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In a Josephson junction between two exciton condensates, the tunneling of charge-neutral electron-hole
pairs has gained primary attention in the form of a supercurrent, which otherwise is challenging to detect
experimentally. Here we design excitonic Josephson junctions based on graphene heterostructures that allow us
to selectively sustain charge-neutral or charged supercurrent, offering unprecedented opportunities for revealing
exotic physics of exciton condensates. In our schemes, each exciton condensate consists of a graphene monolayer
vertically coupled with another graphene monolayer (GML), bilayer, or trilayer, shown to have characteristically
different quantum phase transition temperatures. When two such identical condensates are connected, a neutral
supercurrent always dominates within the GML/GML scheme, while in the other two schemes, a carrier-density
induced transition can take place between the neutral and charged supercurrents. More strikingly, in the charged
regime, both the electron or hole dominance and the DC or AC nature can be tuned by the chemical potential
differences of the junction. These findings are also expected to be applicable to excitonic Josephson junctions
beyond the graphene-based architecture.
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I. INTRODUCTION

Exciton is an important elementary excitation in a semi-
conductor, typically referring to an electron and its hole
counterpart mediated by the Coulomb attraction in the con-
duction and valence bands, respectively. In the low density
and low temperature regime, there emerges a macroscopically
coherent state of a collection of excitons, namely, an exciton
condensate [1], which is a particularly appealing quantum
state of matter that may harbor room-temperature supercon-
ductivity [2] and other exotic properties [3–6]. The realization
of exciton condensation has stimulated much experimental
effort [7–11]. As a compelling example, the macroscopic co-
herent nature of an exciton condensate in forming interference
patterns has been definitively demonstrated [12]. Furthermore,
two such exciton condensates can be separated by a barrier
to behave as an excitonic Josephson junction, which serves
as a powerful platform for exploring various manifestations
of the macroscopic quantum phenomena [13–19]. It is there-
fore conceptually fruitful to study supercurrents in excitonic
Josephson junctions under diverse physical conditions.

To date, attention has been primarily paid to the electron-
hole (e-h) pair tunneling in evaluating the Josephson current,
largely based on semiconductor quantum wells [13–16]. In
these systems, the supercurrent is inherently charge neu-
tral, and owing to the strong attractive Coulomb interaction
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between electrons and holes, e-h recombination may take
place in the barrier, which in turn will impede exact de-
termination of the supercurrent. As increasing branches of
the two-dimensional (2D) materials family have been discov-
ered more recently [20–25], their unique electron properties
have also been explored for potential realization of exciton
condensation [26–35], even at high temperatures [36]. These
exciting advances naturally offer superior schemes of exci-
tonic Josephson junctions with unprecedented properties and
performance at atomic scale precision.

In this work we design excitonic Josephson junctions
based on graphene heterostructures that allow us to selec-
tively sustain charge-neutral or charged supercurrent, offering
unprecedented opportunities for revealing exotic physics of
exciton condensates. In our schemes, each exciton conden-
sate consists of a graphene monolayer vertically coupled
with another graphene monolayer (GML), bilayer (GBL),
or trilayer (GTL), shown to have characteristically differ-
ent quantum phase transition temperatures of Berezinskii-
Kosterlitz-Thouless (BKT) and Bardeen-Cooper-Schrieffer
(BCS). When two such identical condensates are connected,
a neutral supercurrent is shown to always dominate within
the GML/GML scheme, while in the other two schemes, a
carrier-density induced transition can take place between the
neutral and charged supercurrents. More strikingly, in the
charged regime, both the electron or hole dominance and the
DC or AC nature can be fine tuned by the chemical potential
differences of the junction. These findings are also ex-
pected to be applicable to other excitonic Josephson junctions
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FIG. 1. (a) Schematic diagram of two double layer structure
separated by a few-layer hexagonal boron nitride (h-BN) film. The
upper layer is GML, and the lower layer can be a GML, GBL, or
GTL. (b) Dispersion relations for electrons and holes in the upper and
lower layers without the interlayer Coulomb interaction. (c) Gapped
band dispersions in the exciton insulator regime due to the interlayer
Coulomb interaction. (d) The condensate fraction as a function of the
carrier density at 1 K. (e) Variation of the BCS critical condensation
temperature and BKT transition temperature with the carrier density
for different hole dispersion relations.

involving 2D materials beyond graphene. The paper is orga-
nized as follows: In Sec. II the exciton condensation is studied
with the Bogoliubov–de Gennes Hamiltonian in the graphene
heterostructures [Fig. 1(a)]. In Sec. III the phase transitions
are discussed for different physical parameters, and the cor-
responding transition temperatures are given. In the coherent
regime, the excitonic Josephson effect is investigated, includ-
ing charge-neutral or charged supercurrents. Finally, this work
is summarized in Sec. IV.

II. THEORETICAL MODEL

Before constructing an excitonic Josephson junction, we
first study a constituent exciton condensate involving double-
layer structure based on graphene, as represented in Fig. 1(a).
The two layers are separated by a hexagonal boron ni-
tride (h-BN) film with about 5 nm in thickness. Given the
weak coupling between the upper and lower graphene layers
[37–39], we can neglect interlayer tunneling in such devices.
Exciton condensation constitutes of indirect excitons, namely,
the electrons and holes reside in the upper and lower layers,
respectively.

For different hole dispersion relations, the Bogoliubov–de
Gennes Hamiltonian of the systems has the following univer-
sal structure:

HBDG(k) =
(

ξe(k) �(k)
�†(k) −ξh(k)

)
, (1)

where the terms ξe(k) and ξh(k) describe the energy of elec-
trons and holes, respectively, which for convenience include
the corresponding chemical potentials μe and μh. �(k, β ) is
the order parameter and expressed as −∑

k′ gk−k′�(k′)[1 −
f +(k′) − f −(k′)]/2E (k′), with gk−k′ being the Coulomb
interaction. Here E (k) = √

((ξe + ξh)2/4 + �2), and the dis-
tribution function has the form f +(−)(k) = 1/(exp{β[E (k) +
(−)(ξe − ξh)/2]} + 1), with β the inverse temperature.

The densities of electrons and holes can be indepen-
dently tuned by the electrostatic gates in the upper and lower
graphene layers, respectively. For optimal exciton conden-
sation, we concentrate on the cases with the same densities
of electrons and holes here, such that both the Fulde-
Ferrell-Larkin-Ovchinnikov and Sarma phases will not appear
[40,41]. Near the Fermi surfaces of the two layers, elec-
trons of wave vector k interact with holes of −k through the
Coulomb attraction. At sufficiently low carrier densities and
low temperature, an energy gap appears, as shown in Fig. 1(c),
which can decrease the total energy of the system, resulting
in the exciton insulator phase [26,28,29,35]. Such interlayer
couplings alter the band dispersions illustrated in Fig. 1(b) to
those shown in Fig. 1(c), displaying the distinct existence of
the energy gaps in the heterostructures. Accordingly, the rela-
tivistic Dirac nature of electrons or holes in pristine graphene
is destroyed, and the systems are immune to the Klein para-
dox [42–44]. Such a qualitative picture is also consistent
with related experimental observations in graphene-based het-
erostructures [37,38].

Due to the existence of the two equivalent but independent
sublattices in the unit cell of graphene, the pseudospin degrees
of freedom emerge in the momentum space, and the massless
Dirac description of the low-energy states originates from
the coexistence of the orbital motion and pseudospins near
the high-symmetry points K and K ′. The order parameter of
exciton condensation can be determined self-consistently by
the chemical potential μ, with explicit consideration of the
fourfold spin and valley degeneracy, as well as pseudospins
in graphene. In addition, the screened Coulomb interaction
associated with the electrostatic gates may have some effect
on the exciton energy [45], but given by the indirect nature
of the excitons, such effects are very limited, especially in the
tunneling regime between exciton condensates with compara-
ble densities (see Appendix A).

III. RESULTS AND DISCUSSION

A. Exciton condensation

At a given and sufficiently low temperature, as the carrier
density varies from high to low, the system approaches the
exciton condensation from the e-h plasma [46], defining a
critical density. Below this density, the system is in the BCS
state in the form of exciton insulators [47]. When the density
is further lowered, the system enters the BEC state, character-
ized by a macroscopically correlated Boson condensate [34].
The transition from the BCS to BEC state is continuous upon
decreasing the density. We introduce the condensate fraction
Cf to measure the degree of condensation, which can be
expressed as Cf = ∑

k{u2(k)v2(k)[1 − f +(k) − f −(k)]2}/∑
k{u2(k) f +(k) + v2(k)[1 − f −(k)]}, with v2 = 1 − u2 =

[1 − (ξe + ξh)/2E ]/2. As indicated in Fig. 1(d), it is generally
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adopted that the BEC state appears when Cf > 0.8, the BCS
state arises when Cf < 0.2, while the intermediate range cor-
responds to the BEC-BCS crossover region with coexistence
of BEC and BCS features [34,48]. From Fig. 1(d), obtained at
the temperature 1 K, we can see that the condensate fraction
is affected by the different hole dispersion relations, and the
transition density from the BCS state to the crossover regime
is higher when the GBL or GTL is used in the lower layer. The
underlying reason can be attributed to the stronger binding en-
ergy of excitons when heavier holes are involved. In addition,
Cf increases much more rapidly at low carrier densities.

In Fig. 1(e) we also illustrate how the BCS and BKT
temperatures TBCS and TBKT sensitively depend on the car-
rier density for the three different systems, in particular, the
dramatic increases in TBCS and significant decreases in TBKT

when adopting GBL or GTL in the lower layer. When the
temperature is lower than TBCS, we get nonzero �(k, β ),
but it only signifies the emergence of isolated condensation
droplets, lacking macroscopic phase coherence among the
droplets. A coherent condensate emerges when the temper-
ature is lower than TBKT [49]. The value of TBCS is obtained
when max[�(k, β )] → 0. To quantify TBKT, we first get the
superfluid weight Wsf, which further satisfies the universal
relation TBKT = πWsf(1/TBKT, n)/8 [50]. In doing so, a slowly
varying vector gauge potential is introduced into the Hamil-
tonian, which is then expanded up to the quadratic order of
the gauge potential. The current-current response function
is obtained from linear response theory [51–53], and Wsf is
expressed in long wavelength limit as

Wsf(β, n) =
∑
k, j,l

f (El ) − f (Ej )

Ej − El
(〈ψ j |∂kH|ψl〉〈ψl |∂kH|ψ j〉

−〈ψ j |∂kHσz|ψl〉〈ψl |∂kHσz|ψ j〉), (2)

where ψ j is the eigenvector of the Hamiltonian with eigen-
value Ej , and σz is the Pauli matrix acting in the Nambu
space. The first term in the parentheses of Eq. (2) is the
diamagnetic term, which reflects the static Meissner effect in
exciton superfluid, while the second one is the paramagnetic
term.

To comprehend the variation of TBCS and TBKT in Fig. 1(e)
with different carrier densities, we draw attention to the car-
rier effective mass. When GML, GBL, or GTL is applied
in the lower layer, the hole effective mass becomes heavier
sequentially at a given carrier density. The hole effective mass
differences translate into different partitions of electrons and
holes in a given exciton of the systems, which further result
in different superfluid weights at a given temperature. Specif-
ically, whereas TBCS is much higher when heavier holes are
involved for a given carrier density, the corresponding TBKT is
lower and increases with the carrier density. Experimentally,
delicate transport measurements such as in the Coulomb drag
approach can be employed to detect the anomalous signa-
tures when the temperature approaches TBCS, for instance, the
drag resistivity should show a pronounced upturn, caused by
the dramatic electron-hole pair fluctuations at the transition
[54,55].
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FIG. 2. (a) Schematic diagram of the excitonic Josephson
junction with two identical condensates separated by a barrier. (b)–
(d) The Ginzburg-Landau free energy for e-h pair tunneling (PT),
electron tunneling (ET), and hole tunneling (HT) as functions of the
carrier density when the lower layer is, respectively, a GML, GBL,
or GTL. (e)–(g) Schematic diagrams of the dominant charge-neutral,
hole, or electron tunneling supercurrent regimes, with the conden-
sates formed between the GML and GBL or GTL.

B. Excitonic Josephson effect

Given the prerequisites on the characteristic phase transi-
tions of the exciton condensates in the double-layer structures,
we now can proceed to excitonic Josephson junctions formed
by two identical condensates separated by a barrier, as il-
lustrated in Fig. 2(a). In a conventional superconducting
Josephson junction [56], the tunneling of Cooper pairs domi-
nates the anomalous supercurrent, and the Ginzburg-Landau
free energy containing the tunneling term is minimized
[57,58]. Here we adopt this method to discuss the tunneling
regime of the excitonic Josephson junctions, and investigate
the nature of the dominant supercurrent under different junc-
tion designs.

For the present systems, the Ginzburg-Landau free energy
has the expression FGL = −Tr In(1 − GLT GRT )/β, where
GL(R) is the Green function of the left (right) condensate given
by G = 1/[iωn − HBDG(k)], with ωn being the fermionic Mat-
subara frequency. The tunneling matrix T is expressed as
(
kk′ 0

0 
kk′ ) for the e-h pair tunneling [14], (
kk′ 0
0 0) for the

electron tunneling, and (0 0
0 
kk′ ) for the hole tunneling, which

have different forms in the junction with two exciton conden-
sates separated by a normal conductor [59]. Here 
kk′ is the
tunneling matrix element, and can be assumed to be indepen-
dent of the wave vectors if the carrier energies involved are
low.
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In our further discussions, for convenience the carrier den-
sity in the left condensate is assumed to be slightly higher
than that in the right condensate. For given carrier densities,
the temperature of the setup should be even lower than the
lower TBKT of the two constituent condensates, to ensure
macroscopic phase coherence in the whole system. In this
case, the macroscopic wave functions overlap in the tunneling
barrier, inducing the Josephson effect. The free energy FGL

can be calculated for different particle densities. As shown in
Fig. 2(b), when GML is utilized in the lower layer, FGL for the
e-h pair tunneling is minimal for arbitrary carrier density, and
accordingly dominates the Josephson current. Furthermore,
in this scheme, the same free energies are obtained for the
electron tunneling and hole tunneling, which reflects the same
partitions of electron and hole in the pair condensation. Here
we note that, although the linear dispersion relations are used
for electron and hole, the results can be extended to other
cases as well, namely, as long as there exists the particle-hole
symmetry, the pair tunneling will always dominate at a given
carrier density, as seen in the conventional superconducting
Josephson junctions.

When a GBL is used in the lower layer to increase the hole
effective mass, the electron and hole partitions are unequal
in the pair. In this case, the free energy for hole tunneling is
the lowest at n < 1016 m−2, while FGL for pair tunneling is
minimal at n > 1016 m−2, defining a critical carrier density
nc = 1016 m−2. If the hole effective mass increases further to
the case when a GTL is applied in the lower layer, the qual-
itatively similar phenomena are found, but a higher critical
density, nc ≈ 1.6×1016 m−2. From Figs. 2(c) and 2(d) we see
that the critical carrier densities for both schemes are located
in the BEC-BCS crossover regime indicated in Fig. 1(d). In
addition, when a GBL or GTL is used, the free energy of
electron tunneling is always much higher than that of the e-h
pair tunneling or hole tunneling as the carrier density varies.

More generally, we present an analytic expression to de-
termine the crossover density, separating the dominant hole
tunneling and e-h pair tunneling regimes, and the discrim-
inant �h has the form at a temperature approaching 0 K
(see Appendix B),

�h =
∑
kk′κ

(−1)κ+1XLκXR(3−κ )[XLκXR(3−κ ) + 2YLκYR(3−κ )]

ER(3−κ ) − ELκ

,

(3)

where (Xικ

Yικ
) is the wave function of Eq. (1) with the eigenvalue

Eικ , ι = L or R, represents the left and or right condensate,
and κ = 1, 2 for the upper and lower eigenvalues, respectively.
The summation over the wave vectors is operated for k in the
left condensate and for k′ in the right. With this criterion, it is
clear that the hole tunneling dominates if �h > 0, correspond-
ing to very large partition differences between electrons and
holes in the pairs, while for �h < 0, the partition differences
are small, and the e-h pair tunneling becomes predominant.
At n = nc, i.e., �h = 0, defining the crossover point. These
analytical results agree well with those in the right panel of
Fig. 2.

In the above discussion, the electron tunneling is always
suppressed by varying the carrier density, and how to realize

it as the main tunneling regime is an interesting issue. To
achieve this goal, we take an effective approach, namely, by
modulating the chemical potentials with electrons and holes
residing in the lower and upper layers, respectively. With the
same procedure utilized in Eq. (3), another criterion is derived
to define the transition from the e-h pair to electron tunneling
or vice versa, and the corresponding discriminant,

�e =
∑
kk′κ

(−1)κ+1YLκYR(3−κ )[YLκYR(3−κ ) + 2XLκXR(3−κ )]

ER(3−κ ) − ELκ

.

(4)

As expected, there also exists a crossover density separating
the dominant electron tunneling (�e > 0) and the e-h pair
tunneling regimes (�e < 0).

In practice, different tunneling regimes will result in dif-
ferent kinds of excitonic Josephson current to be detected
experimentally. When the pair tunneling dominates in the
Josephson junction, it will cause an electron current in one
layer and an equal hole current in the other layer in the
same direction, so there is charge-neutral supercurrent flowing
through the barrier [see Fig. 2(e)]. In this case, this supercur-
rent can be direct or alternating, determined by the chemical
potential difference between the two exciton condensates [19].
When the single particle tunneling is dominant, regardless of
electron or hole tunneling, there will exist a charged super-
current through the barrier between the two condensates, as
illustrated in Figs. 2(f) and 2(g).

Next, we take the hole tunneling as an example to derive
this charged current in the excitonic Josephson junctions.
The Hamiltonian of the junctions has the form HEJJ = HL +
HR + HT , where HL(R) is expressed as in Eq. (1) for the
left (right) exciton condensate, and the tunneling term HT

is treated as a perturbation. The current flowing through the
barrier is defined as the rate of the hole number, i.e., I (t ) =
e〈ṅL(t )〉, in the left condensate. In the interaction representa-
tion the S-matrix expansion approach is applied to deal with
the tunneling term [60], and the tunneling current is obtained
as

I (t ) = −e
∫ t

−∞

{
e−i�μ(t−t ′ )〈[�(t ),�†(t ′)]〉

− ei�μ(t−t ′ )〈[�†(t ),�(t ′)]〉
+ e−i�μ(t+t ′ )〈[�(t ),�(t ′)]〉
− ei�μ(t+t ′ )〈[�†(t ),�†(t ′)]〉}dt ′, (5)

where the operator �(t ) has the expression �(t ) =∑
kk′ 
∗

kk′C†
Rk′ (t )CLk(t ), with C∗

Rk and CLk is the hole creation
and annihilation operator in the right and left condensates,
respectively, and �μ = μhL − μhR.

From Eq. (5) we see that there are two components of
the total hole tunneling currents: One is the normal current
expressed by the first two terms in the braces, determined by
the Fermi distributions of hole in both sides of the junction.
The other is represented by the last two terms and strongly
depends on the order parameters of the condensates on both
sides, and this is the charged supercurrent.

The charged supercurrent is described by

Is(t ) = −2qIm[e−2i�μt�(�μ)], (6)
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FIG. 3. (a) Schematic diagrams for experimental detection of the
single-particle supercurrents in (a) DC and (b) AC regimes.

where �(�μ) is the retarded correlation function, and has the
expression −i

∫ ∞
0 dt exp(i�μt )〈[�(t ),�(0)]〉. q = −e or e is

the charge of the electron or hole carrier. From Eq. (6) we
can get the DC or AC nature of the supercurrent by adjusting
�μ. When �μ is small, the electron or hole supercurrent
can be obtained by utilizing the macroscopic wave functions
of the two constituent exciton condensates, given by Is(t ) =
2q


√
nLnR sin(2�μt − �θ ), where �θ is the phase differ-

ence between the two condensates with the corresponding
condensate density nL(R) (see Appendix C).

C. Potential experimental detection

In experiment the excitonic Josephson junctions can be
fabricated with the state-of-the-art technology, such as the
multilayer gate technology demonstrated recently in Joseph-
son effects involving magic-angle twisted bilayer graphene
[61–63]. Here we propose different approaches to measure ex-
perimentally the charged supercurrent based on its DC or AC
nature. When the chemical potential difference �μ is zero,
an electric loop is created to detect the direct supercurrent
with a resistor which prevents the quasiparticle current from
crossing the barrier, as shown in Fig. 3(a). Such an approach
is qualitatively similar to the drag-counterflow geometry pro-
posed earlier for measuring supercurrent in vertically coupled
graphene layers [27]. When �μ is finite, the supercurrent is
of AC nature, accompanied by the noncoherent quasiparticle
direct current. Hence the supercurrent can be extracted by an
inductor [Fig. 3(b)], and its amplitude and frequency can be
obtained as well.

We should point out that the proposed experimental ap-
proaches are likely to be somewhat over idealized, and trust
the experimental side can readily develop more elegant and
ingenious approaches.

Before closing we emphasize that, in the present study, the
GML, GBL, and GTL components are adopted to discuss the
e-h pair and single particle tunneling regimes in the excitonic
Josephson junctions. Conceptually, other 2D materials, such
as the transition metal dichalcogenide semiconductors, can
also be utilized to realize the charge-neutral or charged su-
percurrent in an excitonic Josephson junction according to the
criterion [Eq. (3) or (4)], thereby broadening the scope and
applicability of the main findings made here.

IV. CONCLUSION

In summary, we have designed excitonic Josephson junc-
tions based on graphene heterostructures, which allows to
transit the charge nature of the supercurrent. We have first

examined the constitute condensate systems of an upper GML
vertically coupled with a lower GML, GBL, or GTL via a
thin h-BN spacer layer, and revealed that the BCS and BKT
transition temperatures of such condensates are distinctly in-
fluenced by the effective carrier masses. When introducing
a barrier between two such identical condensates, a charge-
neutral supercurrent has been found to always dominate in the
GML/GML scheme, while for the GML/GBL and GML/GTL
schemes, a carrier-density induced transition takes place be-
tween the charge-neutral and charged supercurrents. In the
charged regime, both the electron or hole dominance and DC
or AC nature can be tuned by the chemical potential differ-
ences of the junction. These findings not only enable direct
detection of exciton condensates, offering new opportunities
for exploration of their exotic physics, but are also broadly
applicable to other excitonic Josephson junctions based on 2D
materials beyond graphene.
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APPENDIX A: SCREENING EFFECT
ON EXCITON ENERGY

In the graphene heterostructures, the densities of electrons
and holes can be independently tuned by the electrostatic
gates in the upper and lower graphene layers, respectively,
and here exciton condensation is considered in the electrically
neutral system. For the indirect excitons studied in the present
work, we focus on the screened interlayer Coulomb interac-
tion which is written as [45]

g(q) = − 2πe2e−qd

ε(q + qTFe−qd )
, (A1)

where q, ε, qTF, and d is the momentum, dielectric constant,
Thomas-Fermi momentum, and interlayer distance, respec-
tively. In the above equation, we should pay attention mainly
to the term qTFe−qd , and check its influence on the exciton
energy. In GML, qTF is determined by the carrier density,
which implies that the screened Coulomb attraction has the
same behavior as the unscreened one, while in GBL or GTL,
this physical quantity is directly proportional to the effective
mass of the carriers.

For the indirect exciton condensation at low temperature,
electrons and holes near the Fermi surfaces in the different
layers play the main role, so the Fermi wave vector kF can
be used to evaluate the screening effect in the Coulomb at-
traction. Using the parameters in the calculation, we find the
screening has a very limited effect on the exciton energy
(about 10%).
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When further going to the regime of the excitonic Joseph-
son junction, both sides of exciton condensates have the
screening effect, and their difference is largely canceled out
when the two condensates are close in density, hence the
gate-related screening has little influence on the excitonic
Josephson effect.

APPENDIX B: DERIVATION OF THE DISCRIMINANTS �

We start from the Ginzburg-Landau (GL) free energy,
which has the form

FGL = − 1

β
Tr In(1 − GLT GRT ) ≈ 1

β
Tr[GLT GRT ], (B1)

and the physical quantities has the same definitions as those
in the main text. When inserting the Green functions into FGL,
we obtain

FGL = 1

β
�kk′ tr

[(|ϒL1(k)〉〈ϒL1(k)|T
iωn − EL1

+|ϒL2(k)〉〈ϒL2(k)|T
iωn − EL2

)

×
( |ϒR1(k′)〉〈ϒR1(k′)|T

iωn − ER1
+ |ϒR2(k′)〉〈ϒR2(k′)|T

iωn − ER2

)]
,

(B2)

where ϒικ (k) is the wave function of the Bogoliubov–de
Gennes Hamiltonian with ι = L or R representing the left
or right condensate, and κ = 1, 2 for the upper and lower
eigenvalues, respectively. After the Matsubara summation, the

GL free energy has the form

FGL = −1

2
�kk′tr

[
�κκ ′

tanh βELκ

2 − tanh βERκ′
2

ELκ − ERκ ′
|ϒLκ (k)〉

× 〈ϒLκ (k)|T |ϒRκ ′ (k′)〉〈ϒRκ ′ (k′)|T
]
. (B3)

Given the wave functions ϒικ (k), FGL can be obtained, and
varies for different tunneling matrices, with the minimum one
physically selected. We therefore have the discriminants �e =
min FGL(electron tunneling), FGL(e-h tunneling) and �h =
min FGL(hole tunneling), FGL(e-h tunneling), as defined in
Eqs. (3) and (4) of the main text, when the temperature ap-
proaches 0 K.

APPENDIX C: DERIVATION OF THE EXCITONIC
JOSEPHSON CURRENT

To find an expression of the Josephson current Is, we
take advantage of the macroscopic wave functions of the two
constituent exciton condensates, given by �ι = √

nι exp(iθι),
where nι and θι are the condensate density and phase on
the left- or right-hand side. The time dependent Schrödinger
equations can be applied to discuss the Josephson effect,

i
∂�ι

∂t
= Eι�ι + 
�ῑ. (C1)

The supercurrent can be calculated straightforwardly by
Is = ±e ∂nL

∂t with the corresponding macroscopic wave func-
tions. When the density difference |nL − nR| is small, the
time dependence of �θ is mainly determined by the energy
difference (ER − EL ) which is equal to −2�μ. Finally, we get
the electron or hole supercurrent as shown in the main text.
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