type eigenstates were then
retrieved [9,10] based on the ODBA solution.

An interesting observation is that some Bethe roots in the
original inhomogeneous BAE can be chosen “phantom”, i.e.,
with an infinite value of the root and, hence, not contributing
to the energy, under some specific conditions, such as

(N − 2M − 1)η = α− + β− + α+ + β+
+ θ− − θ+ mod 2π i, (5)

where M is an integer ranging from 0 to N − 1. Under the
PRC (5), the inhomogeneous BAE can reduce to homoge-
neous ones with M or M̃ = N − 1 − M preserved finite Bethe
roots [5–7,9] and the Hilbert space splits into two invariant
subspaces G+

M and G−
M , whose dimensions are determined by

the integer M [14,15]. The PRC also serve as the compatibility
condition of the MABA method [5,18].

Under the constraint (5), the Hermiticity of Hamiltonian
(1) requires in the case |�| < 1 (the easy-plane regime),

Re[α±] = Re[θ±] = Re[η] = 0,

Im[β±] = 0 and β+ = −β−, (6)

and in the case � > 1 (the easy axis regime),

Im[α±] = Im[β±] = Im[η] = 0,

Re[θ±] = 0 and θ+ = θ− mod 2iπ. (7)

In the following we show that the two sets of homogeneous
BAE correspond to two invariant subspaces G+

M and G−
M ,

respectively, and we argue that their solutions constitute the
complete set of eigenstates and eigenvalues under the criterion
(5). In addition, we construct explicit phantom Bethe vectors
via a chiral coordinate Bethe ansatz, see below.

III. ADDITION OF EXTRA AUXILIARY VECTORS TO THE
BASES OF G±

M .

Here we explain a perhaps most important and subtle
feature of the chiral coordinate Bethe ansatz for open systems
with nondiagonal boundary fields, satisfying the phantom
roots criterion. Namely, we have two invariant subspaces
G+

M and G−
M , and the eigenvectors of H for each subspace

will be given by separate CCBA. Furthermore, the Bethe
eigenvectors will be given not as a linear combination of
independent original basis vectors but as a linear combination
of the original basis vectors plus other extra auxiliary vectors,
which are linearly dependent and are added for convenience.
Adding the extra vectors allows to symmetrize the basis and to
make the CCBA coefficients elegant and simple. Below we
recall the definition of the basis vectors and show how the
extra auxiliary vectors are constructed.

Define the following local left vectors on each site n:

φn(x) = (1,−eθ−+α−+β−+(2x−n+1)η )

≡ (1, ezn,x ), (8)

zn,x = θ− + α− + β− + (2x − n + 1)η + iπ. (9)

Here the second component of these states depends on the
position index n, and zn,x serves as a phase factor of state
φn(x). Let us introduce a set of factorized states,

〈 0, . . . , 0︸ ︷︷ ︸
m0

, n1, . . . , nk︸ ︷︷ ︸
k

, N, . . . , N︸ ︷︷ ︸
mN

|

= exp

[
η

(
NmN+

k∑
j=1

n j

)]
n1⊗

l1=1

φl1 (m0)
n2⊗

l2=n1+1

φl2 (m0+1)

· · ·
N⊗

lk+1=nk+1

φlk+1 (m0 + k),

0 < n1 < n2 < · · · < nk < N, k � 0. (10)

The structure of the states (10) is particular and is very
different from the usual computational basis of up and down
spins, used, for instance, to describe the Bethe eigenstates of
a periodic XXZ spin chain. The number m0 defines the initial
phase of the first qubit, and the phases of the subsequent
qubits increment by an amount η from site to site except at
the points n1, . . . , nk , where kinks occur. The states (10) are
conveniently graphically represented in a form of trajectories,
see Fig. 1. The nature of any state even in the presence of
kinks is chiral. The full set of Bethe vectors (all eigenstates
of the Hamiltonian) will be expressed by a chiral set (10) as
explained below.

It was proved in Ref. [14] that the bra vectors (10) with

m0 + k + mN = M,

m0 = 0, 1, . . . , M, mN = 0, 1, (11)

are all independent and form a basis of the invariant subspace
G+

M with the dimension dim G+
M = d+(M ) = ∑M

n=0

(N
n

)
. The

Hamiltonian H has d+(M ) left eigenvectors which are linear
combinations of the G+

M basis states. The G+
M basis (11) con-

sists of factorized states with 0 kink, 1 kink, etc. · · · up to
M kinks, see Fig. 1, upper panel.
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FIG. 1. Visualization of the invariant subspace G+
M (upper panel)

and of the symmetrically enlarged G+
M with auxiliary states added

(lower panel) for N = 9, M = 5 and showing the phase factor
zn,x from (8) versus site number n. Any state (10) corresponds to
some directed path (backward moves are forbidden). Upper panel:
Illustration of the linearly independent states (11) that realize a basis
of G+

M . Directed paths start at one of M + 1 points (filled black
circles) on site n = 1 and end at one of two points indicated by filled
circles at n = N . The allowed paths representing the basis states
(11) lie entirely inside the filled region, including the boundaries.
The black and red trajectories are examples of two states from (11):
〈1, 3, 4, 5, 8| and 〈0, 0, 3, 8, N |, respectively. Lower panel: Illustra-
tion of the full set of states entering the chiral coordinate Bethe
ansatz (77). Directed paths start at one of M + 1 filled circles on
site n = 1 and end at one of M + 1 filled circles at n = N . The blue
line represents a state 〈4, N, N, N, N | which belongs to the extra set
of auxiliary states (12), whereas the black and the red line “belong”
to the original set of basis states, see the upper panel.

For our purpose it is convenient to enlarge the basis by
adding to (11) extra chiral states of the form (10) with

m0 + k + mN = M,

m0 = 0, 1, . . . , M, mN = 2, . . . M, (12)

rendering the enlarged set of states,

m0, mN = 0, 1, . . . , M, m0 + k + mN = M, (13)

completely symmetric, see Fig. 1, lower panel. For M = 0 and
M = 1, the basis vector set (11) coincides with the enlarged
set (13). For M > 1 the number of auxiliary vectors in-
creases monotonically with M. For M = 2, 3, 4, the number of

auxiliary vectors is 1, N + 1, N2+N+4
2 , respectively. For ar-

bitrary M � 2, the number of additional vectors can be
calculated on combinatorial grounds and is equal to

dadd
+ (M ) =

M−2∑
j=0

j∑
k=0

(
N − 1

k

)
. (14)

It can be proved (see Appendix B) that all auxiliary vectors
are linear combinations of the d+(M ) basis vectors. The full
generating set (13) contains in total,

d total
+ (M ) =

M∑
j=0

j∑
k=0

(
N − 1

k

)
, (15)

vectors. Each vector from the set corresponds to a directed
path in Fig. 1, lower panel.

Note that in the G+
M case, we deal with the bra vectors. In

the following we show how to construct the auxiliary vectors
for the ket G−

M basis.

Adding auxiliary ket vectors to the basis of G−
M

Analogously, introduce the local ket states,

φ̃n(x) =
(

1
e−θ−−α−−β−+(2x−n+1)η

)
, (16)

and construct factorized states out of them,

| 0, . . . , 0︸ ︷︷ ︸
m0

, n1, . . . , nk︸ ︷︷ ︸
k

, N, . . . , N︸ ︷︷ ︸
mN

〉〉,

obtainable from bra vectors (10) via the replacement φ → φ̃.
Analogousy to (11), the above ket states with

m0 + k + mN = M̃,

m0 = 0, 1, . . . , M̃, mN = 0, 1, (17)

where M̃ = N − 1 − M, form a basis of the invariant sub-
space G−

M [14]. Adding additional ket states in analogy to (12),
we get another fully symmetric set of ket vectors with

m0, mN = 0, 1, . . . , M̃, m0 + k + mN = M̃, (18)

and their total number is

d total
− (M ) =

M̃∑
j=0

j∑
k=0

(
N − 1

k

)
. (19)

IV. PHANTOM BETHE EIGENSTATES IN G+
M FOR M = 0–2

A. M = 0 case

When M = 0, the invariant subspace G+
0 consists of just

one state, a spin-helix state (SHS) [19–21],

〈�0| = φ1(0) · · · φN (0), (20)

with

〈�0|H = 〈�0|E0, (21)

E0 = −sinh(η)[coth(α−) + tanh(β−)

+ coth(α+) + tanh(β+)], (22)
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see Refs. [14,15]. In the factorized state 〈�0|, the qubit phase
grows linearly, implying underlying chiral properties of the
state. Indeed, for a Hermitian Hamiltonian in the easy-plane
regime, the SHS 〈�0| for β± = 0 carries the magnetic current,

jz = 〈�0|jz
k|�0〉

〈�0|�0〉 = 2 sin γ , (23)

jz
k = 2

(
σ x

k σ
y
k+1 − σ

y
k σ x

k+1

)
.

For a Hermitian system in the easy axis regime (7), the SHS
〈�0| carries no magnetic current, i.e., jz = 0. Remarkably,
the SHS (20) has been produced experimentally in a system
of cold atoms where the z-axis anisotropy of the Heisenberg
interaction can be controlled by Feshbach resonance [22,23].

B. M = 1 case

Define the following factorized states:

〈n| = enηφ1(0) · · · φn(0)φn+1(1) · · · φN (1). (24)

The states 〈0|, 〈1|, . . . , 〈N | span the subspace G+
1 [14]. Con-

sequently, there exist N + 1 Bethe eigenstates which are linear
combinations of the basis vectors,

〈
�

(α)
1

∣∣ =
N∑

n=0

〈n| f (α)
n , α = 0, 1, . . . , N, (25)

where the greek upper index α enumerates the states of the
G+

1 multiplet.
Define the boundary parameters,

a± = sinh(α± + η)

sinh(α±)
, b± = cosh(β± + η)

cosh(β±)
. (26)

The coefficients { f (α)
n } can be written in the following coordi-

nate Bethe ansatz form [14]

f (α)
n = gn(A(α)

+ einp(α) + A(α)
− e−inp(α) ), 0 � n � N,

g0 = 1

1 − a−b−
, gN = 1

1 − a+b+
, (27)

g1 = g2 = · · · = gN−1 = 1.

Note that writing f (α)
n as a product of the listed gn times a

second factor allows this one to be a sum of plane waves for
all sites n even at the ends with n = 0 and N . The quasimo-
mentum p(α) is subject to Eq. (31) which is the consistency
condition for the following relations for the amplitudes A(α)

± :

A(α)
− = SL[p(α)]A(α)

+ ,

A(α)
− = e2iN p(α)SR[p(α)]A(α)

+ , (28)

where SL(p) and SR(p) are the reflection matrices on the left
and right boundaries [24], respectively, with

SL(p) = −1 − a−eip

a− − eip

1 − b−eip

b− − eip
, (29)

SR(p) = − a+ − eip

1 − a+eip

b+ − eip

1 − b+eip
. (30)

The compatibility condition of Eq. (28) is exactly the BAE
for M = 1,

e2iN p
∏
σ=±

aσ − eip

1 − aσ eip

bσ − eip

1 − bσ eip
= 1. (31)

The solutions of BAE (31) are denoted by p(α) with α =
0, . . . , N . The corresponding eigenvalue in terms of the Bethe
root p(α) is given by

E (α) = 4 cos[p(α)] − 4� + E0. (32)

For a Hermitian system, the single quasimomentum p(α) can
be real or purely imaginary. It has been proved in Ref. [14] that
the invariant subspaces G+

1 have additional internal structure
when, at least, one of the additional constraints a±b± = 1 is
satisfied.

Once the eigenstates are constructed, physical quantities
can be calculated, e.g., the expectation value of the spin
current. A qualitative analysis yields that the spin currents in
the single-particle multiplet can differ from the SHS current
jz
SHS = 2 sin γ at most by O( 1

N ) corrections in the easy-plane
regime. Consider a Hermitian Hamiltonian in the easy-plane
regime with the boundary parameters,

β+ = β− = 0, α± = −iγ ± i
π

2
mod 2π i,

θ− − θ+ = i(N − 1)γ mod 2π i. (33)

The explicit expressions of the current in the N + 1 eigen-
states are [14]

jz(α) =
〈
�

(α)
1

∣∣jz
l

∣∣� (α)
1

〉〈
�

(α)
1

∣∣� (α)
1

〉
= 2 (sin γ )

(
1 − 4

N

1 − cos2[p(α)]

1 + �2 − 2� cos[p(α)]

)
,

(34)

p(α) = πα

N
, α = 0, . . . , N.

It can be seen from the above that all phantom Bethe states
are current carrying states: The upper and lower bounds for
the current of the multiplet are of order of the SHS current
jSHS,

jSHS

(
1 − 4

N

)
� jz(α) � jSHS = 2 sin γ . (35)

The upper bound is saturated; indeed jz(0) = jz(N ) = jSHS

since the respective Bethe states 〈� (α)
1 | with α = 0, N are, in

fact, spin-helix states, differing by an initial phase. The lower
bound is approached most closely for p(α) � γ � p(α + 1),
and it can be saturated if an α satisfies p(α) = γ , i.e. for some
root of unity anisotropies.

In the following we omit the upper index α enumerating
the physical BAE solutions for brevity of notation.

C. M = 2 case

For M = 2, we follow the same procedure to construct
the Bethe eigenstates, via a generating set (13), i.e., vectors
〈0, 0|, 〈0, 1|, . . . , 〈0, N |, . . . , 〈N, N |.
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Using convenient notations,

w± = a± + b±, (36)

the action of H on set 〈n, m| is given by

〈0, 0|H = (4� a−b− − w− − w+)〈0, 0| + 4� (w− − 2� a−b−)〈0, 1|, (37)

〈0, 1|H = (w− − w+ − 4� a−b−)〈0, 1| + 2〈0, 2| + 2 a−b−〈0, 0|, (38)

〈0, n|H = (w− − w+ − 4�)〈0, n| + 2〈0, n − 1| + 2〈0, n + 1| + 2(1 − a−b−)〈1, n|, 2 � n � N − 1, (39)

〈0, N |H = (w− + w+ − 4�)〈0, N | + 2(1 − a−b−)〈1, N | + 2(1 − a+b+)〈0, N − 1|, (40)

〈n, m|H = −(w− + w+ + 4�)〈n, m| + 2〈n − 1, m| + 2〈n + 1, m|
+2〈n, m + 1| + 2〈n, m − 1|, 1 � n < m � N − 1, m − n > 1, (41)

〈n, n + 1|H = −(w− + w+)〈n, n + 1| + 2〈n − 1, n + 1| + 2〈n, n + 2|, 1 � n � N − 2, (42)

〈n, N |H = (w+ − w− − 4�)〈n, N | + 2〈n − 1, N | + 2〈n + 1, N | + 2(1 − a+b+)〈n, N − 1|, 1 � n � N − 2, (43)

〈N − 1, N |H = (w+ − w− − 4�a+b+)〈N − 1, N | + 2〈N − 2, N | + 2a+b+〈N, N |, (44)

〈N, N |H = (4�a+b+ − w+ − w−)〈N, N | + 4�(w+ − 2�a+b+)〈N − 1, N |. (45)

Obviously, the factorized states 〈n, m| span an invariant subspace G+
2 of H . The respective phantom Bethe eigenstates belonging

to G+
2 can be written as a linear combination of 〈n, m| as

〈�2| =
∑

0�n1<n2�N

〈n1, n2| fn1,n2 +
∑

n=0,N

〈n, n| fn,n, (46)

with yet unknown eigenvalue E . Later, for convenience, we extend the notation to a double sum over 0 � n1 � n2 � N with,
however, fn,n ≡ 0 for n �= 0, N .

We write E as

E = 2� − 8� + E0, (47)

where E0 is defined in Eq. (22). The eigenvalue equation 〈�2|H = 〈�2|E gives rise to the following recursive identities for the
coefficients fn,m,

(� − 2�δn+1,m) fn,m = fn+1,m + fn−1,m + fn,m+1 + fn,m−1, 2 � n < m � N − 2, (48)

(� − 2�δn,N−2) fn,N−1 = fn+1,N−1 + fn−1,N−1 + fn,N−2 + (1 − a+b+) fn,N , 2 � n � N − 2, (49)

(� − 2�δ2,m) f1,m = f1,m+1 + f1,m−1 + f2,m + (1 − a−b−) f0,m, 2 � m � N − 2, (50)

� f1,N−1 = f2,N−1 + f1,N−2 + (1 − a+b+) f1,N + (1 − a−b−) f0,N−1, (51)

(� − w−) f0,m = f0,m−1 + f0,m+1 + f1,m, 2 � m � N − 2, (52)

(� − w+) fn,N = fn−1,N + fn+1,N + fn,N−1, 2 � n � N − 2, (53)

(� − w−) f0,N−1 = (1 − a+b+) f0,N + f0,N−2 + f1,N−1, (54)

(� − w+) f1,N = (1 − a−b−) f0,N + f2,N + f1,N−1, (55)

(� − w− − w+) f0,N = f0,N−1 + f1,N , (56)

(� + 2� a−b− − w− − 2�) f0,1 = f0,2 + 2�(w− − 2� a−b−) f0,0, (57)

(� + 2� a+b+ − w+ − 2�) fN−1,N = fN−2,N + 2�(w+ − 2� a+b+) fN,N , (58)

195409-5



ZHANG, KLÜMPER, AND POPKOV PHYSICAL REVIEW B 104, 195409 (2021)

(� − 2� a−b− − 2�) f0,0 = a−b− f0,1, (59)

(� − 2� a+b+ − 2�) fN,N = a+b+ fN−1,N . (60)

We propose the following ansatz:

fn,m = gn,m

∑
σ1,σ2=±

(
A1,2

σ1,σ2
eiσ1np1+iσ2mp2 + A2,1

σ2,σ1
eiσ2np2+iσ1mp1

)
, (61)

where p1, p2 are quasimomenta and the coefficients {gn,m} are
p independent. We impose gn,m ≡ 1 for n, m �= 0, N . Consid-
ering the bulk term Eq. (48) with m �= n + 1 and using the
ansatz (61), we get the expression of � and energy,

� = 2 cos(p1) + 2 cos(p2), (62)

E = 4
2∑

j=1

cos(p j ) − 8� + E0. (63)

To satisfy Eq. (48) with m = n + 1, we get the two-body
scattering matrix [24],

A2,1
σ2,σ1

= S1,2(σ1 p1, σ2 p2)A1,2
σ1,σ2

, (64)

where S has the following symmetry and explicit expression:

S1,2(p, p′) = S2,1(−p′,−p)

= −1 − 2�eip′ + eip′+ip

1 − 2�eip + eip′+ip
. (65)

The ansatz (61) allows us to get the following expressions
from Eqs. (49) and (50):

gn,N = 1

1 − a+b+
, g0,n = 1

1 − a−b−
,

(66)
2 � n � N − 2.

The boundary dependent Eqs. (52) and (53) determine the
following left and right reflection matrices, respectively:

Aj,k
−,σk

= SL(p j )A
j,k
+,σk

, (67)

Aj,k
σ j ,− = e2iN pk SR(pk )Aj,k

σ j ,+, (68)

where the reflection matrices SL(p) and SR(p) are given by
Eqs. (29) and (30),

SL(p) = −1 − a−eip

a− − eip

1 − b−eip

b− − eip
, (69)

SR(p) = − a+ − eip

1 − a+eip

b+ − eip

1 − b+eip
. (70)

The scattering matrix in (65) and reflection matrices in (29)
and (30) determine all amplitudes Aj,k

σ j ,σk . The consistency
condition of our ansatz gives the BAE,

e2iN p j S j,k (p j, pk )SR(p j )Sk, j (pk,−p j )

×SL(−p j ) = 1, j, k = 1, 2, j �= k. (71)

One can verify that our BAE in (71) is consistent with the one
given by MABA [5] and the functional T -Q relation [6,9], see
Appendix A. Letting m in (52) and n in (53) take values 2 and

N − 2, respectively, and using the reflection matrices (29) and
(30), we have

g1,N = gN−1,N = 1

1 − a+b+
,

g0,1 = g0,N−1 = 1

1 − a−b−
, (72)

extending the result (66) to 1 � n � N − 1. Substituting the
result in (72) into Eq. (54), we get the expression of g0,N ,

g0,N = 1

(1 − a−b−)(1 − a+b+)
. (73)

The remaining coefficients f0,0 and fN,N are derived from
Eqs. (57) and (58),

g0,0 = a−b−
2�(1 − a−b−)(w− − 2�a−b−)

,

gN,N = a+b+
2�(1 − a+b+)(w+ − 2�a+b+)

. (74)

Using Eqs. (C12)–(C14), we reparametrize the functions
{gn,m} in terms of α± and β± as

gn,m =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, n, m �= 0, N,

F−(1), n = 0, m �= 0, N,

F+(1), n �= 0, N, m = N,

F−(1)F+(1), n = 0, m = N,

F−(1)F−(2), n = m = 0,

F+(1)F+(2), n = m = N,

(75)

where

Fσ (k) = δk,0 − (1 − δk,0)
sinh[ασ + (k − 1)η]

sinh(kη)
,

×cosh[βσ + (k − 1)η]

cosh(ασ + βσ + kη)
, σ = ±. (76)

Note that for our further generalization (79) it is convenient to
define Fσ (0) = 1 via (76), even though Fσ (0) does not appear
in (75). One can prove that our ansätze (61), (75) satisfy all
the relations (48)–(60), see Appendix D.

Remark. In the generic case, the invariant subspace G+
2 is

irreducible. However, on special manifolds, further internal
structures appear, leading to the existence of one or more sub-
subspaces, which are invariant with respect to the action of the
Hamiltonian. As an example, for a±b± = 1, three invariant
subspaces of G+

M appear. The details of this further structur-
ing and the consequences for the BAE sets are discussed in
Appendix E.

V. GENERALIZATION FOR ARBITRARY M

On the basis of our findings we formulate the following
hypothesis: phantom Bethe vectors, i.e., Bethe states with
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infinite rapidities, respectively, momenta k j = ±γ are for
general M given by a superposition of the states (10). We
denote the vector 〈0, . . . , 0, ñ1, . . . , ñk, N, . . . , N | from (10)
simply as 〈n1, . . . , nM | where some of the first site labels
n j may be identical to 0 and some of the last ones identical
to N .

We have seen in the M = 1, 2 cases, that writing fn or fn,m

as a product of certain prefactors gn or gn,m times a second
factor allows this one to be a sum of plane waves for all sites
even at the ends with n or m equal to 0 or N . Analyzing the
M = 1, 2 cases, we see that the prefactors g only depend on
the number of site labels 0, respectively, N . This inspired us
to formulate a general rule for the arbitrary M case with a
certain prefactor gn1,...,nM ≡ Cm0,mN where m0 and mN denote
the number of site labels equal to 0, respectively, N in the
sequence n1, . . . , nM . Using this rule we find

〈�M | =
∑

n1,...,nM

〈n1, . . . , nM | fn1,...,nM , (77)

fn1,...,nM = Cm0,mN

∑
r1,...,rM

∑
σ1,...,σM=±

Ar1,...,rM
σr1 ,...,σrM

× exp

(
i

M∑
k=1

σrk nk prk

)
, (78)

where in (77) we sum over all configurations n1, . . . , nM

allowed by (13). The first sum in (78) is over all permuta-
tions r1, . . . , rM of 1, . . . , M, whereas the coefficients Cm0,mN

depend only on m0, mN and are given by remarkably simple
expressions,

Cm0,mN =
m0∏

k=0

F−(k)
mN∏
l=0

F+(l ), (79)

where Fσ (m)’s are defined by Eq. (76). The amplitudes
Ar1,...,rM

σr1 ,...,σrM
are determined by the two-body scattering matrix

S in (65) and the reflection matrices SL, SR in (29) and (30),

A...,rn+1,rn,...
...,σrn+1 ,σrn ,... = Srn,rn+1 (σrn prn , σrn+1 prn+1 )

×A...,rn,rn+1,...
...,σrn ,σrn+1 ,..., (80)

Ar1,...−,... = SL(pr1 )Ar1,...+,..., (81)

A...,rM
...,− = e2NiprM SR(prM )A··· ,rM··· ,+ . (82)

The compatibility of the whole scheme is guaranteed by a set
of transcendental equations for the quasimomenta, the BAE,

e2iN pr1 Sr1,r2 (pr1 , pr2 ) · · · Sr1,rM (pr1 , prM )SR(pr1 )

×SrM ,r1 (prM ,−pr1 ) · · · Sr2,r1 (pr2 ,−pr1 )SL(−pr1 ) = 1,

r1 = 1, . . . , M. (83)
The BAE (83) coincide with those obtained by other ap-
proaches [5,6]. The corresponding eigenvalue in terms of
quasimomenta {p1, . . . , pM} is

E = 4
M∑

j=1

[cos(p j ) − �] + E0. (84)

Analogously we construct the other set of eigenstates
|�M〉〉 belonging to G−

M . The substitutions,

α± → −α±, β± → −β±, θ± → iπ + θ±, (85)

leave the Hamiltonian invariant and give the following re-
placements:

M → M̃, a± → ã±, b± → b̃±, (86)

where

ã± = sinh(α± − η)

sinh(α±)
, b̃± = cosh(β± − η)

cosh(β±)
. (87)

The vectors in (13) and (18) and the fundamental relations
(C1)–(C10) all show the symmetry (85) and (86). This is suf-
ficient to prove that the eigenstates |�M〉〉 can be constructed
in analogy to (77). Following (77), we make the ansatz,

|�M〉〉 =
∑

n1,...,nM̃

f̃n1,...,nM̃
|n1, . . . , nM̃〉〉, (88)

with

f̃n1,...,nM̃
= C̃m0,mN

∑
r1,...,rM̃

∑
σ1,...,σM̃=±

Ãr1,...,rM̃
σr1 ,...,σrM̃

× exp

⎛⎝i
M̃∑

k=1

σrk nk p̃rk

⎞⎠. (89)

Substituting A···
···, Cm0,mN and {p1, . . . , pM} in Eqs. (79)–(84)

with Ã···
···, C̃m0,mN and { p̃1, . . . , p̃M̃}, respectively, and then

using the substitutions (85) and (86), we get another chiral
coordinate Bethe ansatz, now for the G−

M Bethe eigenvectors.
The chiral coordinate Bethe ansatz in Eqs. (77)–(83) and

(88) and (89) are the main result of this paper. Equations (77)–
(83) give the full set of Bethe vectors for the G+

M invariant
subspace and the dual Eqs. (88) and (89) give the full set of
Bethe vectors for the G−

M invariant subspace, in total, all 2N

phantom Bethe vectors.
At present, it is difficult to prove our hypotheses in (78)

and (89) completely. However, there are many arguments that
corroborate our hypotheses. On one hand, we retrieve the
same BAE which have been obtained by other approaches.
On the other hand, the correctness of our conjecture for, at
least, a part of the coefficients fn1,...,nM in (78) can be proved
for arbitrary M.

VI. SPIN-HELIX EIGENSTATES

Among the vectors constituting the G+
M basis plus the

auxiliary vectors, there are M + 1 linearly independent SHS
of the form

〈SHS; m| =
N⊗

n=1

φn(m) ∝ 〈0, . . . , 0︸ ︷︷ ︸
m

, N, . . . , N︸ ︷︷ ︸
M−m

|,

m = 0, . . . , M, (90)

which have the same chirality but a different initial qubit
phase.
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Below we look for conditions under which these SHSs
become eigenstates of the Hamiltonian. Acting by the

Hamiltonian H on these SHSs and using Eqs. (C1)–(C4), we
find

〈SHS; m|H = −
(

sinhη cosh(α− + β− + 2mη)

sinh(α−)cosh(β−)
+ sinhη cosh[α+ + β+ + 2(M − m)η]

sinh(α+)cosh(β+)

)
〈SHS; m|

+2 sinhη sinh[(M − m)η]cosh[α+ + β+ + (M − m)η]

sinh(α+)cosh(β+)
〈SHS; m|σ z

N

−2 sinhη sinh(mη)cosh(α− + β− + mη)

sinh(α−)cosh(β−)
〈SHS; m|σ z

1 . (91)

It is clear from the above that the SHS 〈SHS; m| becomes
an eigenstate of H if one or two additional conditions are
satisfied, namely:

(i) when cosh(α− + β− + Mη) = 0, 〈SHS; M| is an
eigenstate of H ,

(ii) when cosh(α+ + β+ + Mη) = 0, 〈SHS; 0| is an
eigenstate of H ,

(iii) when cosh[α+ + β+ + (M − m)η] = 0, cosh(α− +
β− + mη) = 0, m �= 0, M, 〈SHS; m| is an eigenstate of H ,

and the corresponding eigenvalues are given by Eq. (91).

VII. DISCUSSION

We have analyzed the integrable open XXZ spin- 1
2 chain

satisfying the PRC,

η = α− + β− + α+ + β+ + θ− − θ+ + 2imπ

N − 2M − 1
, (92)

where m is an arbitrary integer and the integer M has the
range 0 � M � N − 1. For a Hamiltonian under the PRC
(5), when N − 2M − 1 �= 0, the crossing parameter η can
only take N − 2M − 1 discrete values with relative positions
equidistant on the complex plane [9]. When N − 2M − 1 = 0,
the crossing parameter η can take arbitrary value and the two
boundaries satisfy a certain constraint. Under this condition,
the Hilbert space splits into two invariant subspaces [14], and
remarkable singular peaks in the magnetization current of the
associated dissipative quantum system occur [25], which can
now be related to the existence of spin-helix eigenstates and
their generalizations in the spectrum of the effective Hamilto-
nian.

Under the PRC, two conventional BAE with M and M̃ =
N − M − 1 regular Bethe roots appear, which correspond
to two invariant subspaces G+

M and G−
M with the dimen-

sions dim G+
M = ∑M

k=0

(N
k

)
and dim G−

M = ∑N
k=M+1

(N
k

) =
2N − dim G+

M . We conjecture that the number of independent
Bethe states corresponding to the full set of solutions to the
Bethe ansatz equations is identical to the dimensions of the
respective invariant subspaces rendering the set of Bethe states
complete. The existence of specific invariant subspaces and
the homogeneity of Bethe equations imply that the system
may have a certain discrete symmetry, which would be inter-
esting to formulate explicitly.

Our proposed chiral coordinate Bethe ansatz allows to con-
struct the full set of Bethe eigenstates, separately for G+

M and
G−

M as a linear combination over a symmetric set of vectors,

spanning the respective chiral invariant subspace. The set of
vectors contains spin-helix states with “kinks”. Unlike in the
periodic case, we have to treat the nondiagonal boundary
fields which break the magnetization conservation, i.e., the
U (1) symmetry. The integer M determines the maximum
number of kinks. An exciting result is that the expansion
coefficients for the open spin chain in the chiral basis of
SHS with kinks have a very simple analytic form. The Bethe
equations are consistent with the ones resulting from MABA
(see Appendices A and F), whose completeness has been
discussed in Ref. [7].

We demonstrated that for small M, the Bethe eigenstates
have some unusual chiral properties such as high magnetiza-
tion currents.

It should be noted that in the isotropic case � = 1, the
chiral feature of our basis vectors disappears. In this case,
the system can be solved by the conventional algebraic Bethe
ansatz (see Appendix G).

Our method can be generalized to other integrable open
systems, not necessarily of quantum origin, such as the asym-
metric simple exclusion process (ASEP) with open boundaries
[26,27], the spin-1 Fateev-Zamolodchikov model [28], and
spin-s integrable systems [29]. Potentially, a generalization of
our results to the XYZ spin- 1

2 chain [30] might exist, which is
a challenging open problem.

The formulation of the chiral coordinate Bethe ansatz
has become possible due to the existence of phantom Bethe
roots, which appear both in open and in periodically closed
systems [15].

Another interesting question is how to obtain the eigen-
states of non-Hermitian systems under PRC. Using our bases
and the chiral coordinate Bethe ansatz method, we can always
construct the left or right eigenstates which correspond to
one subspace, whether the system is Hermitian or not. For a
Hermitian system the dual states can be directly obtained. If
the system is not Hermitian, the construction of the dual states
is still challenging. A very intuitive example is the one-species
ASEP with open boundary conditions, which belongs to the
M = 0 case. The left steady state of the Markov matrix is a
simple factorized state, whereas the right steady state has a
very complicated structure, which, however, can be calculated
exactly by other approaches, the matrix product approach
[31], or the recursive approach [32].

Our results may lay the basis for further analytic studies
and may possibly serve for a new understanding relevant
for experimental applications, e.g., the experimental realiza-
tion of the model and eigenstates by techniques presented in
Refs. [22,23].
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APPENDIX A: BAE RESULTING FROM MABA

It has been proved under condition (5) there exists a conventional BAE [5,6,9],[
sinh

(
x j + η

2

)
sinh

(
x j − η

2

)]2N ∏
σ=±

sinh
(
x j − ασ − η

2

)
sinh

(
x j + ασ + η

2

) cosh
(
x j − βσ − η

2

)
cosh

(
x j + βσ + η

2

)
=

M∏
k �= j

sinh(x j − xk + η)

sinh(x j − xk − η)

sinh(x j + xk + η)

sinh(x j + xk − η)
, j = 1, . . . , M. (A1)

The above BAE, in terms of the single-particle quasimomentum pj ,

eip j = sinh
(
x j + η

2

)
sinh

(
x j − η

2

) , (A2)

take the form [14]

e2iN p j
∏
σ=±

aσ − eip j

1 − aσ eip j

bσ − eip j

1 − bσ eip j
=

∏
σ=±

M∏
k �= j

1 − 2�eip j + eip j+iσ pk

1 − 2�eiσ pk + eip j+iσ pk
, j = 1, . . . , M, (A3)

where a±, b± are defined in (26). Valid physical Bethe roots {p1, . . . , pM} satisfy the selection rules eip j �= e±ipk , eip j �= ±1.
We see that Eq. (A3) is identical to our BAE (83) in the main text. The invariance of the Hamiltonian H with respect to the
substitution (85) under condition (5) allows to construct another set of homogeneous BAE by replacing α±, β±, and M in (A3)
with −α±, −β±, and M̃ = N − 1 − M, respectively, see Ref. [14]. The second set of BAE, thus, reads

e2iN p̃ j
∏
σ=±

ãσ − eip̃ j

1 − ãσ eip̃ j

b̃σ − eip̃ j

1 − b̃σ eip̃ j
=

∏
σ=±

M̃∏
k �= j

1 − 2�eip̃ j + eip̃ j+iσ p̃k

1 − 2�eiσ p̃k + eip̃ j+iσ p̃k
, j = 1, . . . , M̃, (A4)

where ã±, b̃± are defined in Eq. (87).

APPENDIX B: LINEAR DEPENDENCE OF THE AUXILIARY VECTORS

Here we show that all extra-auxiliary bra vectors participating in the CCBA are linear combinations of the basis vectors of
G+

M , and similarly, all extra-auxiliary ket vectors are linear combinations of the G−
M basis vectors. For the proof, it is enough

to demonstrate that any bra vector from the extended (symmetrized) bra set is orthogonal to any ket vector from the extended
(symmetrized) ket set, i.e., (B5).

To this end, define the function y(n, vn, ṽn) as

φn(vn)φ̃n(ṽn) = 1 − e2y(n,vn,ṽn )η,

y(n, vn, ṽn) = vn + ṽn − n + 1. (B1)

When y(n, vn, ṽn) = 0, the local vectors φn(vn) and φ̃n(ṽn) are orthogonal. Introduce the inner products,

〈n1, . . . , nM |m1, . . . , mM̃〉〉 = exp

⎛⎝η

M∑
j=1

n j + η

M̃∑
k=1

mk

⎞⎠ N∏
n=1

(1 − e2y(n,vn,ṽn )η ), (B2)

where 〈n1, . . . , nM | belongs to the extended G+
M set of vectors and |m1, . . . , mM̃〉〉 belongs to the extended G+

M set of vectors.
Obviously,

0 � v1 � v2 � · · · � vN � M,

0 � ṽ1 � ṽ2 � · · · � ṽN � M̃, (B3)

vn+1 − vn = 0, 1, ṽn+1 − ṽn = 0, 1,

and

y(n + 1, vn+1, ṽn+1) − y(n, vn, ṽn) = 0,±1, y(1, v1, ṽ1) � 0, y(N, vN , ṽN ) � 0. (B4)

195409-9



ZHANG, KLÜMPER, AND POPKOV PHYSICAL REVIEW B 104, 195409 (2021)

So y(n, vn, ṽn) = 0 holds, at least, for one point n (1 � n � N ) which implies that any pair of vectors 〈n1, . . . , nM | ∈ G+
M and

|m1, . . . , mM̃〉〉 ∈ G−
M are orthogonal,

〈n1, . . . , nM |m1, . . . , mM̃〉〉 = 0. (B5)

APPENDIX C: THE PROOF OF EQS. (37)–(45)

It is easy to prove the following identities:

φn(x)φn+1(x)hn,n+1 = sinhηφn(x)φn+1(x)σ z
n − sinhη φn(x) φn+1(x) σ z

n+1, (C1)

φn(x − 1)φn+1(x)hn,n+1 = sinhηφn(x − 1) φn+1(x)σ z
n+1 − sinhηφn(x − 1)φn+1(x)σ z

n , (C2)

φ1(x)h1 = sinhη

sinh(α−)cosh(β−)
[cosh(α−)sinh(β−) − sinh(α− + β− + 2xη)]φ1(x)σ z

1

− sinhη cosh(α− + β− + 2xη)

sinh(α−)cosh(β−)
φ1(x), (C3)

φN (x)hN = sinhη

sinh(α+)cosh(β+)
{sinh[α+ + β+ + 2(M − x)η] − cosh(α+)sinh(β+)}φN (x)σ z

N

− sinhη cosh[α+ + β+ + 2(M − x)η]

sinh(α+)cosh(β+)
φN (x), (C4)

hn,n+1φ̃n(x)φ̃n+1(x) = sinhησ z
n φ̃n(x)φ̃n+1(x) − sinhησ z

n+1φ̃n(x)φ̃n+1(x), (C5)

hn,n+1φ̃n(x − 1)φ̃n+1(x) = sinhησ z
n+1φ̃n(x − 1)φ̃n+1(x) − sinhησ z

n φ̃n(x − 1) φ̃n+1(x), (C6)

h1φ̃1(x) = sinhη

sinh(α−)cosh(β−)
[cosh(α−)sinh(β−) − sinh(α− + β− − 2xη)]σ z

1 φ̃1(x)

+ sinhη cosh(α− + β− − 2xη)

sinh(α−)cosh(β−)
φ̃1(x), (C7)

hN φ̃N (x) = sinhη

sinh(α+)cosh(β+)
{sinh[α+ + β+ − 2(M̃ − x)η] − cosh(α+)sinh(β+)}σ z

N φ̃N (x)

+ sinhη cosh[α+ + β+ − 2(M̃ − x)η]

sinh(α+)cosh(β+)
φ̃N (x). (C8)

We note the useful identities,

φn(x)σ z
n = ±coshη

sinhη
φn(x) ∓ e∓η

sinhη
φn(x ± 1), (C9)

σ z
n φ̃n(x) = ±coshη

sinhη
φ̃n(x) ∓ e∓η

sinhη
φ̃n(x ± 1). (C10)

Using Eqs. (C1)–(C4) and (C9) repeatedly, we get Eqs. (37)–(45). Some identities, used in our calculations, are as follows:

E0 = −w− − w+ + 4�, (C11)

sinhη cosh(α± + β±)

sinh(α±)cosh(β±)
= w± − 2�, (C12)

sinhη cosh(α± + β± + η)

sinh(α±)cosh(β±)
= a±b± − 1, (C13)

sinhη cosh(α± + β± + 2η)

sinh(α±)cosh(β±)
= 2a±b±� − w±. (C14)

APPENDIX D: THE PROOF OF EQS. (48)–(60)

Define the auxiliary function,

Wn,m =
∑

σ1,σ2=±
(A1,2

σ1,σ2
eiσ1np1+iσ2mp2 + A2,1

σ2,σ1
eiσ2np2+iσ1mp1 ), (D1)
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where n, m are arbitrary integers. Using BAE (71), the scattering matrix in (65) and reflection matrices in (29) and (30), one can
get the following properties of Wn,m:

�Wn,m =
∑

σ=±1

(Wn+σ,m + Wn,m+σ ), (D2)

2�Wn,n+1 = Wn+1,n+1 + Wn,n, (D3)

w−W0,n = a−b−W1,n + W−1,n, (D4)

w+Wn,N = a+b+Wn,N−1 + Wn,N+1, (D5)

(� − 2�a−b− − 2�)W0,0 = 2�(w− − 2�a−b−)W0,1, (D6)

(� − 2�a+b+ − 2�)WN,N = 2�(w+ − 2�a+b+)WN−1,N . (D7)

With the help of Eqs. (D2)–(D7), we can prove that our ansatz satisfies all the relations (48)–(60). For instance, Eq. (55) can be
proved as follows:

(� − w− − w+) f0,N = g0,N (� − w− − w+)W0,N

= g0,N [(1 − a−b−)W1,N + (1 − a+b+)W0,N−1]

= f1,N + f0,N−1. (D8)

APPENDIX E: POSSIBILITY OF A FURTHER
PARTIONING OF THE INVARIANT SUBSPACES ON

SPECIAL MANIFOLDS

Let us consider the special case: a±b± = 1. Under this spe-
cific condition, from Eq. (40) the SHS 〈0, N | is an eigenstate
of H ,

〈0, N |H = (w− + w+ − 4�)〈0, N |. (E1)

This SHS 〈0, N | corresponds to a special limiting case solu-
tion of BAE (71) with p1 = −i ln(a−), p2 = −i ln(a+). In
fact, both numerator and denominator on the left-hand side of
(71) become zero, but the ratio stays finite.

The bra vectors 〈0, n|, n = 0, . . . , N form another subsub-
space as follows:

〈0, 0|H = (4� − w− − w+)〈0, 0| + 4�(w− − 2�)〈0, 1|,
〈0, n|H = (w− − w+ − 4�)〈0, n| + 2〈0, n − 1|

+2〈0, n + 1|, 1 � n � N − 1,

〈0, N |H = (w− + w+ − 4�)〈0, N |. (E2)

The phantom Bethe states belonging to the above invariant
subsubspace have the form 〈�2| = ∑N

n=0〈0, n| f0,n. Note that
the coefficients f0,n are different from those appearing in
Eq. (46). Guided by Eq. (E2) we propose f0,n to be a sum
of plain waves,

f0,n = A+einp + A−e−inp, n = 1, . . . , N − 1, (E3)

whereas f0,0, f0,N will be derived from the consistency condi-
tions of (E2). Following Eqs. (E2) and (E3) we obtain

f0,0 = A+ + A−
2� (w−−2�)

, f0,N = f0,N−1

2 cos(p) − w+
, (E4)

and

A−
A+

= −
∏

u=a−,b−

1 − 2�eip + ueip

1 − 2�u + ueip
= −e2iN p. (E5)

The corresponding energy reads E = 4 cos(p) + w− − w+ −
4� where p satisfies the reduced BAE,

e2iN p =
∏

u=a−,b−

1 − 2�eip + ueip

1 − 2�u + ueip
. (E6)

We can also get the same BAE (E6) by letting p1, p2 in
BAE (71) be −i ln(a−) and p, respectively (note that for the
Hermitian case the constants a±, b± are real). Noting that ±p
are equivalent solutions and excluding two trivial solutions
p = 0, π , BAE (E6) has N-independent nontrivial solutions.

Analogously, the bra vectors 〈n, N |, n = 0, . . . , N form
another subsubspace. Suppose that 〈�2| = ∑N

n=0〈n, N | fn,N .
The coefficients { fn,N } can be obtained via the following trans-
formation:

fn,N → f0,N−n, with a±, b±,w± → a∓, b∓,w∓.

The corresponding energy is E = 4 cos(p) + w+ − w− − 4�

where the quasimomentum p is a solution of the following
BAE:

e2iN p =
∏

u=a+,b+

1 − 2�eip + ueip

1 − 2�u + ueip
. (E7)

The remaining
(N

2

) − N eigenstates span the full G+
2 basis.

The two reflection matrices in (29) and (30) become −1 and
−e2iN p, respectively. In this case, the “boundary terms” in
Eq. (71) vanish, and the BAE (71) acquire a simple form

e2iN p j =
∏
σ=±

∏
k �= j

1 − 2�eip j + eip j+iσ pk

1 − 2�eiσ pk + eip j+iσ pk
, j = 1, 2. (E8)

To sum up, in the special case we consider, the set of Bethe
root pairs {p1, p2} in the original BAE (71) splits into four
subsets:

(i) one pair {p1, p2} = {−i ln(a+),−i ln(a−)} corre-
sponding to SHS 〈0, N |,
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(ii) N pairs {p1, p} with p1 = −i ln(a−) and p given by
the solution of (E6),

(iii) N pairs {p1, p} with p1 = −i ln(a+) and p given by
the solution of (E7),

(iv)
(N

2

) − N pairs {p1, p2} given by the solution of
BAE (E8).

In total, there are 1 + N + (N
2

) = dim G+
2 solutions, as

expected.
Our example shows that there can be further partitionings

of G+
2 , which for a±b± = 1 leads to three internal invariant

subspaces of dimension 1, N, N within G+
2 which are invari-

ant with respect to the action of H . Likewise, if just one
of the two conditions a±b± = 1 is satisfied, some internal
invariant subspaces disappear, whereas others remain. Under
other constraints (arising when the coefficients of some “un-
wanted” terms on the right-hand side of Eqs. (37)–(45) vanish)
various internal invariant subspaces of G+

2 can appear.

APPENDIX F: ON THE EQUIVALENCE OF CCBA WITH
MABA

The algebraic form of Bethe vectors has been given by
MABA [5,10,18], whereas little is known about their inner
structures. In this Appendix we want to present an alterna-
tive basis natural for the work with MABA which, however,
leads to involved expressions of the expansion coefficients.
Still, this basis will be useful in the limit � → 1 which is
considered in the next Appendix.

Let us introduce a different set of bra vectors on sites n,

ψn(x) = (1, eα++β++θ++(2M−N+n−2x)η ). (F1)

Replacing φn in (10) with ψn on some sites, we construct an
alternative set of factorized bra vectors for the quantum chain
as follows:

B〈0, . . . , 0︸ ︷︷ ︸
m0

, n1, . . . , nk︸ ︷︷ ︸
M−m0

|

=
n1−1⊗
l1=1

φl1 (m0)
⊗

ψn1 (m0 + 1)
n2−1⊗

l2=n1+1

φl2 (m0 + 1)

⊗
ψn2 (m0 + 2) · · ·

⊗
ψnk (M )

N⊗
lk+1=nk+1

φlk+1 (M ),

0 < n1 < n2 < · · · < nk � N, m0, k � 0, (F2)

where φn(x) and ψn(x) are defined in (8) and (F1), respec-
tively. This basis appeared in a natural way in unpublished
work on various representations of MABA Bethe states. The
vectors in (F2) form an alternative basis of G+

M and are equiv-
alent to the basis (10), (11) in the main text.

By inspection, we found that the Bethe vectors constructed
in Refs. [5,18] can be expanded as linear combinations of the
basis (F2), however, with extremely unwieldy coefficients. In

contrast, the chiral basis using our proposed trick of the basis
extension yields explicit compact symmetric forms for the
coefficients of the Bethe vectors.

APPENDIX G: THE � = 1 CASE

When � = 1, the system degenerates into an isotropic
Heisenberg chain. Let η → 0, α± → 0, and

lim
η→0

sinh(α±)

sinhη
= κ±

cosh(β±)
,

we get an integrable XXX chain where the two boundary
terms are

h1 = 1

κ−

[
cosh(θ−)σ x

1 + i sinh(θ−)σ y
1 + sinh(β−)σ z

1

]
,

hN = 1

κ+

[
cosh(θ+)σ x

N + i sinh(θ+)σ y
N − sinh(β+)σ z

N

]
.

Now our phantom Bethe roots criterion (5) degenerates into

β− + β+ + θ− − θ+ = 0 mod 2iπ, (G1)

which is independent of the number of Bethe roots. With the
help of the following gauge transformation:

U =
(−eθ++β+ eθ+−β+

1 1

)
,

on all sites we can diagonalize hN and triangularize h1,

h̃N = U −1
N hNUN = −cosh(β+)

κ+
σ z

N ,

h̃1 = U −1
1 h1U1 = −cosh(β−)

κ−
σ z

1

− sinh(β− + β+)

κ−e−β+

(
σ x

1 − iσ y
1

)
.

Due to the fact [hn,n+1,UnUn+1] = 0, the conventional
algebraic Bethe ansatz can now be used with the number of
Bethe roots varying from 0 to N .

In the � = 1 case, the crucial chiral feature disappears, and
our vectors in (10) become indistinguishable. However, if we
adopt the alternative basis in (F2), the limit will be simple.
Both local states,

φ = lim
η→0

φn(x) = (1,−eθ+−β+ ),

and

ψ = lim
η→0

ψn(x) = (1, eθ++β+ ),

are conserved and they act as “spin-up” and “spin-down”
states, respectively. The state φ ⊗ φ ⊗ · · · ⊗ φ is a vacuum
state and the replacement φ → ψ on the vacuum state can be
seen as a quasiparticle. The number of Bethe roots represents
the maximum number of particles.
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