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Small form-factor, narrow band, and highly directive antennas are of critical importance in a variety of
applications spanning wireless communications, remote sensing, Raman spectroscopy, and single photon emis-
sion enhancement. Surprisingly, we show that the classical directivity limit can be appreciably surpassed for
electrically small multilayer spherical antennas excited by a point electric dipole even if limiting ourselves to

purely dielectric materials. Experimentally feasible designs of superdirective antennas are established by using
a stochastic optimization algorithm combined with a rigorous analytic solution.
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I. INTRODUCTION

Physical limitations on antennas are critical when design-
ing efficient devices. The limitations have been the subject
of research since the early age of antenna science [1-3].
There is a trade-off between gain, G, which defines the spatial
narrowness of radiation patterns, and the quality factor, Q,
which characterizes the ratio of the stored energy to emitted
power [4]. Q is known to be inversely proportional to the
bandwidth when Q > 1 [4]. Gain is related to directivity,
D, through G = e, D, where e, is the radiation efficiency of
the antenna, taking into account antenna losses (it does not
include polarization or impedance mismatch losses). In our
paper, we consider purely dielectric antennas. Given that such
antennas are lossless (e, = 1), we use only the term directivity
in what follows without any loss of generality.

The Harrington-Chu limit [2,5] puts an upper bound on the
directivity as Dy, = (kR)? + 2kR, where R is the radius of the
sphere circumscribing an antenna and k is the free-space wave
number. Kildal et al. [6,7] improved the formula for directivity
limit in the case of small-size antennas to Dy, = (kR)? + 3.
The above expressions for Dy, concern the so-called nor-
mal gain [5] and rely on the hypothesis which postulates a
linear relationship between the antenna size and the number
of spherical harmonic modes, kR = £ [5] (see also the field
degrees of freedom [8]), that can be efficiently excited by
the antenna. The relation of the power radiated by the par-
tial modes to the stored energy yields estimates on Q and
D [4,9,10]. However, the directivity is generally known to
exceed these limits [1,11]. The antennas with D > Dy;,, are
referred to as superdirective.

Recent publications [12—17] show continuing interest in
overcoming the physical limitations on antenna design. Most
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of them are related to emerging applications and to advances
in computer-based approaches to antenna optimization [18]
as well as to numerical stability of theoretical treatments [19].
Since the superdirectivity of small antennas originates from
their resonant behavior, it is accompanied by an ultranarrow-
band response, which limits their applications. Nonetheless,
the internet of things and wireless power transfer can benefit
from such antennas in the radio frequency band [20]. In the
optical band, high-index dielectric and plasmonic nanoparti-
cles were used to enhance the direction-selective absorption
and emission of nanoantennas [21]. A convex optimization
based on the method of moments developed in Ref. [22] was
used to determine optimal surface currents, which allowed
both maximum gain and superdirective field patterns [23,24]
to be achieved. Although the proposed method is very gen-
eral, it is unclear how to implement the optimal currents in
antenna devices. Here, on using rigorous analytic treatment,
we consider a spherical multilayer antenna with a dipole
source excitation to demonstrate that particular superdirective
designs with operation limits comparable to optimal current
configurations [23] are possible even in a relatively simple
geometry of small lossless dielectric resonant antennas.

II. THEORY

We consider a lossless dielectric nonmagnetic concen-
tric spherical multilayer antenna excited by an electric point
dipole source, p, located on the z axis. Because a dipole emits
predominantly in a perpendicular direction to its axis, the
far-field radiation of a radially oriented dipole (i.e., parallel
to the z axis) is much more difficult to tailor by a nearby
spherical antenna than for the tangential dipole orientation
(i.e., perpendicular to the z axis). For instance, for a radially
oriented dipole outside the antenna, the far-field radiation
part largely escapes to infinity without ever interacting with
the antenna. Out of two possible orthogonal dipole orienta-
tions, we thus focus on the rangential dipole orientation (see

©2021 American Physical Society
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Supplemental Material Sec. I [25]). The center of coordi-
nates is at the sphere’s origin. We denote the dipole position,
rq; radii of layers, R, (where n =1, ..., N); homogeneous
isotropic concentric domains, €2,; refractive indices of spher-
ical layer domains, 1, > 1; refractive index of a surrounding
medium, ny4+1; = 1 (in the domain Qy. ;). We consider non-
magnetic materials with the permeability of a vacuum. Dipole
locations both inside and outside the spherical layers are al-
lowed.

Maxwell’s equations in each homogeneous layer can be
solved via the vector spherical wave expansion of the electric
field ([26], Eq. (8)),

Ey (I’l, l') = Z [AyL(n)JyL(km l') + ByL(n)HyL(km l')], (1)
L

where J,; and H,,; are varieties of the vector multipoles F,,;
(see Eq. (S1) in the Supplemental Material [25]) which cor-
respond to different linear combinations, f, ¢, of the spherical
Bessel function in a given nth shell [26]. Subscript y denotes
the polarization: y = M for magnetic or transverse electric
(TE) polarization, y = E for electric or transverse magnetic
(TM) polarization. The vector multipoles F;;; and Fg; reduce
to My and N; in the Stratton’s notations [27,28] provided
that f,, reduces to one of j, or hél). The index L = (£, m)
incorporates the orbital and magnetic quantum numbers.

The continuity of tangential field components determines
the interface conditions allowing us to relate the expansion
coefficients A, 7 and B, in adjacent neighboring regions €2,
and €4y via 2 x 2 lowering 7,; or raising T;L transfer ma-
trices [26]:

Apr(n+ DY _ p o (Ayr(n)
(B:L(n H 1)> = TVL(n)(B;L(n)) )
Ayr(n) — (A +1)

(BiL(n)) = TyL(”)<B:L(n 1 1))' G)
The transfer matrix method of Ref. [26] enables one to cal-
culate the emission of the dipole located either inside or in
the vicinity of an arbitrary multilayered sphere. Two boundary
conditions are required to unambiguously fix the solution. The
so-called regularity boundary condition guarantees that the
fields is not singular at the sphere core layer. Similarly to
the case of Mie scattering from homogeneous spheres, this
requires that only f,, ~ j, are allowed in the core layer for
r < ry. Unlike the case of Mie scattering, the other boundary
condition depends on the position of the radiating dipole.
For the dipole outside the multilayer sphere, the incoming
dipole wave multipole coefficients A, ; (N + 1) have to be
the coefficients a;’L of the electric field of a radiating dipole
source located at a position r,; of a homogeneous space [29]
(cf. Eq. (S10) in the Supplemental Material [25]). For the
dipole inside the multilayer sphere, there is no incoming wave
arriving from the outside, hence A, (N + 1) = 0. However,

in the layer where the radiating dipole is located, the field
expansion becomes [26]

2oL [(Ay + Ol;fL)JyL + B, H,.],
ZyL [AyLJyL + (ByL + a;d/L)HyL]’

with the amplitudes having a discontinuity at r = r,, because
such is the dipole field (cf. Egs. (S7)—(S10) in the Supplemen-

r <rq

“

r>ry,

E(r) = {

tal Material [25]). The quantities of crucial interest are the
amplitudes B, ; (N + 1) for r > r,, which determine the radi-
ating field escaping to infinity through the far-field amplitude
matrix F(0, ¢) (Eq. (S25) in the Supplemental Material [25]).
What is very convenient in the case of a multilayered sphere
is that the B, (N + 1)’s can be represented in terms of m-
independent linear combinations of the dipole field expansion
coefficients a¢; and &, . The final solutions for B, (N + 1)
coefficients are strongly dependent on the position of the
dipole source r;. Four separate cases can be distinguished
([26], Egs. (60), (63), (65), (66)):

(a) For adipole in a generic sphere shell different from the
core and ambient:

Tll;ﬂ“‘;i/L + T21;y£0‘§fL
Moz i Tirpe — Mizge Torye
(b) For a dipole in the sphere core:

ByL(N + 1) = d, /[ Maye(1).
(c) For a dipole outside the sphere with r < ry:
Byr(N + 1) = [Ta1¢(N 4+ 1)/ Tirye (N 4 Dlecs,.
(d) For a dipole outside the sphere with r > ry,

Byu(N + 1) =da%) + [TaryeN + D/ Tirye(N + Dles,

B,u(N+1)=

where 7,.(n) = [}Z) T,;(x) and M, (n) =[]\, T, (x)
are the ordered products of transfer matrices introduced for-
mally by Egs. (2) and (3).

Once the amplitudes B, (N + 1) are known for r > ry,
the directivity in the direction specified by spherical angles

(6o, @o) is determined by the formula

4 r?|E(r)|?
r2 § [E(r)2d2’

where |E(r)|? and ¢ |E(r)*dQ2 can be expressed via coeffi-
cients B,; (N + 1) (see Supplemental Material Sec. I [25]).
Therefore, the directivity D(6y, @) depends on the geomet-
rical and physical parameters of the problem R,, 1,, 4, the
dipole polarization through the matrix elements of 7, ., M,
and dipole amplitudes a¢, and a, .

D(o, po) = &)

III. RESULTS AND DISCUSSION

The best possible theoretical directivity is given by the
8(0, ) function [30], where physical realization is a plane
wave. In the case of the §-function directivity, the expansion
coefficients for the fields outside a sphere for r > r; have to

be
L, (2041
By (N 4+ 1) ~ iy [ —— (6)
4

(cf. plane-wave expansion in Eq. (4.37) of Ref. [28]). Here
i denotes the imaginary unit. The feasibility of this target,
which imposes constraints on the geometry and material prop-
erties, is examined in Supplemental Material Sec. I [25]. It is
shown there that the target can, in principle, be met only for
the tangential dipole orientation. The coefficients Eq. (6) lead
to the Harrington directivity limit Dy = £max (€max + 2) [31]
[cf. Eq. (S32)], where £y, is a cutoff on the summation over £.
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FIG. 1. Optimized directivity D of a homogeneous spherical
antenna excited by a point electric dipole source at its optimized
position as a function of the size parameter n,;kR; and refractive
index 7;.

Result Eq. (6), which can be seen as a generalization of the re-
sults of Ref. [30] for cylindrical geometry in two-dimensional
space, is not bounded to a particular geometry and provides a
recipe for an ultimate superdirective antenna design in three-
dimensional space, useful for a range of applications.

A. Homogeneous sphere

A special case of a homogeneous spherical antenna repre-
sents an example worth careful examination. Figure 1 shows
optimized directivity as a function of the sphere’s refractive
index, n;, and its size parameter, n1kR;. For each pair of
{n1;n1kR,}, a dipole position, r,, has been optimized to get
maximum D [see Figs. 2(b) and 2(d)]. Rapid variations in
directivity in Fig. 1 are associated with excitation of TE ;. 1yms
and TMy,,; resonance modes in the dielectric sphere according
to an approximate condition [32-35],

Je(Ges) =0, @)

where ¢y = n1kR; is the sth zero of the ¢th order spherical
Bessel functions of the first kind, j,; n; and R; are refrac-
tive index and radius of a homogeneous spherical dielectric
resonator. Table I shows values of ¢, for small s and £.
These resonances exhibit themselves by the leakage of trapped
electromagnetic field out of high refractive index dielectric
scatterer into the environment, leading to resonances of scat-
tered field (interaction between the polarization energy stored
in the dielectric and the energy stored in the magnetic field
[36]).

Figure 2 shows the dependence of optimized directivity
on the refractive index, nma.x for kRy < 0.314 and 2.513.
According to our numerical results, the maximum directivity
for a homogeneous sphere is achieved at {3, resonances. In
general, ¢y, resonances mainly occur due to the simultane-
ous excitation of TE 4 1y,s and TMy,,; modes [34], which is
shown in the harmonic expansion plots in Fig. 3. The accurate
resonance conditions for these modes are different and the
maximum directivity is achieved if all excited modes overlap
with optimally tuned amplitudes and phases. The higher the
order of overlapping modes, the harder their excitation, since
the homogeneous sphere does not have additional degrees of
freedom that would allow for simultaneous resonant tuning of
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FIG. 2. Maximum achievable directivity and optimum dipole po-
sition as a function of the upper bound, 9.y, on refractive index for
antennas with a different number of layers N. Sketch of the problem
under study is shown in inset in (a). The Harrington and Kildal limits,
Diim, are shown in (a) and (c) with black dash-dotted and red dashed
lines, respectively.

multiple modes. This is why the value of optimized directivity
does not increase for ¢;; resonances with £ > 3.

The position of the exciting electric dipole also affects the
order, ¢, of harmonics excited in the antenna, see Fig. 3. If
the dipole source is located at the center of a sphere, only

TABLE 1. Zeros ¢, of the spherical Bessel function of the first
kind j, (&) = 0. The subscript s denotes the ordinal number of the
zero of the ¢th order spherical Bessel function.

s=1 s=2 s=3
£=0 3.14159 6.28319 9.42478
L= 4.49341 7.72525 10.9041
=2 5.76346 9.09501 12.3229
=3 6.98793 10.4171 13.698
=4 8.18256 11.7049 15.0397
{= 9.35581 12.9665 16.3547
=6 10.5128 14.2074 17.648
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FIG. 3. Normalized harmonic amplitudes at points correspond-
ing to the directivity jumps in Fig. 2 for homogeneous spheres
with kRy = 0.314 and kRy = 2.513. The amplitudes are normalized
to the sum of the absolute values of the amplitudes for all ex-
cited harmonics. Each subplot depicts the corresponding resonance
conditions and shows the resulting far-field diagram calculated via
full-wave numerical solver CST Studio Suite 2019 [46]. Directivity
extracted from far-field diagrams agrees with our theoretical predic-
tions up to 1% accuracy.

£ =1 is prominent, whereas higher harmonics are induced
if the dipole is moved away from the center of the sphere.
For example, only £ = 1 and ¢ = 2 harmonics are pronounced
for the dipole at position r; = 0.05A, while £ =1, ..., 6 are
prominent for r; = 0.4A, see Figs. 2(b) and 3. We notice
that ¢y, resonance is unique, since in this case the electric
dipole source excites only the TE;(p; mode (magnetic dipole
mode) of the sphere. In order to achieve the highest directivity
in the forward direction, electric dipole source and excited
magnetic dipole mode must have m phase difference with an
optimal dipole position r; — /2, see Fig. 2(b) and Ref. [34].
Figure 2(a) makes it clear that a single point electric dipole is
not enough to excite resonances ¢y, of homogeneous sphere
with £ > 3.

Finally, for electrically small antennas with kR; — 0,
we observe superdirective behavior at ¢3; resonances. With
increasing s, the directivity of the antenna continues to in-
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FIG. 4. Same as in Fig. 3, but for two-layer (core-shell) sphere
with kRy = 0.314.

crease slightly: D > 11.2 for the resonances with s > 14 (see
Table S1 in the Supplemental Material [25]), while the op-
timal dipole position moves slightly toward the surface of a
sphere.

B. Multilayer sphere

In what follows, we shall use Eq. (5) for direct evaluation
of the directivity in the optimization problem for determining
maximum directivity D(6y, @) for a given number of layers
N. We have optimized directivity using the following con-
straints:

(1) Setting the value of the maximum allowable refractive
index nmax of any layer of a sphere and setting the value of
kRnax (see Fig. 2). The refractive indices of layers, 1,, and
their sizes, R,, are continuously varied within 1 < 7, < Nmax
and 0 < R, < Ryax ranges.

(2) Setting the maximum allowable sphere size parameter
kRax for two different constraints on the refractive indices of
layers:

(a) Setting the value of the maximum allowable re-
fractive index nm.x and allowing the refractive indices of
layers to be continuously varied in 1 < 1, < fmax range
[see Fig. 5(a)].

(b) Setting the discrete set of allowable refractive
indices 1, € {nV, n®, ...}, where 1 < 1 < ymax [seE
Fig. 5(b)].

The latter strategy is the closest to possible practical imple-
mentations, since the set of materials available for fabrication
is essentially limited (e.g., high-index ceramics in the radio-
frequency band [37] or high-index dielectrics in the optical
band [38]), and it is instructive to compare optimization re-
sults in these two cases. In any optimization strategy, the
position of the dipole, r4, is not limited.

Since the convexity of Eq. (5) with respect to the optimiza-
tion parameters is difficult to establish or check, we used a
stochastic JADE algorithm [39] to maximize the directivity.
This algorithm is an improved version of the differential evo-
lution, which is effective for global optimization of functions
with a large number of local peaks [39,40] and, in particu-
lar, for problems associated with electromagnetic scattering
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FIG. 5. Dependence of the optimized directivity on the maxi-
mum size parameter kR,,x for a spherical three-layer antenna with
a different limitation on a refractive index: (a) continuously varying,
(b) discrete set.

[41]. For a convergence of the JADE optimization algorithm,
one should select appropriate parameters (population size,
number of generations, crossover probability, etc.), which
strongly depend on the Q factor of the excited resonances:
the higher the Q factor, the larger value of these parameters
is required. Moreover, a numerical implementation of the
theoretical treatment presented above requires an accurate
truncation of infinite sums to a limited number of terms. As
discussed for spherical near-field antenna measurements [42],
the recommended number iS £.x = kRmax + X1, Where kR pyax
is an integer closest to the wave number k times the radius
Rinax = max{ry; Ry}, and x; is an integer which depends on
the position of the source and desired accuracy, wherein x; =
10 is sufficient for most practical cases [43]. Nonetheless, the
relation linking the size parameter with £y, is still question-
able for electrically small resonant antennas.

In the lossless case, there is a limit on the directivity for
electrically small antennas which depends on the number
of layers. Multilayer scatterers can provide higher directiv-
ity as shown in Fig. 2 and have more complex resonance
conditions, which can be derived from expression Eq. (5).
The small multilayer sphere with nn,«kRy < ¢31 usually con-
verges to a homogeneous case. For nmxkRy = {31, directivity
optimization results are different, since the additional inter-
nal layers can provide more efficient control over the field
distribution and over the interference between different mul-
tipoles without changing the external size of the antenna. The
stored energy of the lower order modes is concentrated closer
to the center. Therefore these modes are more sensitive to
changes in the internal structure of the sphere and the use of
a multilayer structure of a sphere makes it possible to effi-
ciently excite higher-order resonances. Harmonic expansions
for several resonances of the two-layer sphere are shown in
Fig. 4 (see Supplemental Material Sec. IV [25] for respec-
tive data). In the parameter region defined by nm.«kRy > 51,

it becomes difficult to obtain the global maximum numeri-
cally using stochastic optimization procedure for multilayer
spheres due to a large number of narrow directivity peaks
originating from an interplay between high-Q (>10'") TE
and TM resonances. In this case, stochastic optimization (i)
is computationally expensive, (ii) not necessarily converges
to a global maximum, and (iii) requires a large number of
initial populations and generations. There are various physi-
cal reasons which limit a practically achievable Q factor of
antennas: surface roughness [44,45], material imperfections,
the presence of other objects in the immediate vicinity of
the antenna, temperature of the environment, and challenging
fabrication.

Figure 5 demonstrates the dependence of the optimized di-
rectivity D on the antenna size parameter 0.3 < kRy < 12 for
different limitations on the refractive index of a sphere 9max
(taking into account high-index ceramics in the microwave
band). Directivity behaves as a step function where the peaks
correspond to the interference of the electric dipole with the
various induced multipoles of the sphere (either magnetic or
electric). Figure 5(a) shows that the use of dielectric materials
with nmax = 15 allows us to reach the theoretically predicted
gain limit for electrically small copper antennas at IGHz (cf.
curve with 1072Q /U surface resistivity in Fig. 1 of Ref. [23]).
Higher refractive index, nm,x, or higher applied frequency,
in principle, allow us to overcome this limit, which makes
high-index ceramics even more attractive. Also, the optimal
directivity is almost independent on the formulation of the
optimization problem for sufficiently large sets of available
refractive indices as demonstrated in Fig. 5(b). D depends not
only on the number of terms in a set but also on the available
refractive indices.

An example of optimization for a homogeneous sphere
is presented in Supplemental Material Sec. II [25]. Several
optimized designs of homogeneous and multilayer spherical
superdirective antennas are presented in Supplemental Ma-
terial Sec. III [25]. The resulting designs for kRy — O are
generally forward-backward (as a result of constructive inter-
ference of the TE(¢+1yms and TMy,; modes in forward and
backward directions), while as kRy increases, the forward
direction becomes dominant due to the interference between
different modes (see Fig. 2). Occasionally, more complex
shapes can be obtained, because optimization is performed in
the specified direction & = 0° and does not control the field
distribution in other directions.

IV. CONCLUSION

Knowing an ideal upper limit on the antenna directivity
does not answer the question if the limit can be physically
realized. The knowledge of an ideal current configuration on
a spherical surface is not of much help if there is no practical
way of realizing it. It may well turn out that exotic, i.e., not
achievable in practice, material properties will be required
to produce ideal current configurations. For a cylindrical
antenna driven by a line source, saturating the directivity
bounds for a given number N of layers was already a tedious
and difficult task requiring excessive optimization effort and a
juxtaposition of positive and negative (i.e., metallic) material
regions [30].
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Our contribution can be seen in providing explicit engi-
neering recipes for experimentally feasible designs of optimal
directivity for a given number N of shells of compact
spherical multilayer antennas while employing only purely
dielectric materials. The absence of any metal component
makes our designs interesting for space applications. Sur-
prisingly, in spite of limiting ourselves to purely dielectric
materials, we have shown that the classical limit for directivity
of electrically small resonant antennas can be overcome. We
presented (i) a number of superdirective antenna designs and
(ii) a stochastic optimization-based recipe to construct new
superdirective antennas of a given size and materials. We
have also provided a rigorous derivation of the maximum
directivity, D, for the ultimate superdirective antenna design.
Our performance analysis revealed that, as the size of antenna
decreases, it is essential to use high refractive index materials
to obtain a superdirective antenna radiation pattern. An im-
portant property of the proposed designs is their geometrical
simplicity: a multilayer sphere excited by a point dipole. It

is anticipated that multiple dipole feeds will be capable of
communicating with multiple receiver devices simultaneously
using highly directive beams without any mechanical rear-
rangement. We hope that the results presented here could
be applied in the development of subwavelength resonant
dielectric antennas for the internet of things and other wireless
applications. Our results can be easily adapted for other cases,
such as lossy metal materials, which are of significant interest
[30] for fluorescence collection and quantum optics, and are
the subject of further study. Last but not the least, a duality
between electric and magnetic dipole sources enables one
to perform an alternative study for a magnetic dipole driven
antenna.
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