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Hard-wall edge confinement in two-dimensional topological
insulators and the energy of the Dirac point
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In 2D topological insulators (TIs) based on semiconductor quantum wells such as HgTe/CdTe, hard wall
spin-polarized edge states are calculated from an 8 × 8 linear-k multiband (LKMB) Hamiltonian based directly
on k · p theory, and from a 4 × 4 BHZ Hamiltonian derived from it by the elimination of remote states using
perturbation theory. Both approaches lead to similar results with standard boundary conditions obtained by
integrating the eigenstate equation across an interface (SBCs). In contrast, open boundary conditions (OBCs)
yield unphysical results and do not work for the LKMB Hamiltonian. Their failure is traced to a spurious solution
introduced by the elimination process. In the BHZ treatment, SBCs are shown to be consistent with perturbation
theory on both sides of the boundary, and a wall hybridization parameter is estimated for a vacuum using a
basis of empty crystal free electron states. A Dirac point is not expected for a vacuum, but can exist when a
thin passivation layer is used whose midgap energy is nearly degenerate with that of the TI. In the absence of
interface band mixing (IBM), the Dirac point is then very close to midgap and virtually independent of the TI
band asymmetry. IBM introduces a significant energy shift, which decreases monotonically with edge state wave
vector. Using SBCs, the paradoxical extension of the BHZ edge states across the topological phase transition is
also resolved.
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I. INTRODUCTION

Surface states occur in many areas of condensed matter
physics, often when some material parameter changes sign
across a boundary. Two classic examples are surface plasmons
and surface optical phonons, where a sign reversal of the di-
electric function leads to edge confinement with an amplitude
that decays away from the edge, both into the material and into
the surroundings [1–5]. More recently, electronic edge states
have been discovered in topological insulators (TIs), where a
change in sign of the band gap parameter reverses the ordering
of even and odd parity crystal periodic basis functions [6].
These edge states also have the unique property that their
direction of motion depends on the electron spin, leading to
unusual phenomena such as dissipationless ballistic transport
and the quantum spin Hall effect [7,8]. Their experimental
observation, however, remains a challenge and in some cases
more advanced surface passivation techniques may be needed,
in order to eliminate parallel conduction paths through trivial
edge states due, for example, to unsatisfied dangling bonds
[9].

A popular treatment for the spin-polarized edge states in
two dimensional TIs is based on the k · p theory, where use-
ful results can be obtained with the simple four-band BHZ
Hamiltonian based on 2 × 2 blocks for each spin direction
[7]. Each 2 × 2 block is associated with a Chern number
whose value on each side of the boundary can be related to
the number of spin-polarized edge states. At a hard wall, the
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nature of the edge state confinement can depend strongly on
the boundary conditions used. Standard boundary conditions
for the wave function and its derivative (SBCs) and other
related approaches can lead to strong confinement, where the
wave function has a peak amplitude at the edge, similar to
the classic surface states described above [10–14]. On the
other hand, open boundary conditions (OBCs) lead to weak
confinement, where the amplitude is zero at the edge and only
reaches a peak typically 10–100 Å away [8,15,16]. While deep
quantum well (QW) states also have negligible amplitude at
the edge of the well, the bound state vanishes when one of the
barriers is removed and this should not be confused with true
edge confinement. Of these methods, the OBC approach is by
far the most popular because it apparently avoids any explicit
treatment of the wall [8,15–49]. Notwithstanding the greater
simplicity of OBCs, this author has previously argued that the
spin-polarized edge states in TIs cannot have zero amplitude
at the edge, and in this respect they are no different from
their classic plasmon or phonon counterparts. The weakly
confined wave function in the OBC treatment arises from a
mathematically correct but physically spurious solution of the
BHZ Hamiltonian, which not only gives an unphysical wave
function but also leads to other unphysical properties. The
present paper provides further evidence for this point of view,
based on a simple multiband k · p model that reduces to the
four band BHZ model using Pikus-Bir perturbation theory. It
is shown that edge states are not possible in the multiband
model using OBCs, while the BHZ and multiband results
correspond very well when SBCs are used. In contrast to some
alternatives to OBCs, which are phenomenological in nature
and do not consider the wall explicitly [13,38,40]. SBCs
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provide a realistic physical picture on both sides of the bound-
ary. They can also give a physical edge dispersion whose
Dirac point is close to midgap, even when band structure
asymmetry would cause the Dirac point to be near a bulk band
edge in the four band OBC treatment.

In most cubic semiconductors, one of the crystal periodic
basis functions of the BHZ Hamiltonian E1 is based on anti-
bonding s orbitals, while the other H1 is based on bonding p
orbitals, corresponding to the conduction and valence bands,
respectively. In two-dimensional TIs, usually based on semi-
conductor QWs such as HgTe/CdTe or InAs/GaSb/AlSb,
their order can be reversed by increasing the QW width.
Spin-polarized edge states are then predicted according to the
change in Chern number at the boundary with the wall or
other semiconductor material [50]. For a TI with symmet-
rical bands, the 2 × 2 spin up Hamiltonian can be written
as H2×2↑ = A(σxkx − σyky) + σz(M + k · Bk) and the Chern
number is given by NC = − 1

2 [sgn(M ) − sgn(B)], where 2M
is the semiconductor band gap, B−1 is related to the band
effective mass, and k = (kx, ky) is the in-plane wave vector
[28]. The symmetrical operator ordering used in the quadratic
term has been justified in Ref. [51]. For a boundary between
a TI material with M < 0, B > 0 and a wall with M and
B parameter values, M0 > 0, B0 > 0, the change in Chern
number is �NC = 1, supporting a single spin-polarized edge
state. If the sign of B0 is reversed, �NC = 2 and two edge
states are predicted. Examples of both types will be discussed
in this paper.

Band asymmetry can be incorporated into the 2 x 2 spin
up Hamiltonian by adding an additional quadratic term pro-
portional to the identity matrix H ′

2×2↑ = H2×2↑ + I2×2k · Dk
and parameter values can be found, usually empirically, which
provide a good description of the small wave vector states near
the band edges of most semiconductor materials. There are
also solutions in the band-gap energy range, E < |M|. Con-
sidering the dispersion in the y direction (kx = 0), the “middle
states” have a small imaginary wave vector ky = iσm(E ) and
describe tunneling, for example when the semiconductor is
used as a thin barrier material. The “wing states”, on the other
hand, have a wave vector ky = iσw(E ) that is imaginary or
real, depending on whether D < B or D > B, respectively.
When the difference between B and D is small, the decay
parameter at zero energy is given by the simple formula:
σw(0) = ±

√
(2MB + A2)/2B(B − D), demonstrating that the

state is only evanescent when D < B. This is shown in Fig. 1,
which compares two TI Hamiltonians with M = −0.01 eV,
A = 4 eV Å, and B = 200 eVÅ2, and where extended and
evanescent states are depicted as solid and dashed lines, re-
spectively. The blue plot in Fig. 1(a) is for D = 199.5 eV Å2,
while the black plot in Fig. 1(b) is for D = 200.5 eV Å2. The
same color scheme is used in Fig. 1(c), where the results for
both D values are superimposed in the small wave vector re-
gion. The switch between large imaginary and real wing wave
vectors of the same magnitude shows clearly in the shaded
band gap region of Figs. 1(a) and 1(b), occurring when the
crossing of extended and evanescent states below the band gap
changes to an anti-crossing. In contrast, the middle states with
small imaginary wave vector in Fig. 1(c) are indistinguishable
for the two cases and totally insensitive to the increase in D.

FIG. 1. Dispersions of the spin up BHZ Hamiltonian in the
y direction with M = −0.01 eV, A = 4 eV Å, B = 200 eV Å2 and

(a) D = 199.5 eV Å
2

(blue curves), (b) D = 200.5 eV Å
2

(black
curves), and (c) both D values (blue and black superimposed). Note
the shorter range of wave vector in (c). Extended (evanescent) states
are depicted as solid (dashed) lines (asub = 6.0954 Å).

The spurious nature of the wing states was first discussed by
White and Sham [52], and later by Schuurmans and t’Hooft
[53]. Both the extended and evanescent wing solutions do
not correspond to any plausible dispersion and are obviously
unphysical [54]. As discussed in these same references, and
demonstrated explicitly in Sec. II, the wing solutions arise
because the number of basis states is too small. The effect
of remote states, which have been omitted from the Hamil-
tonian is incorporated in the k-quadratic terms (proportional
to B and D) using perturbation theory, and this always leads
to a spurious solution. Moreover, since the range of real or
imaginary wave vectors must then be limited to magnitudes,

kmax <

√
|M|

|B|+|D| , where the perturbation terms are less than

the typical band energy, the spurious solution is usually found
to lie well beyond this limit (see Sec. III). For the example
in Fig. 1, the valid range corresponds to kmax < 0.005 × 2π

asub
,

which is the range plotted for the middle solution in Fig. 1(c).
The valid range thus includes the middle solution but is about
50 times smaller than the band-gap wave vectors of the wing
solutions in Figs. 1(a) and 1(b).

The behavior shown in Fig. 1 is quite general, as can be
seen from the simple formula given above for σw(0), which
always gives a switch been real and imaginary wing wave
vectors when D = B, regardless of the sign of M, or the
magnitude of B and D. When B and D are small, the wing so-
lution can lie far outside the Brillouin zone, while the middle
solution, σm(0) � M/A, is very insensitive to their values. The
eigenvectors for the σm and σw solutions at a given energy are
usually different. However, in a TI material with M < 0 and
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D < B, it turns out that they are identical at energy ED
OBC =

−M D
B (see Sec. III), which is just below the conduction band

edge in the example of Fig. 1(a) [15]. This has led to the
common but unfortunate practice of adopting OBC bound-
ary conditions, where both solutions are treated completely
seriously and combined into a single wave function with an
envelope of the form ψ = e−σm (ED

OBC )y − e−σw (ED
OBC )y so that the

amplitude is zero at the sample boundary, which is assumed
to be a hard wall at y = 0. Although this would be correct
if H ′

2×2↑ yielded only physical solutions, the inclusion of the
spurious solution in the wave function leads to several prob-
lematic results, some of which have been discussed previously
while others will be elaborated below, including a paradoxical
extension of the edge states into the topologically trivial phase
(see Appendix B).

It is shown in Sec. II that the BHZ Hamiltonian is a
perturbation approximation of a larger linear-k multiband
Hamiltonian (LKMB), which does not satisfy OBCs, because
the eigenvectors of the gap-states are always different. An
extended version of the BHZ Hamiltonian that was recently
proposed is also discussed [43]. The equality of the eigen-
vectors in the standard and extended BHZ Hamiltonians is an
artifact introduced by the approximation. The problem with
OBCs has been highlighted previously by the author and an
alternative approach was proposed for the BHZ model, based
on SBC boundary conditions [10,55]. Although SBCs treat-
ments have been reported by other workers, they are generally
based on a soft wall and evolve into OBCs when the wall
potential increases, because the wave function still includes
the spurious solution [31,49]. The SBC approach proposed by
the author is for a hard wall and does not include the spurious
and physical solutions in the same wave function. It was
shown in previous work that two exponential edge solutions
can be found when B0 (and D0) is (are) negative, consistent
with �NC = 2 when D0 = 0. One of these involves only σm

solutions in the TI and wall, and the other only σw solutions.
The former yields a simple edge-state dispersion in the useful
limit, M0 → ∞ and B0, D0 → 0, close to ESBC

2×2↑ � −Akx +
Dk2

x , which merges smoothly with the bulk band edges, while
the latter shows unphysical merging behavior and is rejected
as spurious. It will be shown in Sec. II that these results are
entirely consistent with the LKMB model, which also puts
the Dirac point close to midgap when SBCs are used. When
B0 (and D0) is (are) positive a single, nonexponential solution
exists, again consistent with both models.

In previous work based on the BHZ model, the SBC
edge dispersion ESBC

2×2↑(kx ) was obtained by solving a char-
acteristic equation numerically, for both strongly hybridized
HgTe/CdTe and weakly hybridized InAs/GaSb/AlSb QWs
[55]. In Sec. III of this paper, an analytical solution is obtained
for the dispersion, which provides a simple expression for
the energy of the Dirac point. The consistency of the SBC
treatment with perturbation theory is also analyzed in detail,
considering both the TI and wall regions. The dependence
of the Dirac point on the wall hybridization parameters is
then compared for the BHZ and LKMB models in Sec. IV.
Although the wall hybridization parameters are found to have
a relatively small effect, a suitable model of the wall region
is lacking. Therefore, in Sec. V, an approach is proposed for

a consistent k · p treatment. This approach yields a wall hy-
bridization parameter for the BHZ model that is fairly similar
to that in the TI material, and much smaller than the free
electron Dirac value, which was previously suggested as a
possibility. It also highlights the importance of an edge pas-
sivation material and introduces interface band mixing terms,
which may cause a significant additional shift of the Dirac
point. In Sec. VI, conclusions are summarized. Even though
this paper is focused primarily on the physical nature of the
wave function confinement and its influence on the energy of
the Dirac point, a treatment of the full SBC edge dispersion
is presented for a toy LKMB model in Appendix A, where
it is shown to be quite consistent with the BHZ results. In
Appendix B, it is also shown that when SBCs are used, the
paradoxical extension of the BHZ edge states across the topo-
logical phase transition [41] is resolved.

II. LINEAR-K MULTIBAND MODEL

A. k · p Hamiltonian

In 1955, Luttinger and Kohn derived the k · p theory in
Fourier space and showed how it could be used to treat the
potential of an impurity atom in a bulk crystal [56]. This
was extended by Volkov and Takhtamirov in the 1990s, who
used the same approach to treat semiconductor superlattices
[57–59]. When transformed into real space and with a few
basic assumptions, their Hamiltonian can be written [51] as

EF̃n(r) =
(

− h̄2

2m0
∇2 + En

)
F̃n(r) −

∑
n′

ih̄

m0
pnn′ · ∇F̃n′ (r)

+
∑

n′
Hmod

nn′ (y)F̃n′ (r), (1)

where m0 is the free electron mass, En is the band edge of
the zone center basis state |n〉, F̃n(r) is the envelope function,
which only contains Fourier components in the first Brillouin
zone, and pnn′ = 〈n| − ih̄∇|n′〉 is a momentum matrix element
between crystal periodic basis states |n〉 and |n′〉. For an infi-
nite bulk material, F̃n(r) is a plane wave. The term Hmod

nn′ (y)
represents additional terms introduced when the crystal po-
tential is modulated along the y direction, for instance at a
boundary between two different materials [51,57–59]. This
term is not included in the present bulk treatment, but is
discussed further in Sec. V.

Equation (1) can be written in matrix form with elements
Hnn′ and for a bulk material with Hmod

nn′ = 0, it is essentially
an exact description of the crystal if enough basis states are
included. For example, in their seminal paper of 1966, Car-
dona and Pollak were able to model the whole Brillouin zones
of silicon and germanium with 15 zone center basis states
[60]. However, in cases where only a small local region of
the Brillouin zone is of interest, it is possible to eliminate a
large number of the remote states using perturbation theory,
leaving only those states in the local energy range. The Bir
and Pikus expression for the local Hamiltonian, can be written
up to second order as [61]

H̄mm′ = Hmm′ − 1

2

∑
s

H ′
msH

′
sm′

(
1

Es − Em
+ 1

Es − Em′

)
+. . .,

(2)
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in which the local states are |m〉, |m′〉, etc., the remote states
are |s〉, |s′〉, etc., and H ′

ms = k · 〈m | h̄
m0

p | s〉 is an off-diagonal
matrix element of Hnn′ where k = −i∇. This reduces the
size of the Hamiltonian, but introduces additional k-quadratic
terms into the Hamiltonian of local states H̄mm′ .

The BHZ Hamiltonian for a 2D quantum well H ′
2×2↑ dis-

cussed in Sec. I, is thus derived from a larger number of basis
states, using Eq. (2). As a simple toy model, consider the
following unperturbed 4 × 4 spin up Hamiltonian based on
Eq. (1), with a basis, |n〉:

H ′
4x4↑(k) = I4×4D′k2

+

⎡⎢⎣ �1 0 iQ1k+ Q3k−
0 M Ak+ −iQ2k−

−iQ1k− Ak− −M 0
Q3k+ iQ2k+ 0 −�2

⎤⎥⎦,

(3)

where k± = kx ± iky, D′ = h̄2

2m0
= 3.8 eV Å2, and n =

1, 2, ..., 4. The states |2〉 and |3〉 are the E1 ↑ and H1 ↑
states, discussed in Sec. I. These interact with remote states
|1〉 and |4〉, at energies, �1 and −�2, respectively. In this
example, the remote states are taken to behave like the third
confined electron state E3 ↑ and the first confined light-hole
state L1 ↓ with parameter values Q3 � Q1 � Q2 � 1

2 A.
These are the nearest-interacting subbands if electron-light
hole mixing due to quantum confinement is ignored. This
type of mixing is addressed in the next subsection where an
extended LKMB treatment is developed with a more realistic
dispersion [e.g., see Fig. 3(c)]. However, even with four
states, Eq. (3) does capture the kind of strong valence band
non-parabolicity that is absent in the BHZ model (e.g., see
Fig. 9).

Because D′ is quite small, the diagonal quadratic term
in the first line of Eq. (3) will be ignored. Moreover, its
inclusion would lead to nonexponential hard wall edge state
solutions, which are not considered in this paper. The effect
of including this term will be discussed further at the end
of Sec. V. Using the perturbation expression in Eq. (2), the
LKMB Hamiltonian, H ′

4×4↑(k) is then reduced to the BHZ
Hamiltonian, H ′

2×2↑(k) where

B = 1

2

(
Q2

2

�2 + M
+ Q2

1

�1 + M

)
, (4a)

D = 1

2

(
Q2

2

�2 + M
− Q2

1

�1 + M

)
. (4b)

If more states that interact with bands |2〉 and |3〉 are
included in Eq. (3), there will simply be an additional term
from each band in the expressions for B and D. This procedure
is analogous to that used to derive the BHZ Hamiltonian in
the supplemental material of Ref. [7], where B and D were
calculated from the Luttinger parameters. The Luttinger pa-
rameters depend on interactions with remote states, which can
be expressed in a similar form to Eq. (4) [62]. Note that B
and D have no dependence on Q3. This term only makes a
weak k3 contribution to the off diagonal terms when higher
orders are included in Eq. (2), but which are ignored in the
BHZ Hamiltonian.

FIG. 2. Dispersions in the y direction with M = −0.0075 eV,
A = Q1= Q2 = 3.83 eVÅ, Q3 = 0, and �1 = �2 = 0.15 eV for the
spin up LKMB Hamiltonian over (a) a short, and (b) a wide, range
of wave vector, onto which are superimposed the equivalent BHZ

results with B = 102.9 eV Å
2

and D = 0. Extended (evanescent)
states are depicted as small blue (black) circles and as solid (dashed)
gray lines for the LKMB and BHZ Hamiltonians, respectively. The
large solid (open) black circles show the imaginary wave vectors of
the zero-energy wing states for Q3 = −2 (Q3 = 1 or 6.7) eVÅ.

Equation (4) shows that the size of the reciprocal mass
terms, B and D, in H ′

2×2↑(k) is determined by the interaction
with the remote states, |1〉 and |4〉 that have been eliminated. If
these states are removed to infinity, i.e., �1,�2 → ∞, the re-
ciprocal mass terms are reduced to zero. This highlights a first
problem with OBCs. As discussed in Sec. I, the Dirac point of
the edge states in the OBC model occurs at ED

OBC = −M D
B .

Thus for a given ratio D
B the shift of the Dirac point from

midgap remains fixed, even when D and B become vanish-
ingly small. In fact, the whole edge dispersion remains fixed
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FIG. 3. Dispersions for (a) the extended LKMB model and (b) the KT model. The regions inside the boxes near the zone center are depicted
in (c), where they are compared with the standard BHZ model. In (a) and (b) extended states are shown in blue and evanescent states in black.
In (c) different colors are used to distinguish between the three models, which are labeled accordingly, with black uppermost for the evanescent
states of the extended LKMB model. Parameters for the extended LKMB and KT models are given in the Supplemental Material [63]. Values
for the standard BHZ and KT models are very close to those used by Krishtopenko and Teppe in Ref. [43]. In (a) and (b) the different subbands
are identified at zero wave vector in gray. Note the break in the wave vector scale in (b).

(see Sec. III). This kind of behavior is not physical, because
remote states, which are far away in energy cause the same
shift as when they are much closer.

B. Failure of OBCs

Figure 2 shows the extended and evanescent states, in
blue and black, respectively, calculated from H ′

4×4↑(k) with
kx= 0, for the case of a symmetric inverted band gap where
M = −0.0075 eV, A = Q1= Q2 = Q = 3.83 eVÅ, Q3 = 0,
and �1 = �2 = � = 0.15 eV = − 20M. In addition to the
middle states with a small decay parameter connecting bands
|2〉 and |3〉, as discussed in Sec. I for the BHZ model, there are
now physical evanescent states with a large decay parameter
connecting bands |1〉 and |4〉. For nonzero Q3, there is a
change in the magnitude of this decay parameter, which is
demonstrated at zero energy by the two black circles, solid
for negative Q3 and open for positive Q3. For all values of Q3,
however, the middle states are totally unaffected. Since Q3 is
typically very small and in any case makes no contribution to
the BHZ Hamiltonian, it will henceforth be set to zero.

Superimposed in gray in Fig. 2 are the solutions of the
BHZ Hamiltonian with the same M and A values as for the
multiband case, and with B = 102.9 eV Å

2
, D = 0, calculated

from the M, Q, and � values using Eq. (4). It can be seen
in Fig. 2(a) that the two dispersions correspond very well for
the middle states and for the conduction and valence band
edges out to ky = 0.007 × 2π

asub
, which is consistent with the

valid range of wave vectors for the BHZ model, |ky| < kmax,
discussed in Sec. I. However Fig. 2(b) shows that the two
dispersions are completely different in the vicinity of the wing
states. This highlights the spurious nature of the BHZ wing
dispersion, even when D = 0. The two models only agree near
imaginary wave vector ky = iσw(0) (with perfect agreement in
the limit M → 0), demonstrating that the spurious branch is a
phantom like dispersion associated with bands |1〉 and |4〉 that
have been eliminated. It cannot merge with these band edges
as in the LKMB model, because they are no longer there, so
adopts a meaningless trajectory towards the Brillouin zone
boundary. It should be emphasized that wing solutions with

similar behavior also exist in the tight binding version of the
BHZ Hamiltonian, which apparently spans the full Brillouin
zone [7,8]. In all cases, the key factor is the reduced number
of bands.

The zero-energy spin-up eigenvectors of the middle and
wing solutions of the BHZ model are both 1√

2
[1,−1], which

enables their combination into an OBC wave function at the
Dirac point, as discussed in Sec. I. Such combination is un-
fortunate, because a proper description of the wing solution
should contain significant amplitudes from the absent states,
|1〉 and |4〉. This can be seen in the zero energy eigenvectors
of the LKMB model, which are calculated in Sec. II D and
given in the first two columns of Table II for the parameters
used in Fig. 2, namely [i0.037, −0.706, 0.706, i0.037] and
[i0.486, −0.513, 0.513, i0.486]. These eigenvectors contain
contributions from the relevant bands and represent the dif-
ferent physical nature of the two states correctly. However,
in consequence, they can no longer be combined into a wave
function, which satisfies OBCs, showing that there is a funda-
mental problem with the OBC approach.

In the next subsection an extended version of the LKMB
Hamiltonian is developed with a larger basis than in the toy
model, to give a better correspondence to the real band dis-
persions in a HgTe/CdTe QW. This shows that the absence of
an OBC solution is quite general and does not depend on the
number of basis states included in the LKMB Hamiltonian.

C. Extended LKMB Hamiltonian

Krishtopenko and Teppe (KT) have recently used an ex-
tended version of the BHZ model in which E2 and H2 states of
opposite spin are added to each “spin” block, with k-quadratic
interactions with the E1 and H1 states [43]. The KT model
is able to reproduce the in-plane camelback dispersion in
the valence band of HgTe/CdTe TI QWs quite well [10,43].
Krishtopenko and Teppe also propose that a more realistic
edge state dispersion can be obtained by applying OBCs to
this extended BHZ model. In this subsection, the KT model
is compared with an extended version of the LKMB Hamil-
tonian, developed in the Supplemental Material of this paper
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[63], which has 6 states in each spin block. The “spin-up”
block contains the 4 states of the KT model, E ′

1 ↑, E ′
2 ↓, H1 ↑

and H2 ↓, and also the first two light hole states, L′
1 ↓ and

L′
2 ↑. The primes indicate that E ′

1 ↑ is a mixture of E1 ↑ with
L2 ↑, and E ′

2 ↓ is a mixture of E2 ↓ with L1 ↓, which is a result
of the quantum confinement [43,64]. As in the previous sub-
section, the key difference between the two models is that the
extended LKMB model contains only k-linear terms, while
light holes and other more remote states have been eliminated
in the KT model using Eq. (2), leading to the introduction of
k-quadratic terms.

Figures 3(a) and 3(b) compare the dispersions for the two
extended models over a wide range of energy and wave vector.
The regions near the zone center in the vicinity of the band
gap and marked by the boxes are expanded and superimposed
in Fig. 3(c), where they are compared with the dispersion
of the standard BHZ model. In the expanded plot, it can be
seen that both extended models reproduce the anticrossing
between the E ′

1- and H2-valence bands quite well, which leads
to the camelback in the KT model at a wave vector of about
ky � 0.045 × 2π/asub. The extended LKMB model shows
the correct curvature but does not produce a camelback. At
|ky| > kmax, the standard BHZ model deviates quite strongly
from the extended models, which both extend the useful range
beyond the anti-crossing. However, due to their limited basis
they still diverge quite significantly from a full 8 band Kane
model, especially outside the boundaries of Fig. 3(c) (see Fig.
S1 within the Supplemental Material [63]). Although the KT
model reproduces the camelback in the valence band of the
Kane model rather better than the extended LKMB model,
the reverse is true for the two conduction sub-bands, where
the KT model shows strong non-parabolicity that is absent in
the other models.

In Fig. 3(c) the “middle” gap states are superimposed,
using different colors for the three models with black for
the extended LKMB model uppermost, and all are virtually
indistinguishable. This is because, as shown in Sec. II B, they
are close to the zone center and their eigenvectors contain
almost no contributions from bands other than the fundamen-
tal E ′

1 and H1 bands that form the TI band gap. This is in
contrast to the wing states, which extend further from the zone
center and show the same distinguishing features as discussed
earlier for the simpler models. The k-quadratic KT model in
Fig. 3(b) still has a spurious wing dispersion, which does not
connect with any of the bulk band edges. Moreover, it has
an imaginary wave vector in the band gap region that is well
beyond the boundary of the first Brillouin zone. As demon-
strated in Ref. [43], OBCs can be satisfied by combing this
spurious wing solution with the middle solution, just as in the
standard BHZ model. This again leads to an unphysical wave
function, as discussed above. In contrast, the extended LKMB
model in Fig. 3(a) has a physical wing dispersion with large
eigenvector components from the higher energy bands with
which it connects including E ′

2, so it cannot satisfy OBCs.
These results confirm the conclusions from the simpler toy
model of Sec. II B, namely that OBCs only work when remote
states are eliminated and a spurious wing dispersion is created
with unphysical eigenvector components. Extending the BHZ
model therefore does not lead to a more realistic description
of the edge states when OBCs are used.

In the rest of this paper, edge states are developed using
SBCs applied only to the physical middle solutions, which
agree in all three of the models shown in Fig. 3(c) including
the standard BHZ model. They are all so close to the zone
center that extending the BHZ model does not lead to a more
accurate result. Since the middle solutions of the standard
BHZ model also agree with those of the LKMB toy model
discussed in Sec. II, the toy model will be used in the final
part of this Section to develop a simple analytical treatment
of LKMB edge states using SBCs. It will then be shown in
Sec. III, that these edge states are entirely consistent with
the SBC edge states derived for the BHZ model. This is true
even though the SBCs used in the two cases are different. In
the LKMB model, only wave function continuity is required,
while in the BHZ model an additional condition exists for the
wave function derivative.

D. SBC edge states of the LKMB model

Although the rest of this paper deals mainly with BHZ
edge states, the remainder of this section is dedicated to an
SBC treatment of the basic LKMB model (with Q3 = 0, as
discussed in Sec. II B). Although a toy model with a limited
number of states, it still provides a useful insight into the
behavior of the BHZ model, to which it is related through
Eq. (4).

With SBCs, the wall region is treated explicitly, because the
edge state wave functions decay on both sides of the bound-
ary. Since the eigenvectors of the middle and wing solutions
are different in the LKMB model, it is necessary to ensure
continuity of the two vector components independently. This
is entirely consistent with the separation of the middle and
wing solutions in the BHZ treatment discussed below, and
leads to similar results. In contrast to the OBC result, the
Dirac point always remains very close to midgap, even when
the semiconductor band dispersion becomes asymmetric. It is
assumed that the wall has a large fundamental band gap 2M0

that is symmetrically disposed about that of the semiconduc-
tor. How this is realized in practice, and the consequences of
when this is not the case are discussed in Sec. V. It turns out
that there are only exponential edge state solutions when the
wall parameters have a certain relationship with those in the
semiconductor. Since the number of eigenvalues is conserved
when some system parameter is varied, solutions exist for
other combinations of wall and semiconductor parameters
but they are no longer exponential. An exponential solution
exists, however, when M0  |M| and the wall band gap is
effectively infinite, so this is the limit that is used in both the
LKMB and BHZ models. It can be reached by a trajectory
in parameter space that involves only exponential solutions
(as in this paper) or otherwise. At the same time, a band gap
that is truly infinite results in an unphysically rapid decay of
the wave function in the wall region. Typical band-gap values
for the wall based on real physical systems are discussed in
Sec. V.

Two specific cases are now treated for the LKMB spin
up model. The simplest case is for a symmetric semicon-
ductor band structure. Next, band asymmetry is included. In
both treatments, the same values are used for the electron-
hole hybridization parameters in the semiconductor and
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the wall, and it is shown that this always puts the Dirac
point exactly at midgap, even when the band structure is
asymmetric. The multiband spin up treatment where these
parameters are different is discussed briefly in Sec. IV, af-
ter the corresponding results are derived for the BHZ model
in Sec. III.

Table I gives expressions for the pair of zero-energy decay
parameters σ± in the y direction and the corresponding eigen-
vectors [a, b, c, d]± for the symmetric spin up LKMB model,
expressed in terms of the following quantities:

S± = A2 + 2
M

�
Q2 ± sgn(�)A

√
A2 + 4

M

�
Q2, (5a)

R = 1 − 2
M

�

Q2

S±
, (5b)

N =
√(

Q2 + S±
2

)(
R2

A2
+ 2

S±

)
. (5c)

The parameter θ has a value of +1 for the semicon-
ductor and –1 for the wall. In contrast to the BHZ model,
where boundary conditions exist for both the wave function
and its derivative [10,55] the only boundary condition in the
LKMB model is the continuity of the wave function, because
H ′

4×4↑(k) is linear in ky. For an edge at y = 0, this means that
edge solutions must have the same eigenvectors on each side
of the boundary. Since the zero-energy eigenvectors in Table I
only depend on the ratio of the two band-gap parameters, M
and �, it is always possible to match the solutions with small
or large decay parameters, independently, for a given A and
Q, provided the band gap parameters in the semiconductor
and wall have the same ratio. Examples are shown in Table II
for the same parameters used in Fig. 2, with �

M = �0
M0

= −20,
where |2M0| and |2�0| are the band gaps between the inner
and outer bands, respectively, in the wall material. Note that
�0 is negative, because M and M0 have opposite signs. In the
Table, the eigenvectors for the small decay parameter (large
decay parameter) on each side of the boundary are written
with a small (large) typeface, so that the correspondence
between the eigenvectors in each group can be seen clearly.
Inserting �

M = �0
M0

into Eq. (4) gives B0 = B M
M0

< 0 for the
BHZ model. It was shown in previous work that for this value
of B0 there are two exponential edge states corresponding to
the same matching of solutions with either a small or a large
decay parameter, respectively [10,55]. Both models thus obey
the same condition for the two exponential edge solutions.
Moreover, B0 → 0 or �0 → −∞ as M0 → ∞, both of which
are realistic descriptions of a hard wall.

Positive �0 solutions (corresponding to positive B0 in
the BHZ model) are shown in the last column of Table II,
where there is only fairly close agreement between eigen-
vectors for the small decay parameters on each side of
the boundary. The values for b, c on each side are al-
most identical while a, d although of opposite sign, are
very small. Presumably a small deformation of the wave
function might lead to a perfect match. This can only
be checked using numerical methods, since the deformed
wave function will no longer be exponential. In contrast, the
solutions with large decay parameters have completely dif-
ferent eigenvectors in the semiconductor and the wall, with

TABLE I. Zero energy decay parameters and corresponding
eigenvectors for the spin up LKMB Hamiltonian with a symmetric
band structure, where � = �1 = �2 and Q = Q1 = Q2. The func-
tions S, R and, N are defined in Eq. (5).

Decay parameter Eigenvector

a = θsgn(�) i
N

R
A

√
S±
2

σ± = θsgn(�) �

Q2

√
S±
2 b = −θsgn(�) Q

N

√
2

S±
c = Q

N
R
A

d = i
N

roughly equal magnitudes for all four components, but where
the ratios b/c and a/d have opposite signs on each side of
the boundary. The solutions with large decay parameters are
thus unlikely to satisfy wave function continuity under any
circumstances. These results appear to be consistent with
the single edge state predicted from the Chern numbers in
the spin up BHZ model. Although there is only one non-
exponential solution in this model when B0 is positive, it
must converge to the same physical solution as for nega-
tive B0 when the wall band gap is infinite in each case and
|B0| → 0 [55]. The wing solutions for negative B0 or �0

are thus rejected as unphysical. This point is also demon-
strated by the diagram in Fig. 4, where a wall layer with
positive �0 (= �′

0) is sandwiched between the semicon-
ductor and another wall layer with negative �0 (= �′′

0).
As these parameters become very large, |�′

0| = |�′′
0| > 4 ×

107eV, only the eigenvectors of the wing solutions (listed
below the dashed wave function) are equal at the interface
between the two wall materials, while only the eigenvectors
of the middle solutions (listed below the solid wave function)
are close in value at the interface with the semiconductor.
If the central layer thickness is expanded to infinity, then only

FIG. 4. Schematic depiction of Dirac point edge state wave
functions at a compound, double layer wall, based on the middle
(solid) and wing (dashed) solutions of the symmetric spin up LKMB
Hamiltonian. The inner band-gap parameter of the wall M0  |M|
is constant and positive, while the outer band-gap parameter changes
sign in each of the two wall layers, with values �′

0  0 (�′′
0 � 0)

closest (furthest) from the semiconductor. Similar zero-energy eigen-
vectors on each side of an interface are listed below the diagram for
the semiconductor and wall parameters listed in Table II, except that
|�′

0| = |�′′
0| > 4 × 107 eV.
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TABLE II. Zero-energy decay parameters and eigenvectors for the spin up symmetric LKMB Hamiltonian at kx = 0, with two types of
wall in which �0 has opposite signs. Middle (small type face) and wing (large type face) solutions are listed below the material parameters.
The equivalent BHZ results are given in the last four rows. The solutions are calculated for M = −0.0075 eV and M0 = 200 eV, but the middle
or wing eigenvectors in the wall and semiconductor are equal for any M0 when �0 < 0 and �/M = �0/M0. When �0 > 0, they are similar
(dissimilar) for the middle (wing) solution, implying that only a single nonexponential middle solution exists.

Parameter Semicond. Wall (–ve �0) Wall (+ve �0)

LKMB model

A, A0 (eV Å) 3.83 3.83 3.83
Q, Q0 (eV Å) 3.83 3.83 3.83
�/M, �0/M0 −20 −20 50

σ±, σ0±(× 2π

asub
) 0.0020 0.0360 −53.48 −959.7 −49.68 −2582.6

a i0.037 i0.486 i0.037 i0.486 −i0.014 i0.505
b −0.706 −0.513 −0.706 −0.513 −0.707 −0.495
c 0.706 0.513 0.706 0.513 0.707 −0.495
d i0.037 i0.486 i0.037 i0.486 −i0.014 –i0.505

BHZ model

B, B0(eVÅ2) 102.9 −0.00386 0.00144
σ±, σ0±(× 2π

asub
) 0.0020 0.0341 −53.65 −908.9 −49.7 −2633.3

a 0.707 0.707 0.707 0.707 0.707 0.707
b −0.707 −0.707 −0.707 −0.707 −0.707 0.707

the single-edge state based on the small decay parameters of
the middle solutions remains at the semiconductor boundary,
while if the central layer thickness is reduced to zero, there
are two edge states localized at an interface between the semi-
conductor and a wall with negative �0, which is the situation
already discussed above. This provides additional support for
the conclusion that a wall with negative �0 supports both the
physical and spurious edge states [65]. Figure 4 is analogous
to the equivalent treatment for the BHZ case, in Fig. 3 of Ref.
[55].

Exponential solutions can also be found for the zero-energy
edge states when �1 �= �2, and/or Q1 �= Q2, and the band
structure is asymmetric. In the LKMB model, the ratio of
the outer to inner band energies for a wall with hybridization
parameters A0, Q10, and Q20, that correspond to a particular
eigenvector [a, b, c, d] at energy E , are given as a function
of kx by Eq. (A2) in Appendix A. When the hybridization
parameters on each side of the boundary are equal, namely
Q1 = Q10, Q2 = Q20 and A = A0, the expressions for the
eigenvector components in the right hand column of Table IV
of Appendix A can be used in Eq. (A2) with kx = 0 to show
that the zero energy eigenvectors in the semiconductor and
wall are equal, provided �10

M0
= �1

M and �20
M0

= �2
M , consistent

with the symmetric case discussed above. Therefore, as in the
symmetric case, solutions with either small or large decay
parameters, can be matched independently, when the outer
band parameters in the wall, �01 and �02, are negative. Note
that in the BHZ model, the semiconductor band asymmetry is
defined by the B and D parameters. Eq. (4) shows that a given
asymmetry can be achieved by various combinations of the
semiconductor Q and � parameters in the LKMB model. In
all these cases, the Dirac point does not move from gap center
when the hybridization parameters in the semiconductor are
equal to those in the wall, in good agreement with the BHZ
model when SBCs are used, but in complete contrast to the
large shift observed with OBCs. The BHZ model is discussed

in the next section, where the effect of unequal hybridization
parameters in the wall and semiconductor is now considered
(A0 �= A).

III. SBC EDGE STATES OF THE BHZ MODEL

It has been shown previously [10,15] that in the band gap
region of the four band BHZ Hamiltonian, the two exponential
decay parameters for each 2 × 2 spin block can be expressed
in terms of the wave vector parallel to the edge kx and energy
E as

σ±(kx, E ) =
√

k2
x + F ±

√
F 2 − G, (6)

where F = A2+2(MB+ED)
2B+B−

, G = M2−E2

B+B−
and B± = B ± D. At

kx = 0, these are just the decay parameters of the mid-
dle and wing solutions discussed in Sec. I, i.e., σm,w(E ) =
σ±(0, E ) = √

F ± F 2 − G. The spin up eigenvectors corre-
sponding to each solution [10] can be set equal to give the
following characteristic equation for the OBC edge state en-
ergy:

M + E + B−
(
k2

x − σ 2
−
)

A(kx + σ−)
= − A(kx − σ+)

M − E + B+
(
k2

x − σ 2+
) . (7)

Making use of the transformation, E → −E , D → −D,
kx → −kx and solving Eq. (7) for the energy yields the well-
known OBC dispersion formula for spin up [15,29]:

EOBC
2×2↑ = −Akx

√
1 − D2

B2
− M

D

B
. (8)

As discussed in Sec. II A, the OBC solution is unphysical
because it only depends on the ratio of reciprocal mass param-
eters, and not on their size.

The characteristic equation for both SBC edge solu-
tions, physical and spurious, is derived from the boundary
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conditions for the wave function and its derivative with neg-
ative B0, D0 → 0 in the limit M0 → ∞. It has been reported
previously by the author and has the form [55]

M + E + B−(k2
x − σ 2

±)

A(kx + σ±)
=

σ±D −
√

σ 2±D2 + A2
0

A0
. (9)

Equation (9) agrees with the treatment by Raichev [66] for
the [001] direction, who found an analytical expression for
the special case, D = B. In both cases, an exponential solution
requires a decay parameter in the wall given by the formula
above Eq. (9) in Ref. [10]. Equation (9) can be solved for
the energy in an analogous way to the OBC case, yielding
a dispersion

ESBC
2×2↑ = −Akx

√
1 + σ 2D2

A2
0

+ Dk2
x + Dσ 2

( A

A0
− 1

)
, (10)

where σ is the smaller decay parameter in the semiconductor
corresponding to the physical solution. Strong hybridization is
assumed, as in the previous Section, where the decay parame-
ter is real (the weak case is discussed below). As demonstrated
in Ref. [10], σ = σ− (σ = σ+) when D < B (D > B). When
D > B, the σ− solution in Eq. (6) is imaginary and corre-
sponds to the spurious gap solution with a large real wave
vector discussed in Sec. I. Note that for spin down, the sign
of the first term reverses in both Eqs. (8) and (10).

For D < B, a numerical solution of Eq. (9) was used pre-
viously to demonstrate that the σ+ solution has a larger phase
velocity than the σ− solution and does not merge smoothly
with the bulk band edges (see for example, Fig. 2(a) in Ref.
[10]). Since this decay parameter is equal to the wing solu-
tion when kx = 0, this was taken as further evidence of the
spurious nature of the edge state based on the larger decay pa-
rameter. On the other hand, the physical solution based on the
smaller decay parameter does merge smoothly with the bulk
band edges, at which point σ → 0. If the wave vector at which
the bulk and edge states merge is km

x , then Eq. (10) shows that

the merging energy is ESBC
2×2↑

lim σ→0−→ −Akm
x + D(km

x )2. Com-
paring this energy with the bulk dispersion, given in Eq. (6)

of Ref. [10], yields km
x = ±

√
−M

B . Note that substituting the
merging energy and kx = km

x into Eq. (6) yields σ = 0, as
required.

Equation (10) agrees with the result of the LKMB model
discussed at the end of the previous section, namely that when
the hybridization parameters in the semiconductor and wall
are equal, the Dirac point is at midgap, regardless of the degree
of band asymmetry. On the other hand, it was previously
pointed out that it is unlikely that these parameters are exactly
equal [55]. This is confirmed in Sec. V where a hybridization
parameter is estimated for the wall. Equation (10) then puts
the Dirac point at ED

2×2↑ = D( A
A0

− 1)σ 2
D, which is slightly

below midgap when A0 is typically slightly larger than A. The
physical zone center decay parameter σD can be evaluated
by solving Eq. (6) with kx = 0 and E = ED

2×2↑. In the limit
A0  A, it turns out to be independent of D, and is then

given by

σD = A

2B
−

√
A2

4B2
+ M

B
, (11)

which is the same expression as for the D = 0 case, given
in equation (3b) of Ref. [10]. Since the Dirac point is always
close to midgap where the decay parameter varies slowly with
energy [see Fig. 1(c)], Eq. (11) should be a good approxima-
tion for any value of A0 � A.

For equal hybridization parameters in the TI and wall,
the band gap ratios, �i0

M0
= �i

M , at the end of Sec. II can be

substituted into Eq. (4) to show that B0 = M
M0

B and D0 = M
M0

D.
Substituting these relations into the expression for kmax in
Sec. I yields the valid range of wave vectors in the wall,
kmax,0 = M0

|M|kmax. In a wall where M0 is effectively infinite
and the physical decay parameter is comparable to the size of
the Brillouin zone, its value can be estimated from σ (0, 0) in
Eq. (6) in the limit of vanishing B0, D0, giving σ0− � −M0

A .
While it is clear that the SBC wave function in the TI is
consistent with perturbation theory, to show that this is also
the case in the wall it is required that |σ0−| < kmax,0, i.e.,
M0
A < M0

|M|
√

|M|
B+D . This expression can be rearranged to give

A2

B2 >
|M|
B , which is always true in strongly hybridized TIs,

where σD in Eq. (11) is real. Thus, the physical SBC edge
state does not violate perturbation theory. In contrast, since
the wing decay parameter in the TI is greater than or equal to
A
B [52,55], this inequality also proves that the wing solution is
outside the valid range, as already pointed out in Sec. I. While
it is sometimes argued that the inclusion of the wing solution
in the OBC wave function is benign [42], especially when
it decays over several lattice spacings [47,49], this shows
that it cannot be included without violating perturbation the-
ory. Further anomalies related to OBCs are discussed in
Appendix B.

Before comparing the Dirac point predicted above for
A0 �= A with the LKMB result, a few more properties of the
newly derived dispersion relation in Eq. (10) are discussed,
all of which have been confirmed previously from a direct
solution of Eq. (9), [10,55]. First, in strongly hybridized TIs
such as HgTe/CdTe, it was noted above that the edge-state
velocity for the spurious solution with D < B is larger than
for the physical solution. This is confirmed by replacing the
decay parameter in Eq. (10) with σ+  σ−, which leads to
a larger square root term and hence a larger velocity. Second,
in weakly hybridized InAs/GaSb/AlSb, the decay parameters
near kx = 0 are complex conjugates. As discussed previously,
the physical and spurious wave functions are obtained from
real symmetric and antisymmetric combinations of these two
solutions [67]. However, it was noted in Ref. [55] that the
characteristic equation in this regime does not have an exact
solution when D �= 0, although the error is small. This is
now understood from Eq. (10), where the energy ESBC

2×2↑ is
no longer real when σ 2

±D2/A2
0 is complex. The absence of an

exact solution when D is finite shows that the edge state wave
function is no longer purely exponential, and numerical meth-
ods must be used to obtain a precise solution. Note also, that
for the exponential case with D = 0, SBCs give B0 = M

M0
B
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FIG. 5. 8-band Kane model of the band gap region of a “7 nm” (67Å) HgTe/CdTe QW plotted along [1,0,0], calculated with the parameter
sets listed in Table SIII of the Supplemental Material [63] based on (a) Ref. [10] and (b) Ref. [43] (asub = 6.479Å). The bulk BHZ bands are
superimposed as crosses and plotted to the merging points with the SBC edge states, which are shown as dashed lines (BHZ parameters are
indicated on the plots, and A0 = A). The BHZ band gap parameter in each case is M = −0.0075 eV. In (a) there is no OBC edge solution,
because B<D, while in (b) the OBC edge solution is plotted as dots.

and |Re(σ0)| = A
2|B0| when A0 = A [10]. The condition for a

complex TI decay parameter is A2

4B2 <
|M|
B , yielding |Re(σ0)| <

kmax,0 and confirming, also for weak hybridization, that the
SBC wave function in a wall with effectively infinite M0 is
still consistent with perturbation theory. For an exponential
solution with A0 > A, the wall Hamiltonian is non-Hermitian
except in the infinite limit, when it can again be shown that
the solution is consistent with perturbation theory.

An important distinction between strongly and weakly
hybridized TIs based on HgTe/CdTe and InAs/GsSb/AlSb
QWs, respectively, is that the valence band in the second case
has a strong splitting due to structural inversion asymmetry
(SIA). Based on perturbation arguments, it was previously
argued that the edge state dispersion is essentially unaffected
by SIA, so that it merges with the edge of the unsplit valence
band [67]. The Dirac point is then close to, or even hidden
below, the split valence band edge. This can be understood
more directly by noting that because the valence band profile
is not symmetric in the growth or z direction, it behaves like
an effective electric field F = ẑFz. Ignoring k-independent and
weaker anisotropic contributions, the leading Rashba term
in the valence band behaves as HR ∝ J · k × F, where J is
the total angular momentum [68]. This leads to split valence
band energies for total angular momentum aligned parallel or
antiparallel to the tangent of a circle in the x-y plane [68]. In
contrast, the edge states move only in the x direction with total
angular momentum components quantized along z (see Table I
of Ref. [10]) so they have no Rashba interaction.

To illustrate the results of this section and compare with a
realistic dispersion model, Fig. 5 shows the bulk band struc-
ture of a HgTe/CdTe QW with a width of 7 nm, calculated
with an 8-band Kane model [10] according to the two dif-
ferent sets of model parameters listed in Table SIII within
the Supplemental Material [63], which are based on previous

work by the author [10] and the set used by Krishtopenko
and Teppe [43], respectively. In the second case, modified
Luttinger values are given [69], which have been converted
into the standard values using the relations in Ref. [70]. The
camelback discussed earlier in Sec. II C can be seen clearly,
where it was shown to arise from an anti-crossing between
the second heavy-hole band H2 and the E ′

1 valence band edge.
In the second case the H2 band lies deeper in energy and
the anticrossing is larger, although both of these properties
have been shown to be quite sensitive to the lattice parameter
of the substrate [43]. Bulk BHZ bands have been fitted to
the Kane bands according to the BHZ parameters given on
the plots, which are also similar to the values given in each
reference. In Fig. 5(a) it can be seen that the band asymmetry
is such that D > B and there is therefore no OBC solution,
as discussed above. On the other hand, SBC solutions exist
in both cases, and these are plotted with the bulk BHZ bands
up to the merging points. They occur within the small range
of wave vectors allowed by perturbation theory, |k| < kmax �
0.008 × 2π/asub, and evolve smoothly as the Luttinger and
energy parameters are varied. The differences in the two sets
of parameters are actually quite small, the main variation
being for the Luttinger parameters, γ1, γ2, γ2, and energy EP.
As described in Ref. [71], the method for determining the
parameters used in Fig. 5(a) has been shown to work very
well for narrow band gap superlattices of various types, even
when strong band bowing is present. These parameter values
are also much closer to the values given in the widely cited
paper by Lawaetz [62], which are also listed in Table SIII
[63]. This is just to demonstrate that both band structures in
Fig. 5 correspond to a realistic TI with an inverted band gap,
so the existence of their edge states should not depend on
the particular choice of Luttinger parameters. Moreover, for
a smooth evolution of the bulk dispersion from Fig. 5(b) to
Fig. 5(a), the OBC edge states vanish at the point where their
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phase velocities decrease to zero, when they no longer merge
with the valence band edge, even far beyond the Brillouin
zone boundaries (see also Fig. 2 in Ref. [55]).

The extension of the edge states into the camelback region
and beyond before vanishing completely, when the bulk band
structure is slightly deformed, highlights the unphysical na-
ture of the OBC solution, as already predicted from the LKMB
model in Sec. II. In contrast, Fig. 5 shows that the standard
BHZ model provides a consistent description of the edge
states when SBCs are used. The failure of OBCs shows that it
is necessary to take the wall into account. In the next section,
the sensitivity of the SBC dispersion to the wall hybridization
parameters is compared for the LKMB and BHZ treatments,
and this is followed in Sec. V by a discussion of physical
models for the wall, consistent with the BHZ Hamiltonian.

IV. SENSITIVITY TO WALL HYBRIDIZATION

In this section the energies of the Dirac point are compared
for the BHZ and LKMB models, when one or more of the
electron-hole hybridization parameters in the semiconductor
are unequal to those in the wall. As shown in the previous
section, when A0 > A, the BHZ model predicts a negative
Dirac point energy of ED

2×2↑ = D( A
A0

− 1)σ 2
D, where σD is

given to a very good approximation by Eq. (11).
Since the Dirac point is no longer at E = 0, it is not a

simple matter to find an analytical solution for its energy
in the LKMB model. Instead a numerical solution can be
performed based on Eq. (A2), with kx = 0. By inserting the
eigenvector for the middle solution of the semiconductor at
energy E into Eq. (A2), and using the predicted ratio of the
outer to inner band energies in the wall to calculate its middle
solution at the same energy, the energy of the Dirac point
ED

4×4↑ is found when the wall and semiconductor eigenvec-
tors are equal. The results are shown in Table III for typical
semiconductor parameters and two different values of the
wall hybridization parameter A0. The effect of changing the
secondary wall hybridization parameters Q10 and Q20 is also
studied. The calculation was performed such that each of the
eigenvector components in the semiconductor and wall agree
to better than 0.001%. Results for the BHZ model are also
shown in the lower part of the Table, for comparison.

In the LKMB model there is a dependence on the
secondary hybridization parameters and almost perfect cor-
respondence exists with the BHZ model when the wall values
are very small (not shown in Table III). For the parameter val-
ues shown in the Table, the correspondence between models is
reasonable, with agreement for the energy of the Dirac point
to better than 1.0 meV or just a few percent of the TI band
gap. Note that the Dirac point even has a small positive energy
when all hybridization parameters in the wall are equal. It can
be concluded, however, that the shift of the Dirac point from
midgap is extremely small in both models, showing that the
BHZ model provides a reasonable estimate.

The large wall hybridization parameter of 1973.5 eV Å in
the right hand column of Table III corresponds to A0 = h̄c in
the relativistic Dirac equation. It was previously suggested by
the author that this value might be used for a vacuum wall
[55]. In the next section, however, it is argued that the rela-
tivistic value cannot be justified and an alternative picture is

TABLE III. The eigenvectors of the spin up LKMB middle so-
lutions in three types of wall with negative �i0 and A0 �= A, at the
energy of the Dirac point ED

4×4↑ for the semiconductor parameters
defined in the first column. The solutions are calculated for M =
−0.0075 eV and M0 = 200 eV, but the eigenvectors and Dirac point
are essentially unchanged for any M0 > 1 eV. The equivalent BHZ
results are given in the lower rows. The ratio of the Dirac point
energies calculated by the two methods is shown in the last row. The
listed outer band energies of the wall were calculated using Eq. (A2).
For other values, the solutions are not exponential.

Parameter Semicond. Wall (1) Wall (2) Wall (3)

LKMB model

A, A0 (eV Å) 3.83 11.0 11.0 1973.5
Q1, Q10 (eV Å) 2.0 2.0 11.0 2.0
Q2, Q20 (eV Å) 2.0 2.0 11.0 2.0
�1/M, �10/M0 −20.0 −6.723 −40.18 −0.037
�2/M, �20/M0 −3.2 −1.066 −6.52 −0.0058
a i0.0195 i0.0200 i0.0193
b −0.6971 −0.6769 −0.7016
c 0.7064 0.7268 0.7017
d i0.1211 i0.1149 i0.1225
ED

4×4↑(eV) −0.00020 0.00027 −0.00030

BHZ model

B, B0(eVÅ2) 135.3 −0.153 −0.063 0.0204
D, D0(eVÅ2) 107.2 −0.149 −0.047 −0.00032
ED

2×2↑(eV) −0.00031 −0.00031 −0.00048

ED
4×4↑/ED

2×2↑ 0.629 −0.856 0.633

presented. This predicts a smaller value for the hybridization
parameter, closer to that in the semiconductor.

V. DISCUSSION OF THE BHZ WALL REGION

A. k · p treatment of the interface

Although the 2D Dirac Hamiltonian for a free electron
is similar in form to the BHZ Hamiltonian, a treatment is
required for the wall that is conceptually consistent within a
non-relativistic k·p framework. In this section an attempt is
made to address this issue.

The final term in Eq. (1), was not required for the preceding
treatment of the evanescent band-gap states, which are essen-
tially properties of the bulk material. However, this term is
required when considering properties related specifically to
the sample edge. If we ignore derivative of a delta-function
terms, and consider only a single boundary at y = 0, then
Hmod

nn′ (y) is given to a reasonable approximation by the fol-
lowing expression:

Hmod
nn′ (y) = δUnn′G̃(y) − D0,nn′̃δ(y), (12)

where G(y) is a step function as shown in the middle panel of
Fig. 6(a) and δ(y) is a Dirac delta function, whereas G̃(y) and
δ̃(y) are the same functions with Fourier components limited
to the first Brillouin zone [51]. While the first pair of functions
are mathematically abrupt, the second pair change over a
distance of about one monolayer, or a′ = asub

2 . The matrix ele-
ment δUnn′ is defined as 〈n|δU |n′〉 where δU = UB − UA and
UA and UB are the microscopic crystal potentials for materials
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FIG. 6. (a) Schematic microscopic potential of mercury telluride near the edge of a HgTe/CdTe two dimensional QW. The upper panel in
(a) shows the microscopic crystal potential UA in the QW, and UB = 0 is the potential in the wall, where UB = UA + G(y)δU . The step function
G(y) is shown in the middle panel and the perturbing potential δU = UB − UA is depicted in the lower panel. (b) Components 	a

0(y) and 	s
0(y)

of the crystal periodic interface function 	0 are shown over a distance of one monolayer (width a′) for a mathematically abrupt interface,
together with the s-antibonding and p-bonding crystal periodic functions, and the perturbation δU . These functions are used to calculate the
interface potentials D0,nn′ = 〈n|	0δU |n′〉.

A and B on each side of the interface. Material A is treated
as a reference crystal and δU is thus the perturbation that
transforms material A into material B. En in Eq. (1) is then a
local band edge in the reference crystal, and the perturbation
terms δUnn′G̃(y) in Eq. (12) can be used with the Pikus-Bir
formula in Eq. (2) to generate the band edge positions of the
local states in the other material. Together with the interface
terms D0,nn′ , which are discussed in detail below, it is possible
to describe the local band edges and basis states in materials
A or B, and their evolution on passing from one material to the
other [58,59].

Figure 6(a) illustrates how materials A and B are de-
fined in the present treatment. Material A represents the TI
semiconductor, which is depicted schematically along the y
direction in Fig. 6 for mercury telluride in the central plane
of a HgTe/CdTe QW grown in the z direction. If UA is the
microscopic crystal potential in the QW, UB = 0 represents
the potential in the wall, which is treated as the vacuum or
“empty crystal” with the same lattice parameter as material A.
Thus δU = −UA, which is depicted schematically in the lower
panel of Fig. 6(a). Local antibonding s- and bonding p-like
band edge states in the semiconductor should thus evolve into
empty crystal states of the same symmetry in the vacuum.

B. Four band empty crystal

In the empty crystal, antibonding s- and bonding p-like
states with a given spin can be constructed directly from
degenerate free electron states with wave vectors, π

a′ [±2, 0, 0],

π
a′ [0,±2, 0] and π

a′ [0, 0,±2], normalized to an effective unit
cell volume a′3 as follows [1,60]:

us = i

√
2

3a′3

[
cos

(
2πx

a′

)
+ cos

(
2πy

a′

)
+ cos

(
2πz

a′

)]
,

(13a)

up =
√

1

a′3

[
sin

(
2πx

a′

)
+ i sin

(
2πy

a′

)]
. (13b)

The hybridization parameter in the wall is thus

A0 = − h̄2

m0
〈up| ∂

∂y
|us〉, (14)

which yields

A0 = h̄vw, (15a)

vw = h√
6m0a′ . (15b)

Taking a′= 3Å gives a value of vw = 9.90 × 105 m/s.
Thus, the hybridization parameter for the wall calculated from
Eq. (15b) is 6.5 eV Å, which is much smaller than the free
electron Dirac value of 1973.5 eV Å.

C. The need for passivation

Unfortunately, a vacuum wall based on the empty crystal
wave functions defined in Eq. (13) does not obey a Dirac-like
Hamiltonian, because these wave functions are degenerate
with an energy that is much higher than the energies of the
band gap states in the semiconductor. Instead the wall behaves
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for spin up as

Hwall
2×2↑ = A0(σxkx − σyky) + σzM0 + I2×2M1 (16)

with M0 = 0 and M1 = h̄2(2π/a′)2/2m0 = 16.7 eV. Al-
though topological edge states are predicted from the change
in Chern number or Z2 index of the semiconductor when the
band gap inverts [7,28,38], this wall Hamiltonian does not
ensure the existence of a Dirac point. For example, the SBC
wave function has no exponential solution in the wall with a
real energy at kx = 0.

Treatments that lead to an edge state dispersion with a
Dirac point, including those based on OBCs [31], and SBC
treatments presented in this paper or elsewhere [14], generally
require a wall with a large band gap that overlaps that of the
semiconductor. Since this does not occur with a vacuum, a
passivation material is required, which should also have band
edge states with opposite parity, ideally with s- and p-like
symmetry, so that it behaves for spin up like Hwall

2×2↑ with
a large value of M0, and with M1 � 0 (additional quadratic
terms, σzk · B0k + I2×2k·D0k, can also be included). A good
candidate appears to be silicon dioxide (SiO2), which is the
material deposited on the delineated bar-shaped sample in
at least two cases where the observation of one dimensional
edge states has been reported [8,72]. Harrison [73] discusses
the band structure of this material, which has a band gap of
approximately 9 eV. The upper valence band is composed
of states, which have bonding p-like symmetry, and in the
cubic β-cristobalite phase, they mimic the (X ± iY )/

√
2 basis

of the TI Hamiltonian. The conduction band is composed
of an antibonding state with s-like symmetry on both the
silicon and oxygen sites. The lattice parameter of the cubic
unit cell is about 7.1Å, but a tetragonal version exists with
a and c parameters of 5.0 and 6.9 Å [74]. The cubic lattice
parameters for HgTe/CdTe or InAs/GaSb/AlSb QWs, are
6.5 Å and 6.1 Å, respectively, which are fairly similar to
these values. It is reasonable to suppose that in the ideal case
the first few atomic layers of the passivation layer will grow
in registration with the TI semiconductor lattice before the
SiO2 structure adopts a more complex lower energy phase.
A SiO2 band gap of ∼9 eV corresponds to M0 = 4.5 eV.
In addition, the difference between the electron affinities of
SiO2 and HgTe or InAs is about 4.3 ± 0.3 eV [75–77], so
M0  M1. Since the band-edge states have the same s- and
p-like symmetries as the empty crystal states in Eq. (13), the
value of A0 = 6.5eV Å calculated above should give a correct
order of magnitude. The wave function decay parameter in the
SiO2 is thus approximately M0

A0
� 0.7Å−1. This corresponds to

a decay length of the order of one effective lattice parameter
a′, which is reasonably consistent with a k · p wave function
containing only Fourier components in the first Brillouin zone.
It also shows that only a few SiO2 monolayers are required
before the wave function has fully decayed, consistent with
the structural assumptions made above.

If a passivation layer such as silicon dioxide is not used
intentionally, it is still quite possible that a thin native oxide
with a large band gap can form at an untreated wall after sam-
ple delineation, e.g., mercury oxide and/or tellurium oxide for
an HgTe/CdTe QW sample. Even here, the conduction and
valence bands may be composed of the s-and p-like orbitals
of the oxygen and semiconductor atoms, so it may still be

possible to define a wall Hamiltonian with M0  M1, M. An
additional complication is the possible formation of trivial
edge states, whose presence may well depend on the choice of
surface treatment and passivation material. For example, bar
samples have been fabricated from InAs/GaSb/AlSb QWs by
different groups, using silicon oxide or silicon nitride [72,78],
and aluminum oxide or hafnium oxide [9]. In the second case
there is evidence of edge conduction in the normal phase,
suggesting that trivial edge states are present and calling into
question whether this is generally the case, or dependent on
which passivation material is used.

D. Interface band mixing

The final term of Eq. (12) contains interface potentials
D0,nn′ , which are analogous to the symmetry based surface
parameters of Asmar et al. [14], and which arise because
the orbitals on the boundary layer of atoms experience a
different microscopic potential to their immediate neigh-
bors. The interface potentials can be evaluated as D0,nn′ =
〈n|	0δU |n′〉, where the crystal periodic interface function,
	0(y) = 	a

0(y) + 	s
0(y), is the sum of two components, the

first of which has even parity and the other, odd parity, with
respect to the boundary atomic plane [51]. In the example in
Fig. 6 with an interface to the vacuum at y = 0, this is the
plane of mercury atoms closest to the origin. The functions,
	

s/a
0 (y), are depicted over one unit cell in the lower part of

Fig. 6(b), for a mathematically abrupt interface. For a more
realistic interface with a finite width they become significantly
dampened, as shown in Fig. 3 of Ref. [51] for an interface
with a width of 0.8Å. Also shown in Fig. 6(b) are the crystal
periodic perturbing potential, δU , as in Fig. 6(a), and the
antibonding s- and bonding p-like crystal periodic functions
of the reference crystal, which are depicted blue when positive
and red when negative. The example in Fig. 6 is for a vacuum
interface, but the perturbing potential δU = UB − UA can eas-
ily be modified to represent an interface with a passivation
material, such as silicon dioxide whose microscopic potential
is then represented by UB. This material is assumed to be pe-
riodic for the first one or two monolayers as discussed above,
and so can be treated here with perfect periodicity because
we are only interested in the interface region over the width
of the delta function δ̃(y), which is about one monolayer.
Inspection of the symmetries in Fig. 6(b) shows that there
will be four finite contributions to D0.nn′ , namely D0.SS, D0.XX

and D0.YY, which have a finite matrix element with 	a
0(y),

and D0.SY, which has a finite matrix element with 	s
0(y).

Ignoring electron-light hole mixing [63], the spin up edge
state wave function is the product of an eigenvector based
on E1 and H1 QW states [10]: |+〉 � 1√

2
|iS〉 ↑ − 1

2 (X + iY ) ↑
and a y-dependent envelope function: ψ↑σ (kx )(y), so the energy
shift of the Dirac point due to the interface band mixing is
approximately

δE = η|ψ↑σ (0)(0)|2

×
[

2D0,SS + D0,XX + D0,YY

4
− D0,SY√

2

]
(17)

= η|ψ↑σ (0)(0)|2D0,
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in which σ (kx ) is the decay parameter of the physical edge
state in the semiconductor. The dependence on the squared
amplitude of the envelope function at y = 0 is due to the
delta function in Eq. (12), where δ̃(y) has been replaced
by δ(y). Since the wave function in the wall decays at the
about the same rate as δ̃(y), this will lead to an overestimate,
so a correction factor η has been introduced into Eq. (17)
where η � 0.5. Note that overlap integrals of QW envelope
functions of order unity have not been included explicitly.
The value of D0 depends on the magnitudes and signs of
the four contributions in the square bracket, which can only
be estimated using microscopic calculations. Estimates for
these interface band mixing potentials at a superlattice inter-
face vary widely, and are typically in the range 0.1 − 2 eVÅ
[79,80]. Noting that |ψ↑σ (0)(0)|2 = 2σD where σD may be
estimated using Eq. (11), and assuming a relatively large value
of D0 = 2 eVÅ, the Dirac point is predicted to shift by δE
= 0.004 eV when B = 135.3 eVÅ2 and D = 107.2 eVÅ2 (as
in Table III). An important point to note is that the shift of
the edge state dispersion is largest at the Dirac point and
decreases with increasing edge state wave vector, because it is
proportional to 2σ (kx ), which vanishes at the merging points
with the bulk band structure. Thus interface band mixing may
shift the Dirac point and distort the edge state dispersion, but
the merging points will remain fixed.

E. Effect of the D′ term

Finally, the significance of the quadratic term proportional
to D′ in the first line of the LKMB Hamiltonian of Eq. (3) must
be considered. In the present paper this term has been ignored
because it is quite small. For example, its inclusion causes a
virtually imperceptible shift of the middle states in Fig. 2(a),
of only −17 μeV at midgap reducing to zero at the band
edges. Moreover its matrix element with the edge-state wave
functions diverges due to a discontinuity in the first derivative
of the wave function at the boundary, and to a contribution in
the wall, which tends to infinity with increasing wall poten-
tial, M0. Assuming that the energy of the Dirac point varies
smoothly with increasing D′, this shows that a nonzero value
of D′ must lead to a nonexponential wave function, with a
continuous first derivative and with a more linear mode of
decay in the wall. This is consistent with the BHZ model,
where inclusion of the quadratic term in Eq. (3) results in
the addition of D′ = h̄2

2m0
to the expression for D in Eq. (4b).

As for the multiband case, this has negligible effect on the
dispersion of the middle states in the semiconductor. In the
wall, however, an exponential solution requires that the band
asymmetry parameter varies as D0 = σ

σ0
D, vanishing when

M0 → ∞ [10]. If instead D0 → D′ and does not vanish, the
solution will again be non-exponential. There will thus be a
shift in the edge-state energy in both models, compared with
the exponential solutions calculated for D′ = 0. Based on the
small value of D′, and in the absence of an exact numerical
solution, this shift is assumed to be small.

VI. CONCLUSIONS

The four-band BHZ Hamiltonian provides a simple but
realistic description of the band edge states in 2D TIs such as
HgTe/CdTe and InAs/GaSb/AlSb. However, the validation
of hard wall boundary conditions appropriate to such materi-
als has remained elusive. The most popular choice is OBCs,
which avoid any explicit treatment for the wall, while other
boundary conditions tend to be phenomenological in nature,
so the connection with the microscopic structure of the wall
remains unclear. In this paper, OBCs have been ruled out,
because they fail when the remote states are included explic-
itly in the semiconductor Hamiltonian. At the same time, the
other boundary conditions show that a wide variety of edge-
state dispersions are possible, depending on the values of the
phenomenological parameters. Therefore a different approach
has been adopted here, based on SBCs, which address apriori
both the microscopic properties of the wall, and the conditions
that can lead to the existence of a Dirac point.

The use of OBCs leads to contactless edge confinement,
and a Dirac point with an unphysical dependence on the TI
band parameters. Other unphysical results have also been
reported when these boundary conditions are used [55], and
it is shown in Appendix B that they lead to an unphysical ex-
tension of the edge states into the topologically trivial phase.
Although mathematically correct, it is known that one of the
two gap solutions for a given spin direction is spurious. Un-
fortunately, this solution must be combined with the physical
gap solution in order to satisfy OBCs, and such combination
is only possible because both solutions have the same eigen-
vector. The spurious solution is related to diagonal k-quadratic
terms, which are introduced into the BHZ Hamiltonian when
remote states are eliminated using perturbation theory. If the
remote states are not eliminated but included in a larger,
LKMB Hamiltonian, the eigenvectors of the two gap solutions
are no longer equal and an OBC solution is impossible. This
is because the spurious solution is replaced by a physical
solution with large eigenvector components from the remote
states. It has been shown that this also applies to an extended
version of the BHZ Hamiltonian that was recently proposed
to model the bulk band edges over a wider range, including a
camelback in the valence band.

An alternative approach suggested previously by the author
is to use SBCs. These boundary conditions match both the
wave function and the product of its derivative and a reciprocal
mass term at the interface between the semiconductor and
the wall, and are obtained by integrating the BHZ eigenstate
equation across the boundary region. Unlike most other SBC
treatments, which have been applied to a soft wall and which
evolve into OBCs when the wall becomes hard, the present
SBC approach is for a hard wall and results in wave function
confinement with a large amplitude at the edge. This type of
confinement is typical of other classic surface phenomena,
such as surface plasmons and phonons. The SBC edge state
wave function is constructed from just the physical gap so-
lutions on each side of the boundary. It has been verified in
the present paper by comparison with a LKMB solution, with
which it is in complete agreement. In both cases, the Dirac
point has a dependence on the TI band parameters that is
physically justifiable.
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One of the challenges of the SBC approach is to establish
the strength of the electron-hole hybridization in the wall.
When the semiconductor and wall have the same midgap en-
ergies but different hybridization parameters, the Dirac point
is slightly shifted from midgap but rather insensitive to the
difference. In this paper, a free electron basis that matches the
symmetry of the antibonding s states and bonding p states in
the semiconductor is used to estimate the wall hybridization
parameter, which behaves like the free electron Dirac value
A0 = h̄c but with the speed of light c replaced by a veloc-
ity vw = h√

6m0a′ in which a′ is the monolayer thickness in
the semiconductor. The wall hybridization parameter is then
about 6.5 eV Å, which is comparable to the semiconductor
value in a TI with strong hybridization. An empty crystal
Hamiltonian constructed from this basis represents a hard vac-
uum like wall, but unfortunately exhibits no splitting between
the electron and hole states, which are also much higher in
energy than those in the semiconductor. In order to ensure
an edge-state dispersion with a Dirac point in the BHZ band
gap, it appears that a thin passivation layer is required, which
may be the native oxide of the material, or an externally
deposited dielectric material such as silicon dioxide, for which
successful observations of the quantum spin Hall effect have
been reported. Silicon dioxide indeed has bands of the cor-
rect s- and p-like symmetry separated by a large band gap
that overlaps that of the semiconductor fairly symmetrically.
Assuming a pseudomorphic cubic phase immediately next to
the semiconductor, the hybridization parameter will be fairly
close to the empty crystal value, which can be used without
introducing a significant error. The nature of the passivation
layer may also be important to avoid the presence of trivial
edge states.

Another challenge in the SBC approach is that the mode of
decay of the edge state wave function is generally nonexpo-
nential. Nevertheless, it is possible to find useful exponential
solutions when the wall is effectively infinite, M0  |M|, and
the edge state decay parameter is real as in HgTe/CdTe QWs.
Although this has been the main focus of the present paper,
it was also confirmed that weakly hybridized systems with a
complex decay parameter, such as InAs/GaSb/AlSb, exhibit
nonexponential behavior when the band structure is asymmet-
ric. Even for weakly hybridized systems with a symmetric
band structure, SBCs have been shown previously to exhibit
non-exponential behavior in narrow samples, except at certain
characteristic widths [55].

The shift of the Dirac point from midgap is generally small
when SBCs are used with wall passivation. However, several
additional factors could affect its position, including the small
quadratic D′ term left out of the LKMB Hamiltonian (see
Sec. V), the difference in the midgap energies of the semicon-
ductor and passivation materials [M1 �= 0 in Eq. (16)], and the
effect of interface band mixing. The first two factors should
not be too significant, especially if a passivation material is
used with M1 � M0 (the effect of changing M1 is shown in
Appendix A), but the third factor could be important, pro-
ducing a shift, which is greatest at the Dirac point and which
steadily decreases to zero at the merging wave vectors with
the bulk band edges. Microscopic calculations of the interface
band mixing potentials are therefore needed to establish the
size of this effect for different passivation materials. The posi-

tion of the Dirac point could be important since it has recently
been suggested that a Dirac point hidden below a camelback
or SIA split valence band edge may increase the robustness
of edge state conduction in the presence of magnetic fields
[44,45].

Although the present work is based on the k · p approach,
it should also be relevant to tight binding models. Fukui
[81] shows that based only on nearest neighbor interactions,
edge states can be found in graphene for zigzag and bearded
edges, where the wave function behaves like the single BHZ
solution for SBCs with B = D = 0 [12], finite in the crystal
and vanishing within one nearest neighbor distance beyond
the boundary. In contrast, this does not occur for an armchair
edge when next-nearest-neighbor interactions are included,
and an OBC approach is proposed based on combining de-
generate solutions. This is also the approach proposed for
the Wilson-Dirac model [8,24], which is closely analogous
to the BHZ Hamiltonian, and where one of the two solutions
is spurious.

In summary, the present work has demonstrated that OBCs
lead to unphysical behavior and must be replaced by boundary
conditions such as SBCs, that properly take the wall into
account and allow stronger edge confinement, with a large
amplitude at the sample edge. In addition, a passivation layer
is often present, either intentionally or due to the formation of
a native oxide, and may even be an essential way of ensuring
the existence of a Dirac point. For this case, the standard BHZ
model with SBCs can provide an adequate description of the
edge states in both the TI and the wall without violating its
range of validity. Although scattering from edge imperfec-
tions is suppressed by time reversal symmetry, a practical
consequence of the present hard wall SBC approach is that
stronger wave function confinement, combined with signif-
icant disorder in the passivation layer, could both lead to a
lower threshold for the breakdown of dissipationless transport
than previously thought [82].
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APPENDIX A: FULL EDGE STATE DISPERSION IN
THE TOY LKMB MODEL

The full spin up edge state dispersion, E (kx ) is calculated
by finding solutions for H ′

4×4↑(k) with the same eigenvectors
on both sides of the boundary. Assuming D′ = 0, and writing
ky = iσ , Eq. (3) can be solved for the decay parameter, σ , and
eigenvector, [a, b, c, d] in the semiconductor in terms of the
energy E and wave vector kx to yield the relations in Table IV,
where

Z± = (M + E )�′
1Q2

2 ± (M − E )�′
2Q2

1, (A1a)

N =
√

T1T 2
3 + T2, (A1b)

T1 = 1 +
(

Q1(kx − σ )

�′
1

)2

, (A1c)
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TABLE IV. Decay parameters in the y direction at energy E and edge wave vector kx , and the corresponding eigenvectors, for the spin up
LKMB Hamiltonian (Q3 = 0). The functions, Z±, �′

1, �′
2, and N are defined in Eq. (A1).

Decay parameter Eigenvector

a = i
Q1

AN�′
1

(
Q2

2(k2
x − σ 2) + (M − E )�′

2

Q2(kx − σ )

)
σ± = θ

√
k2

x + �′
1�

′
2A2 + Z+ ± √

�′
1�

′
2A2{�′

1�
′
2A2 + 2Z+} + Z2−

2Q2
1Q2

2

b = 1

N

�′
2

Q2(kx − σ )

c = − 1

AN

(
Q2

2(k2
x − σ 2) + (M − E )�′

2

Q2(kx − σ )2

)
d = i

N

T2 = 1 +
(

�′
2

Q2(kx − σ )

)2

, (A1d)

T3 = Q2
2

(
k2

x − σ 2
) + (M − E )�′

2

AQ2(kx − σ )2 , (A1e)

�′
1 = �1 − E , (A1f)

�′
2 = �2 + E , (A1g)

and θ = 1 in the semiconductor. In the wall θ = −1 and the
corresponding parameters are A0, M0, Q10, Q20, �10, �20, and
σ0. The relations in Table IV can be expressed in terms of
these parameters and rearranged to yield the band gap ratios
in the wall that correspond to a specific eigenvector:
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It is clear that these ratios become independent of the wall
band gap 2M0 when M0  |M|, since E has the same order
of magnitude as the semiconductor band gap parameter M
so |�10|, |�20| → ∞ as M0 → ∞. For given values of E
and kx, the semiconductor eigenvector components are calcu-
lated according to the relations in Table IV and inserted into
Eq. (A2). This yields the wall band gaps for a given set of wall
hybridization parameters, and M0. These band gaps should be
substituted back into the relations in Table IV and the process
repeated at different energies until the wall eigenvector comes
out to be the same as the semiconductor eigenvector, giving a
self-consistent solution at the chosen wave vector. The values
of the decay parameters in the semiconductor and wall can
also be found for each point on the dispersion curve, using the
formula in the left hand column of Table IV.

As discussed in Sec. II, it appears to be a typical feature of
SBC edge states that an exponential solution only exists when
specific wall parameters have a certain ratio with the wall band
gap. The relevant BHZ parameters are D0 and B0, and a useful
exponential solution can be found in the infinite wall limit
when D0, B0 → 0. For other ratios of the wall parameters, a

numerical approach must be used. The LKMB model exhibits
similar features, where an exponential solution exists for the
wall band gaps given by Eq. (A2), giving a useful exponential
solution in the limit: |�10|, |�20| → ∞ as M0 → ∞. Practi-
cally, this “hard wall” limit corresponds to M0  |M|, which
is already obeyed very well for M0 > 1 eV in the examples
discussed below.

The blue dashed curves in Fig. 7 show three exam-
ples of the spin up edge state dispersions calculated for
symmetric or asymmetric semiconductor band structures.
In each case, the wall parameters are M0= 20 eV, A0 =
11 eV Å, and Q10 = Q20 = 2 eV Å, where M0 and A0

have the same order of magnitude as the values estimated
for a passivation material in Sec. V. In all three cases the
dispersions are insensitive to a variation in the value of
the wall band gap by a factor of greater than 0.05 (cor-
responding to M0 > 1 eV). In Fig. 7(a), the semiconductor
parameters are the same as in Table II for a symmetric TI
band structure. The open circles depict a variation of the
form: E = −Akx, and there is virtually no difference be-
tween this variation and the blue dashed curve, showing that
the dispersion calculated from the LKMB model has the
same linear variation as for the BHZ case. The red dashed
curve is for the spin down edge state and is obtained from the
blue curve by time reversal.

In Fig. 7(b), the outer band gap in the semiconductor is
reduced to � = �1 = �2 = 0.03 eV. Based on Eq. (4), this
is equivalent to B = 650 eV Å2 for the BHZ case. All other
parameters in the wall and semiconductor are the same as
for Fig. 7(a), and except near the band edges, the LKMB
result is still very close to the circles, which depict the BHZ
variation, E = −Akx. Figure 7(c) shows an example with
asymmetric semiconductor band parameters, as listed in the
left hand column of Table III. As already discussed for this
case in Sec. IV, the Dirac point is very close to midgap, with
an energy of ED

4×4↑ = −0.00020 eV. Using this value as an
estimate for the BHZ Dirac point energy, the open circles
in Fig. 7(c) depict the dispersion based on the BHZ spin up
result, E = −Akx + Dk2

x + ED
2×2↑, where the square root in

Eq. (10) is very close to unity. The BHZ dispersion again
agrees quite well with the calculated LKMB result.

The OBC dispersion, given by Eq. (8), may be compared
with the SBC results in Fig. 7. It is the same as the open
circles for the symmetric cases in Figs. 7(a) and 7(b) but
very different for the asymmetric case in Fig. 7(c), where it is
shown as gray lines. For the asymmetric case, the Dirac point
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FIG. 7. Edge-state dispersions for the LKMB spin up (down) Hamiltonian are shown as blue (red) dashed curves superimposed on
the nearby bulk bands (black curves). In each case, the wall has parameters M0 = 20 eV, A0 = 11 eV Å, and Q10 = Q20 = 2 eV Å. The
semiconductor parameters in (a) are the same as in Table II. In (b), the outer bands of the semiconductor are closer to the inner bands than in
(a), with �1 = �2 = 0.03 eV. In (c) the asymmetric semiconductor band parameters are those listed in the left hand column of Table III. Open
circles depict the edge dispersions of the spin up BHZ Hamiltonian [Eq. (10)] with a Dirac point energy of zero in (a) and (b) and −0.00020 eV
in (c). For comparison, the OBC dispersion is also shown in (c) as gray lines. The gray dashed line in (c) is the spin down edge dispersion after
the wall band gap is upshifted by 2 eV, when the Dirac point shifts by 0.00079 eV.

is strongly shifted toward the conduction band and the edge
state dispersion is linear with a much reduced phase velocity.

The wave vector dependence of the spin up decay param-
eters in the LKMB treatment is shown in Fig. 8, where it
is compared for the symmetric and asymmetric cases shown
in Figs. 7(a) and 7(c), respectively. The wave vectors of the
merging points can clearly be identified where σ → 0. In
both cases, the decay parameter at the Dirac point agrees with
Eq. (11), which has a value close to σD � M/A = 0.0020 Å−1

when A2  4MB as in these examples. For the symmetric
case, the BHZ model corresponds fairly well with the LKMB
model over the whole wave vector range, with merging points
in the BHZ model at ±0.083 × 2π

asub
. For the asymmetric case,

however, the BHZ model gives merging points at ±0.072 ×
2π
asub

, while the magnitudes of the merging wave vectors in
Fig. 8(b) are similar to these values but unequal. This can be
attributed to stronger band nonparabolicities in the asymmet-
ric LKMB model. The gray-dashed curve in Fig. 7(c) and the
dashed curve in Fig. 8(b) show the effect of a misalignment
between the wall and TI band gaps, which is equivalent to
M1 = 2 eV in Eq. (16). It can be seen that the edge dispersion

FIG. 8. Decay parameters for the spin up edge states shown by
the blue dashed curves in Figs. 7(a) and 7(c), respectively. The
dashed line in Fig. 8(b) is when the wall band gap is upshifted by
2 eV.

is very insensitive to the misalignment, although the decay
parameter is more strongly affected.

All of the edge dispersions in Figs. 7 and 8 are based on
middle wave vector solutions in the wall and semiconductor.
As mentioned in Sec. III, when the wing solutions are used
in the asymmetric BHZ model, they only yield an edge state
when D < B, which then has an anomalous dispersion, as
shown for example with A0 = A in Fig. 2(a) of Ref. [10].
This is also true in the LKMB model. Using parameters cor-
responding to Fig. 7(c) but with A0 = A, the edge dispersion
fails to cross or merge with the bulk bands, and no exponential
edge state can be found for A0 = 11 eVÅ. Therefore, this edge
state can be considered unphysical even though, in principle,
the LKMB Hamiltonian gives physical wing solutions, as
shown, for example, in Fig. 2(b). This behavior is related to
the large magnitude of the imaginary wing wave vector in
the wall Hamiltonian, which tends to infinity as �10,�20 →
−∞. Even for large but finite values of these parameters, its
magnitude is well beyond the boundary of the Brillouin zone.

Finally, it should be noted that the band gap ratios in
Eq. (A2) that correspond to exponential edge state solutions
are k dependent, so the outer bands have a significant disper-
sion even when the inner bands do not (i.e., constant M0).
Since all bands in the wall are effectively at infinity, and
the results in Fig. 7 are totally insensitive to the positions
of the inner bands for M0 > 1 eV, it is anticipated that the
effect of the outer band positions on the energy dispersions
should not be too significant. Nevertheless, in order to test this
assumption a full numerical treatment is needed for constant
values of all the wall band gaps, when the wave function will
generally exhibit a nonexponential decay.

APPENDIX B: TOPOLOGICALLY TRIVIAL
BHZ EDGE SOLUTIONS

It has recently been pointed out that edge states can be
found for the BHZ Hamiltonian in the topologically trivial
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FIG. 9. BHZ band dispersions for a topologically trivial insu-
lator with M = 0.0075 eV, A = 4 eV Å, B = 76.2 eV Å2, and D =
50.8 eV Å2(black), superimposed on the corresponding LKMB
dispersions calculated from Eq. (3), with �1 = 0.15 eV, �2 =
0.024 eV, Q1 = Q2 = 2 eV Å, and Q3 = 0 (gray). There is good cor-
respondence for |kx| < kmax (defined in Sec. I). A spin up OBC edge
solution extends to wave vectors well beyond kmax (blue, long dash).
Spin up SBC edge states, based on the spurious wing solution σ+ are
also plotted near the zone center for wall hybridization parameters
of 4 and 5 eV Å (green short-dash and dot, respectively). There is no
SBC edge state with physical decay parameter σ−.

phase, with M > 0 [41]. In this Appendix, such behavior
is confirmed for both OBC and SBC boundary conditions.
However, all such states include the wing solution, and are
therefore unlikely to exist in any real physical system. No
edge state can be found using SBCs based only on the physical
middle solution.

The band structure near the bulk band gap of a topo-
logically trivial insulator is shown in gray in Fig. 9, for
an LKMB Hamiltonian with M = 0.0075 eV, A = 2Q1 =
2Q2 = 4 eV Å, Q3 = 0, �1 = 0.15 eV, and �2 = 0.024 eV.
The conduction and valence bands of the BHZ Hamiltonian
are superimposed in black, with quadratic coefficients, B =
76.2 eV Å2 and D = 50.8 eV Å2, calculated from the LKMB
parameters using Eq. (4). It can be seen that beyond the
range kmax � 0.0075 × 2π

asub
allowed by perturbation theory,

the conduction and valence bands of the BHZ Hamiltonian
deviate strongly from those of the parent LKMB Hamilto-
nian (see Sec. I), highlighting the fact that the results of
the BHZ Hamiltonian are only reliable in this small wave
vector range.

Exponential BHZ edge states can be determined using
the OBC and SBC characteristic equations (7) and (9), re-
spectively. For OBCs, a topologically trivial edge solution

exists with real decay parameters when 0.0021 × 2π
asub

< kx <

0.043 × 2π
asub

. The dispersion, shown as a blue dashed line in
Fig. 9, reproduces very well the form of the dispersion shown
in Fig. 1(a) of Ref. [41] (see [83]). A topologically trivial SBC
edge solution can also be found, for the wing decay parameter,
σ+, in Eq. (9). Its dispersion is plotted near the zone center, as
green dashed and dotted lines, respectively, for wall hybridiza-
tion parameters of 4 and 5 eV Å. The solution for A0 = A is in
fact very similar to the spurious σ+ solution shown for the TI
phase in Fig. 2(a) of Ref. [10]. This is because B−σ 2

+  |M|
in Eq. (9), so the sign of M becomes unimportant. Noting that
Eq. (9) corresponds to a wall with negative B0 → 0, a finite
wall with positive B0 can be intercalated next to the TI, so that
the edge state localizes on the interface between wall materials
for which �NC = 1, separating from the sample edge for
which �NC = 0 (analogous to Fig. 4 and Ref. [55]). This
confirms that the σ+ edge state is not a physical solution. In
addition to a wave function that includes the unphysical wing
solution, both these OBC and SBC edge states extend to wave
vectors far beyond the kmax−limit. In contrast, when SBCs
are used in Eq. (9) with the physical, σ− decay parameter,
there is no topologically trivial solution. This is consistent
with �NC = 1, allowing only a single edge state, which is the
unphysical, σ+ solution [84].

In Ref. [41], edge states appear in the topologically triv-
ial phase for any value, apart from π

2 , of a kx-independent,
phenomenological boundary condition parameter θ which
is conserved across the phase boundary, and whose value
depends on the boundary conditions used for the envelope
function. For OBC edge states as in Fig. 9, θ is a function
of D

B and is indeed independent of wave vector and the sign
of the band-gap parameter, M. For SBCs in the TI phase,
with A0 = A, and |M |, B, and D as in Fig. 9, the physical
σ− edge state behaves as θ = χ π

2 , with χ = 1.018 at kx = 0,
and χ → 1 at the merging points. The value of χ is quite
insensitive to an increase in the wall hybridization parameter
and always tends to one at the merging points. When there is
charge conjugation symmetry with D = 0 and a linear edge
dispersion, χ = 1 for all kx. Thus, even in the presence of
strong band asymmetry, the behavior of the physical SBC
solution is very close to the special case of θ = π

2 , where no
edge state exists in the topologically trivial phase.

The θ parameter is directly related to the edge-state
eigenvector, and its simple relationship with the edge-state
dispersion is based on a linear approximation of the BHZ
Hamiltonian near the phase transition, in which quadratic
terms smaller than the band gap are ignored. Even for D = 0
in a strongly hybridized material, this does not really hold for
the wing solution with decay parameter, σw � A

B , since Bσ 2
w >

4M (see Sec. III). Since the linear approximation only works
for the physical σ− solution, the paradoxical appearance of
edge states in the topologically trivial phase may simply be
a mathematical artifact associated with the anomalous eigen-
vector of the wing solution.
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