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We present a first-principles framework to extract deformation potentials in silicon based on density-functional
theory (DFT) and density-functional perturbation theory (DFPT). We compute the electronic band structures,
phonon dispersion relations, and electron-phonon matrix elements to extract deformation potentials for acoustic
and optical phonons for all possible processes. The matrix elements clearly show the separation between intra-
and intervalley scattering in the conduction band, and quantify the strength of the scattering events in the
degenerate bands of the valence band. We then use an advanced numerical Boltzmann transport equation (BTE)
simulator that couples DFT electronic structures and energy/momentum-dependent scattering rates to compute
the transport properties for electrons and holes. By incorporating ionized impurity scattering as well, we calculate
the n-type and p-type mobility versus carrier density and make comparisons to experiments, indicating excellent
agreement. The fact that the method we present uses well-established theoretical tools and requires the extraction
of only a limited number of matrix elements, makes it generally computationally very attractive, especially for
semiconductors with a large unit cell and lower symmetry.
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I. INTRODUCTION

Over the last two decades, a myriad of new materials and
their alloys were synthesized and characterized in the search
for new and improved functionalities across application areas
[1–7]. For every material studied experimentally, there are a
lot more unexplored possibilities that can provide high per-
formance. This has over the last years triggered a theoretical
effort into machine learning studies to identify the component
[8,9], atomic structure [10,11], and physical properties with
optimal functionalities [12–14]. Furthermore, a significant
advancement into ab initio methods and density-functional
perturbation theory (DFPT) [15–17], enabled more accurate
calculations without the use of empirical parameters. These
are used to predict new materials through high-throughput
screening or machine learning, explore reaction mechanisms,
and provide understanding in experimental synthesis and
characterization.

Electron-phonon (e-ph) scattering is a vital part of sim-
ulations for materials properties, and ab initio calculations
are becoming a critical component, enabling the investigation
of e-ph scattering processes. Traditionally, e-ph scattering
is employed within transport methods such as the Boltz-
mann transport equation (BTE) [18–20], Monte Carlo [21,22],
Landauer-Buttiker method [23], etc. In the case of electronic
transport, the BTE can be easily solved with the constant
relaxation time approximation (CRTA) [24]. Further study
of e-ph scattering can be carried out using analytical mod-
els [25,26] based on deformation potential theory, which is
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developed by Bardeen and Shockley [27]. The deformation
potential essentially describes the shift in the bands upon a
change in the lattice caused by a perturbation from specific
phonon modes, the ones that dominate the overall process.
Recent theoretical methods and available software can now
solve the BTE by including interactions from the entire
phonon spectrum for materials beyond common semiconduc-
tors [28–30]. Such approaches, however, are computationally
extremely costly in DFPT, even with the acceleration of Wan-
nier interpolations [31], as they require a dense electronic
and phononic mesh discretization [32], which leads to a large
number of possible combinations in the calculation of e-ph in-
teraction. Although these works started in the 1980s [33–35],
it is only recently expanded to complex materials as a result
of the advancements in computational resources and software
developments.

Deformation potential theory is still instrumental for the
calculation of low-field mobilities [6,36,37], as it is compu-
tationally much more efficient. It is also used routinely in
high-field calculations in semiconductor devices, still with
adequate accuracy [38,39]. It can provide an understanding
of individual phonon processes, and it can be easily employed
to derive analytical scattering rates. These can then be used,
for example, within device transport simulators [40,41], and in
general when e-ph scattering needs to be combined with other
scattering mechanisms, such as for nanostructured materials
[42], or highly doped materials and alloys for which ionized
impurity scattering [43] and alloy scattering are important.
Such methods are routinely employed for transistor devices
and thermoelectric materials [44]. The use of deformation
potentials can allow for the flexibility and computational
robustness that these simulators require.
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In this paper, we use first-principles calculations based
on DFT and DFPT to extract the deformation potentials for
one of the common semiconductors, silicon (Si). Deformation
potentials for Si have been used for decades now and are
extracted from less advanced calculations or experimental
measurements. Here, however, we perform DFPT to verify
these numbers and obtain a deeper insight into the e-ph scat-
tering processes in Si. The deformation potentials are derived
from the e-ph interactions by considering the coupling of elec-
trons/holes in an initial state to those of certain final scattering
states under the perturbation induced by the dominant acoustic
and optical phonon modes. We explore both n- and p-type
carrier types. The method we present can be generally applied
to other solid-state semiconductors and insulators, beyond the
common Si material we focus on in this paper, by using the
average optical phonon mode energy [29] and average optical
deformation potential for a general semiconductor with multi-
ple optical phonon branches. Using the extracted deformation
potentials, we then extract the mobility of Si, with excellent
agreement to experiment. We emphasize here that the use of Si
in this work plays the role of a benchmark material to validate
and establish the method we describe, since we can compare
against numerous available data. However, the intention of the
paper is to go beyond Si, and validate a generic and highly
efficient computational method for mobility calculations.

The paper is presented as follows: In Sec. II, we provide
a description of the theoretical background for the extrac-
tion of deformation potentials. In Sec. III, we present the
matrix elements and deformation potential extraction for Si.
In Sec. IV, we calculate the scattering rate and mobility for
holes and electrons using the extracted deformation potentials.
In Sec. V, we discuss the results. Finally, in Sec. VI, we
conclude.

II. THEORY AND METHODS

The mobility of semiconductors is determined by the
e-ph scattering processes. The main processes commonly
considered in theory and simulations are the scattering of elec-
trons/holes with acoustic, optical, and polar optical phonons,
when applicable. Phonons perturb the lattice, resulting in
changes in the band structure of the semiconductor through
perturbations in the crystal potential, which determines elec-
tronic transport. Generally, there are two main types of
interactions between electrons and phonons, i.e., the defor-
mation potential interaction, which describes the relation
between the atoms displacement and the potential change near
the displaced atoms, and the Fröhlich interaction [45], which
is related to the long-range electric fields in polar materials.
Here we will focus on the deformation potential interaction,
active in all solids (and dominant in Si).

In the original deformation potential theory by Bardeen
and Shockley [27], the long-wavelength acoustic phonons
(whose wave vector q → 0) are assumed to dominate the
e-ph scattering mechanisms of electrons and holes in nonpolar
semiconductors. In this case, the long-wavelength acous-
tic phonons generate the atomic displacements and volume
dilatation in the crystal, which shifts the electronic band
energies. The acoustic deformation potential (ADP), which
describes the relation between the energy shift and the volume

expansion coefficient, can be computed by

DADP,nk = V
∂Enk

∂V
, (1)

where V is the volume of the unit cell, and Enk is the electronic
eigenvalue for a band with index n and wave vector k at the
valance band maximum (VBM) or conduction band minimum
(CBM). The qualitative meaning is that a high carrier mobility
results from a small band shift with dilatation. However, the
deformation potential DADP computed in this way, relying on
a semi-empirical approach, does not consistently reproduce
mobility measurements, and in general, lacks predictive power
[46]. For quantitative prediction of the deformation potentials,
which also takes into account more complex scenarios such
as the effects of shear deformations and optical phonons,
an ab initio self-consistent DFT calculation method [47,48]
is needed to describe both lattice dynamics and electronic
band structures. This also has the advantage of accounting for
the screening of the ionic potential by the valence electrons
automatically [49].

Here we use DFT and DFPT calculations to obtain the
electronic band structures, phonon dispersion relations, and
e-ph matrix elements entirely from the first principles. The
key item is the determination of the e-ph matrix elements,
which measure the coupling strength of the e-ph interactions.
Specifically, the matrix element gv

mn(k, q) is the electronic
response associated with a transition process where a Bloch
electron at a state with band index n and wave vector k scatters
into a new state with band index m and wave vector k + q.
This is facilitated by an atomic perturbation as a result of a
phonon with mode index ν and crystal momentum q. The ma-
trix element can be determined using the variation formulation
in DFPT as [50,51]

gν
mn(k, q) =

√
h̄

2m0ωνq
Mν

mn(k, q), (2)

where m0 is the sum of the masses of all the atoms in the unit
cell, ωνq is the specific phonon frequency, and Mν

mn(k, q) is
defined as

Mν
mn(k, q) = 〈ψmk+q(r)|δνqV (r)|ψnq(r)〉, (3)

where ψmk+q(r) and ψnq(r) are the electronic wave functions
for band m with wave vector k + q and band n with wave
vector k, respectively, which are extracted from DFT calcu-
lations. The perturbing potential δνqV (r) is associated with
the phonon of branch index ν, wave vector q, and frequency
ωνq, which can be computed by DFPT. The details of how
to extract the matrix element gν

mn(k, q) from DFPT can be
found in Appendix A. Based on the e-ph matrix element
for individual transitions, we derive below the deformation
potential for acoustic and optical phonons.

A. Acoustic deformation potential

The band structure is determined by the crystal potential,
which is influenced by changes in the lattice spacing. The
acoustic phonons in the long-wavelength limit displace neigh-
boring atoms in the same direction [see Fig. 1(a)], and thus
the change of the lattice spacing is produced by the strain
∇ · u, where u is the displacement of atoms. In this case, the
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FIG. 1. Schematics of (a) acoustic and (b) optical vibration
modes in the long-wavelength limit for Si visualized by forces on
atoms.

perturbing potential from acoustic phonons is approximately
proportional to the strain as [26]

Ve-ph = DADP∇ · u, (4)

where the proportionality constant DADP (in units of energy
eV) is the acoustic deformation potential (considered in gen-
eral to be a constant [27]). The system Hamiltonian can be
decomposed as the original system’s Hamiltonian and a term
related to the change in the system due to displacements of
the nuclei by small amounts from their equilibrium positions.
Within the harmonic approximation, the atomic displace-
ment vectors, which diagonalize the altered component of the
Hamiltonian of the crystal, can be expressed in terms of plane
waves similar to the Bloch functions for electrons in a crystal
[52]. The uq, which is the displacement from equilibrium of
an ion in a unit cell specified by the lattice vector R, is related
to the displacement Aq of a corresponding ion in the unit cell
located at the origin by a Bloch wave of the form [52,53]

uq(R, t ) = Aqe+i(q·R−ωt ) + Aqe−i(q·R−ωt ), (5)

where q and ω are the phonon wave vector and frequency, re-
spectively. Here, for acoustic phonons, the strain ∇ · uq(R, t )
can be written as |q|uq(R, t ) in the case of small u. The
δνqV (r) term in Mν

mn(k, q) in Eq. (3) is proportional to the
derivatives of the Kohn-Sham potential V (r) with respect to
changes in the atomic positions. Considering that the wave
function overlap 〈ψmk+q(r)|ψnq(r)〉 can be regarded as 1 at
small q [26,54], the perturbing potential can be expressed as
Ve-ph = Mν

mn(k, q) · uq(R, t ). Thus, the acoustic deformation
potential DADP can be calculated from Eq. (4) as

DADP = Mν
mn(k, q) · uq(R, t )

|q|uq(R, t )
= Mν

mn(k, q)

|q| . (6)

In the limit of small q (long-wavelength phonons), this
quantity DADP is the slope of Mν

mn(k, q) with respect to the |q|
of phonon eigenvector, and is refereed to as the first-order de-
formation potential. In order to obtain this from calculations,
we consider an initial electronic state k (e.g., the top of the
valence bands), and phonons (e.g., on the LA branch) along a
high-symmetry direction (e.g., �-X). For different values of q
along that phonon branch we compute the Mν

mn(k, q) between

the initial electronic state at k, the final state at k′ = k + q
and the phonon at q. Performing this calculation for different
values of q, allows us to obtain the deformation potential from
the corresponding slope of the approximately straight line
formed. Once the acoustic deformation potential is extracted,
the scattering rate |SADP

k,k′ |, which is the transition rate between
the initial k and final k′ states, can be computed using Fermi’s
golden rule as [20,26]

∣∣SADP
k,k′

∣∣ = π

h̄
D2

ADP
kBT

ρv2
s

gk′ , (7)

where ρ is the mass density, vs is the velocity of phonons
in the branch used, and gk′ is the density of states at the
final state. It is common in semiconductor electronic transport
treatment to use a single deformation potential value for all the
states in a specific band for simplicity, which is well justified
as we will discuss below [25,26]. In that case, vs becomes the
sound velocity of the material.

B. Optical deformation potential

The deformation potential theory can be extended to opti-
cal phonons, which arise when there are two or more atoms
in the unit cell [55]. The neighboring atoms are displaced in
opposite directions [see Fig. 1(b)], introducing a change in
lattice spacing. In this case, it is the distances between the
basis atoms, which disturb the surrounding lattice potential,
acting as a scattering source on the electrons. Therefore, the
perturbing potential is proportional to the atomic displace-
ment as [56]

Ve-ph = DODPu, (8)

where DODP (in units of energy per unit length, eV/m) is
the optical deformation potential (ODP). Compared to Ve-ph =
Mν

mn(k, q) · uq(R, t ), we can find that the Mν
mn(k, q) is directly

the DODP. Thus, DODP is referred to as the zero-order deforma-
tion potential, which can be calculated as

DODP = Mν
mn(k, q). (9)

To compute DODP, we choose an initial electronic state k,
an optical phonon branch and phonon states q on that branch
along a high-symmetry line (i.e., �-X), and for those q phonon
states we identify the final electronic state having k′ = k + q,
for which we compute Mν

mn(k, q). Again, commonly for
simplicity, transport studies, especially device simulations,
consider a single value for the deformation potentials for all
transitions from a given initial electronic band to a given final
band (in general it can be the same or a different band), and
a single dominant phonon energy [29]. This is justified as we
will see below, since both Mν

mn(k, q) and the phonon branch
energy are relatively constant. The corresponding scattering
rate |SODP

k,k′ | can then be computed as [20,26]

∣∣SODP
k,k′

∣∣ = πD2
ODP

2ρω

(
Nω + 1

2
∓ 1

2

)
gk′ (10)

where ω is the frequency of the optical phonons near the �

point, which is considered to be constant. Nω is the phonon
Bose-Einstein statistical distribution and the + and − sign
indicate the emission and absorption processes, respectively.
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FIG. 2. (a) The electronic structure and (b) phononic spectrum
of Si. In (a) we depict with large red dots for the initial electronic
state at the VBM for holes and at the CBM for electrons, and red
line segments for the final electronic states. In (b) the large red
dots and red line segments indicate the corresponding phonons that
are involved in the transitions for intravalley and g-type intervalley
scatterings. The phonons for f -type scattering are not shown here as
they are not located at the L-�-X path.

III. DEFORMATION POTENTIALS

Below, using the method described, we use Si as an
example to show how to derive the deformation poten-
tials and compute the transport properties. The electronic
band structure, phonon dispersion, and e-ph coupling ma-
trix elements are calculated from DFT and DFPT using the
QUANTUM ESPRESSO package [57]. The optimized norm-
conserving Vanderbilt (ONCV) [58] pseudopotential is used
for Si under the generalized gradient approximation (GGA)
with the Perdew-Burke-Ernzerhof (PBE) [59] functional.
Since the outcomes of DFT calculations could depend on
the choice of pseudopotentials and exchange-correlation func-
tionals, we have also performed comparisons using three more
sets of functionals, and we briefly discuss the outcomes later
on in the discussion section and Appendix B. The 12 × 12 ×
12 and 18 × 18 × 18 Monkhorst-Pack k meshes are used for
structure relaxation and electronic band structure calculations,
respectively. The cutoff energy of plane waves is set to 35
Ry. All of the parameters have been tested to be sufficient in
obtaining converged results. The relaxed lattice constants is
5.479 Å, indicating a slight 0.88% overestimation with respect
to the available experimental value of 5.431 Å [60], which is
the general tendency of GGA [61]. The EPW package [28] is
used to perform Wannier function interpolation for the e-ph
coupling matrix elements. Initial coarse 12 × 12 × 12 k and
6 × 6 × 6 q meshes are used. The denser k grid for Si is
needed in order to obtain a good Wannier interpolation of the
conduction bands [32], since the minimum does not reside on
a high-symmetry point.

Figure 2 shows the electronic band structure and phononic
spectrum for Si. Using these dispersions, we compute the
deformation potentials for acoustic and optical phonons for
both holes and electrons. To compute the e-ph matrix ele-
ments, we set the initial electronic state at the VBM for holes
and at the CBM for electrons. We then consider acoustic and
optical phonons of wave vector q (long wavelengths) along a
high-symmetry line. The final state in the scattering process
then has a wave vector k + q, and is also taken along a high
symmetry line in the Brillouin zone. In the case of optical
phonons we calculate the zero-order deformation potential,

whereas in the case of acoustic phonons we calculate the
first-order deformation potential. The red dots and line regions
in Fig. 2 indicate the electronic and phononic triplets that take
part in the calculation, with the larger central dots in Fig. 2(a)
being the initial states in the CBM and VBM, respectively,
whereas the red lines being the final electronic states involving
the phonon states indicated in Fig. 2(b).

A. Hole-phonon coupling matrix elements

We first take the e-ph matrix elements with regards to
the coupling of holes to the transverse optical mode (TO)
gVBM,TO as an example, where the same calculation can be
found in the literature and a direct comparison can be per-
formed [62]. The initial electronic state is located at the VBM
and the TO mode is considered (labeled in Fig. 2). Due to
energy/momentum conservation [26], only phonons of small
q, around the � point of the phonon spectrum [Fig. 2(b)],
take part in scattering processes involving states around the
valence band maximum (a few kBT ). This is the case for both
hole-acoustic and hole-optical phonon scattering (in the case
of optical phonons, emission/absorption processes result in
energy changes by ∼61 meV as shown later on). Our calcu-
lated e-ph matrix elements agree well with those found in the
literature [62], as shown in Fig. 3(a), which shows the gVBM,TO

as a function of the phonon q vector along high-symmetry
lines for our calculation (red solid line) and literature data
(blue dashed line). Note that here we compute the matrix
elements involving phonons from the entire phonon spectrum
(although phonons away from the � point do not participate
in scattering events).

Since the VBM of Si is located at the � point, which is
the center of the Brillouin zone of a cubic semiconductor,
the deformation potential constant for acoustic phonons is
a second-rank tensor with cubic symmetry. It has a diago-
nal form with equal diagonal elements and therefore can be
treated as a scalar quantity. Its trace is nonzero for longitudinal
phonons (referred to as square term D2

ADPq2 as well [63]), but
it vanishes for transverse modes [52,63] for symmetry reasons
at the � point. The detailed proof for acoustic phonons can
be found in Ref. [52]. Essentially, the LA mode contributes
to volume changing deformations (dilatation component) at
first order and accountable scattering rates, whereas its shear
components are usually less important [52]. Therefore we can
neglect the effect of the shear strain and treat LA phonons
as a change in the volume of the crystal, which gives rise to
a perturbing potential that shifts the electronic band energy.
On the other hand, the TA modes contain only shear waves
and contribute to shear and nonvolume changing deforma-
tions only (and at first order their effect on volume change
can be ignored), which introduce scattering rates at second
order. Thus, the dominant acoustic mode is only the LA for
the VBM, whereas the TA plays a secondary role. For op-
tical phonons, the scattering rates can be derived similarly
to acoustic phonons by replacing the squared factor D2

ADPq2

with a squared optical coupling constant D2
ODP [63]. Thus, for

hole scattering in Si (with the VBM at the � point) we con-
sider only the longitudinal phonons and ignore the transverse
phonons, though the coupling matrices of TA and TO modes
are not zero (see Appendix C). First-principles calculations,
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FIG. 3. Matrix elements [(a)–(d)] and Mν
mn(k, q) [(e), (f)] for the

valence band of Si vs the phonon wave vector q. The initial electronic
state k is at the VBM for holes (� point), whereas the corresponding
final states are k′ = k + q. (a) Our calculated matrix elements for
the TO phonon mode (solid line) compared to Luis’s work (dotted
line) [62]. (b) Matrix elements for the LA phonon mode (solid
line), compared to that using Wannier interpolations (dotted line).
(c) Calculated matrix elements for the LA phonon with a separate
combination of transitions from the heavy hole (HH) or light hole
(LH) bands as initial/final states. The blue regions near the � point
indicate the most relevant matrix elements for the scattering pro-
cesses. The corresponding four combinations of transitions between
HH and LH are indicated. (d) Same as (c) but for the LO phonon
mode. (e) Mν

mn(k, q) of the VBM for the LA and (f) LO phonon
modes. The q vector range is the zoom around the blue regions of (c)
and (d).

e.g., using the EPW software for the strength of scattering
rates from different phonon branches in the case of GaAs,
where the VBM and CBM are both at the � point, indeed
show that the scattering rates are dominated by the LO and
LA phonons [64], rather than the transverse phonons, which
are associated with significantly weaker (at second order)
scattering rates. On the other hand, for electrons in Si (where
the CBM is not at the � point) we need to consider all LA, TA,
LO, and TO phonons, all of which contribute to the scattering
rates [65].

To derive the acoustic and optical deformation potentials
for holes, we need to calculate the e-ph matrix elements
gVBM,LA and gVBM,LO with the initial electronic state k located
at the VBM. The phonon mode states have momentum q,
which results in the final electronic states having momentum
k + q since momentum conservation is enforced. Figure 3(b)

shows the gVBM,LA matrix elements over the high-symmetry
q directions from DFPT calculations. It is compared to the
method where Wannier interpolation is performed, indicating
excellent agreement. Thus, we use Wannier interpolation to
accelerate the calculation of matrix elements. Note that the
Wannier interpolation method might not be crucial in the case
of Si holes, since the VBM is located at a high-symmetry
point. If the initial electronic states are located at nonhigh-
symmetry points, e.g., the case for the CBM of Si, a very
dense k mesh is required to include the initial electronic state
in the DFPT calculation of matrix elements directly. To avoid
a large number of calculations, one can use the maximally
localized Wannier functions to interpolate the e-ph matrix
elements. Wannier interpolation allows the free choice of the
initial electronic state and can more conveniently consider
various q paths, while the actual DFT and DFPT calculations
are still performed on coarse k and q meshes.

Previous works show that spin-orbit coupling (SOC) has
a significant effect on the mobility of holes, especially at
low temperatures [64], which is related to the contributions
of band splitting on low-energy holes. At and above room
temperature, the mobilities of holes with and without SOC are
similar [32]. Therefore, to consider the effect of band splitting,
we include SOC for the band structures that we use within
the BTE calculations later on. However, we find that SOC
has little effect on the deformation potentials (see Appendices
D and E). Therefore, in the derivation of deformation poten-
tials, the DFT and DFPT calculations are carried out without
SOC, and thus the VBM consists of three degenerate bands at
the � point. Away from the minimum, there are two doubly
degenerated valance bands (heavy hole, HH) and one singly
degenerated band (light hole, LH). We consider the matrix
elements that arise for the different combinations between the
initial and final electronic states residing at the HH or the LH,
i.e., HH-LH indicates the matrix elements from an initial HH
band to a final LH band. For a given initial state k on band n,
there are two final states k′ on each of the HH bands and one
final state on the LH band. Note that we also find that SOC
does not affect the wave functions in the nondegenerate case
for electrons.

The calculated e-ph matrix elements gVBM,LA along the
high-symmetry paths �-X, �-L, and �-K for the phonon wave
vectors q are shown in Fig. 3(c). It is interesting to see that
the matrix elements describing transitions with HH as the final
state, i.e., HH-HH and LH-HH, are identical. The same occurs
for transitions that have final states on the LH band, i.e. HH-
LH and LH-LH. The reason is that we have picked the � point
as the initial point for all the matrix elements. Due to the T2g

band symmetry at that point, which belongs to the Oh group,
the initial wave functions of all three states on the two HH and
the LH bands are the same. Thus, differences in the matrix
elements 〈ψmk+q(r)|δνqV (r)|ψnq(r)〉 for the same initial state
are only determined by the final states, i.e., whether a carrier
scatters into the HH or the LH. This allows for only two
independent values for the matrix elements, scattering into the
HH or the LH.

The acoustic phonon matrix elements for scattering into
the HH are larger compared to those representing scattering
into the LH. The Mν

mn(k, q) to HH [Fig. 3(e)] increases lin-
early with q, indicating stronger transition rates and scattering
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mn(k, q) for LA phonons for scattering into

the HH along different q vectors.

for the scattering events into the HH, whereas the acoustic
phonon scattering into the LH is a weaker process with
smaller Mν

mn(k, q). The acoustic Mν
mn(k, q) for scattering into

the LH do not increase linearly. Only for a small q vector, e.g.,
less than one-tenth of half Brillouin zone, one can consider
that a slope can be taken and the deformation potential ex-
tracted. The shape of the matrix elements is not even isotropic,
bending more in the �-L direction.

With regards to the optical phonon scattering with the LO
phonons, the matrix elements for scattering from HH into HH
are nearly constant and slightly anisotropic along the high
symmetry �-X, �-L, and �-K paths (the latter not shown).
The optical Mν

mn(k, q) with final states on the LH band is
nonzero along �-L, but falls to zero along the high-symmetry
�-X and �-K paths, which is related to the symmetry along
different directions [66]. This again signals even weaker scat-
tering processes for scattering into the LH.

As the matrix elements generally depend on the eigenvec-
tors of the phonon state, which are in general anisotropic, for
simplicity we define the averaged deformation potential along
all the directions, i.e., �-X, �-L, and �-K high-symmetry
directions shown in Fig. 4, as

D =
√

n�-XD2
�-X + n�-LD2

�-L + n�-KD2
�-K

n�-X + n�-L + n�-K
. (11)

For a face-centered cubic (FCC) lattice, the number of the
equivalent crystallographic orientations n�-X, n�-L, and n�-K

are 6, 8, and 12, respectively. In the case of the acoustic
phonons, we take the averaged slope of Mν

mn(k, q), whereas
in the case of optical phonons, they are given by the averaged
Mν

mn(k, q).
In addition to the initial state residing on �, we also

consider the Mν
mn(k, q) along high-symmetry directions for

� − q/2 → � + q/2 transitions, where both the initial and
final states are around the �. We consider the n�-X, n�-L, and
n�-K directions. The deformation potentials along different
directions and the averaged value calculated using Eq. (11)
are shown in Table I. We can find that the LA and LO defor-
mation potentials are different for the transitions � − q/2 →
� + q/2 compared to � → � + q. We can combine the defor-
mation potentials for degenerated bands as the total one [67]:

Dtot =
√∑

nm

(Dnm)2. (12)

The so-calculated Dtot for LA and LO are 5.80 eV and 10.65
eV/Å, respectively, for � → � + q, and 5.49 eV and 10.84
eV/Å, respectively, for � − q/2 → � + q/2 transition. The
difference of deformation potentials with the same q but
different initial k points, is due to the symmetry and wave
functions of the degenerate bands. Although the strength
of the individual processes can differ if the initial state is
around, rather than on the �, still, the overall valence band
deformation-potential values are comparable.

TABLE I. Intravalley acoustic deformation potential (eV) and intravalley optical deformation potential (eV/Å) for LA and LO phonons
along different high-symmetry directions of q, for both the � → � + q and � − q/2 → � + q/2 transitions.

X L K Average

� → � + q LH-LH LA 0.9145 0.4931 0.1470 0.5270
LO 0 3.4921 0 1.937

LH-HH LA 1.9141 2.6473 2.3147 2.3398
LO 4.2620 3.8414 4.2396 4.1265

HH-HH LA 1.9141 2.6473 2.3147 2.3398
LO 4.2620 3.8414 4.2396 4.1265

HH-LH LA 0.9145 0.4931 0.1470 0.5270
LO 0 3.4921 0 1.937

� − q/2 → � + q/2 LH-LH LA 2.1754 1.9232 1.6028 1.8482
LO 0 6.3378 0 3.5156

LH-HH LA 0 0 0 0
LO 0 0 0 0

HH-HH LA 2.1300 3.1822 2.3304 2.5825
LO 5.3672 4.7461 5.2490 5.1279

HH-LH LA 0 0 0 0
LO 0 0 0 0
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FIG. 5. Calculated intravalley electron-phonon coupling matrix elements for Si as a function of the phonon momentum |q|, for transitions
via LA (red solid lines) or TA (blue solid lines) phonons. For q → 0, the relation between the Mν

mn(k, q) and the dilatation and uniaxial
deformation potentials for LA phonons and the sum of the two TA phonons (see Table II) are shown with the dashed lines. (a) The first Brillouin
zone of q vectors, where the center is located at the CBM of the electronic Brillouin zone, at k = (0, 0, 0.8375). [(b)–(i)] Electron-phonon
Mν

mn(k, q) (or the zero-order deformation potential) in the direction of q as shown in the insets.

Compared to the total deformation potential method above,
another more physically clear method to define the overall
deformation potential can be employed by using the largest
deformation potential upon rotation of the wave functions
in the subspace of the degeneracies. The ideal is that the
global wave function of degenerate states is a linear com-
bination of all individual states, and the matrix elements
need to include the global wave function, and not individual
processes for all separate/individual states/eigenvectors. Nu-
merically, the overall deformation potential can be obtained
by constructing a tensor out of the deformation potentials
of the different degenerate bands and taking the largest
singular value (or all if the others contribute significantly)
[49] (more details can be found in Appendix D). The re-
quired wave functions rotation reflects in the unitary matrices
within the singular value decomposition. We have tested the
so-calculated deformation potential for two different cases
around the � (see Appendix D). For the transition of � →
� + q, the largest singular values are 5.80 eV and 10.65
eV/Å for LA and LO, respectively. For the transition of
� − q/2 → � + q/2, they are 5.17 eV and 10.26 eV/Å for
LA and LO, respectively. Each of them accounts for the nine
matrix elements 〈ψmk+q(r)|δνqV (r)|ψnq(r)〉 for all possible
initial and final states. Using the averaged values of the two

transitions, the acoustic and optical deformation potentials
for holes in Si result to DADP = 5.48 eV and DODP =
10.45 eV/Å.

B. Electron-phonon coupling matrix elements

The CBM in Si is formed from six equivalent valleys, lo-
cated along the �-X direction in the Brillouin zone, at ∼84%
towards the X point. To compute the coupling matrix elements
in the conduction band, we use one of the six equivalent
ellipsoids as the initial state, k = (0, 0, 0.8375), and final
states within the same ellipsoid (intravalley transitions) and
in the other five ellipsoids (intervalley transitions).

1. Intravalley transitions

For the intravalley electron-phonon scattering, we fo-
cus first on the acoustic deformation potentials. The direct
way to calculate the averaged deformation potentials for
LA and TA is using the root mean square of the slopes
of the Mν

mn(k, q) for LA and TA, as shown by the solid
red and blue lines in Fig. 5. If we define θ as the an-
gle between the phonon wave vector and the longitudinal
axis of the conduction band valley, the slopes for LA with
θ = 0, 0.25π, 0.304π, 0.5π, 0.75π, 0.696π, π [the different
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TABLE II. The expressions for |M|/|q| for the longitudinal and
transverse acoustic phonons along different high-symmetry q di-
rections for the CBM at k = (0, 0, 0.8375) of a cubic material.
�d and �u represent dilatation and uniaxial deformation potentials,
respectively.

q LA TA1 + TA2

[100] �d 0
[110] �d 0
[001] �d + �u 0
[001] �d + �u 0
[011] �d + �u/2 �u/2
[011] �d + �u/2 �u/2
[111] �d + �u/3

√
2 �u/3

[111] �d + �u/3
√

2 �u/3

directions shown in Figs. 5(b)–5(i)], are 8.98, 5.07, 2.63,
1.01, 4,91, 4.83, 8.33 eV, respectively. For TA, the slopes are
1.83, 4.87, 3.40, 1.75, 4.90, 3.99, 1.77 eV, respectively. The
so-calculated averaged deformation potentials for LA and TA
are 5.75 eV and 3.48 eV, respectively. This method requires a
large number of directions so that an accurate averaged value
is obtained.

A more general way to compute the averaged deformation
potentials is considering the symmetry properties of Si, which
allows a reduction to just two independent potentials. These
are the dilatation deformation potential �d and the uniaxial
shear deformation potential �u. In contrast to holes with
isotropic deformation potentials, the deformation potential of
electrons has a general angular dependence as [68]

�LA(θ ) = �d + �ucos2θ, (13)

�TA(θ ) = �usinθcosθ. (14)

It should be mentioned that both transverse modes are incor-
porated here. To use those, we consider eight directions, [100],
[110], [001], [001], [011], [011], [111], and [111]. We then
compute the LA and TA electron-phonon coupling matrices
along these high-symmetry q paths [Figs. 5(b)–5(i)], which
can be expressed in terms of �d and �u [68], as derived and
listed in Table II. From these relations and the LA and TA
matrix elements in Figs. 5(b)–5(i), along different directions,
several values for �d and �u can be extracted. These �d/�u

values extracted for each direction are in general similar,
but some differences for different directions can occur. Thus,
we compute the averaged deformation potential, with all q
directions (with a nonzero linear term) are weighted equally,
i.e., �d is calculated by deriving the slope of |M| for the LA
with q → 0 along [100] and [110], while �u is calculated by
deriving the slope of |M| for the TA with q → 0 along [011],
[011], [111], and [111]. This procedure yields the values of
�d = 1.01 eV and �u = 8.84 eV.

Figure 5(a) shows the Brillouin zone of phonon q for
which the center overlaps with one of the CBM ellipsoids,
(0, 0, 0.8375). The electron-phonon Mν

mn(k, q) for different
phonon polarizations, for both the LA/TA and �d/�u ex-
tracted elements, are shown in Figs. 5(b)–5(i) for different
q-vector directions as illustrated in the subfigures and noted.
In most cases, the lines from the two methods agree very

well. Some discrepancies can be observed along the [100]
and [110] directions, and somewhat smaller in the [111] and
[111] directions. In those cases, the slopes of the coupling
matrices at |q| → 0 are different from those constructed using
the �d/�u expressions in Table II. The calculated coupling
matrices are not linear at large |q| values, which increases the
mismatch.

Previous calculations have shown that the influence of the
angular q dependence on electron transport is relatively small
[69]. Thus, we consider and extract the isotropically averaged
intravalley deformation potentials for LA and TA phonons as
an approximation, derived from the average of the integrals of
squared �LA(θ ) and �TA(θ ) as

D2
LA = �2

d + �d�u + 3
8�2

u, (15)

D2
TA = 1

8�2
u. (16)

Using Eqs. (15) and (16), the deformation potentials for LA
and TA phonons turn out to be 6.27 eV and 3.13 eV, respec-
tively, which are similar to the values extracted directly from
averaging the LA and TA matrix elements above.

The scattering rates for electrons can be calculated as

∣∣SLA
k,k′

∣∣ = π

h̄
D2

LA
kBT

ρv2
l

gk′ , (17)

∣∣STA
k,k′

∣∣ = π

h̄
D2

TA
kBT

ρv2
t

gk′ , (18)

where vl = 9.04 km/s [25] and vt = 5.34 km/s [25] are
velocities of the longitudinal and transverse acoustic phonons,
respectively. The expressions for the scattering rates due to the
interaction with LO and TO phonons can be derived similarly
to those for acoustic phonons, and read as [70]

∣∣SLO
k,k′

∣∣ = πD2
LO

2ρωLO

(
Nω + 1

2
∓ 1

2

)
gk′ , (19)

∣∣STO
k,k′

∣∣ = πD2
TO

2ρωTO

(
Nω + 1

2
∓ 1

2

)
gk′ . (20)

In this case for the intravalley electron-phonon scattering of
Si, the optical matrix elements go to zero as the phonon
wave vector approaches zero, dictated by symmetry selection
rules [66]. Indeed, the zero-order deformation potentials for
LO and TO modes are small around the � point, as shown
in the blue highlighted regions in Fig. 6. Small q vectors
correspond to intravalley transitions, and it is well known
that only acoustic phonons contribute to that, while optical
phonons in Si conduction bands only cause intervalley tran-
sitions, as we elaborate below. Although we observe some
small values, especially along the �-L direction, intravalley
transitions caused by optical phonons are typically neglected,
and we take DODP = 0 eV/Å for electrons.

In addition, it is customary in the literature to use only the
longitudinal mode for scattering, for example in Monte Carlo
models [26,71], in which case the contributions from LA and
TA modes are combined as D2

ADP = D2
LA + (v2

l /v
2
t )D2

TA. The
overall value is then extracted to be DADP = 8.21 eV, which
also agrees well with what is routinely employed.
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FIG. 6. [(a)–(c)] 2D cross-section view of the first Brillouin zone for electrons (red) and phonons (blue), with the 6 CBM depicted
by the green ellipsoids. The corresponding matrix elements for electrons vs the phonon wave vector q along (d) �-X direction, also
indicating the g-type intervalley process, (e) �-K direction, also indicating the f -type process, and (f) �-L direction, with initial electronic state
k at the CBM, where the blue zone within 1/10 of half Brillouin zone is considered for the derivation of the coupling matrix M for acoustic
phonons.

2. Intervalley transitions

Two types of intervalley scattering are possible in Si: One
is referred to as the g-type process, which scatters a carrier
from a given valley into one on the opposite side of the same
axis, or its equivalent in the next Brillouin zone nearby; the
other is the f -type process, which scatters a carrier into one
of the neighboring valleys on the perpendicular axes. Interval-
ley scattering requires very large changes in momentum, and
requires phonons with wave vectors near the zone boundary
to scatter electrons within the first, or even the second equiv-
alent Brillouin zone, which can be either acoustic or optical
phonons. Considering that away from the � point the phonon
momentum is both large and flat [see Fig. 2(b)], the intervalley
scattering resembles the optical phonon scattering. Thus, we
use the intervalley deformation potential DIVS to characterize
the strength of the scattering from the initial to the final valley,
in the form of an optical deformation potential as

Ve-ph = DIVSu, (21)

where DIVS (in units of energy per unit length, eV/m) can be
calculated from

DIVS = Mν
mn(k, q), (22)

where the initial electronic state k is located at one of the
CMB valleys, and the final electronic state k′ = k + q is
located at another CBM valley. The corresponding intervalley
scattering rate |SIVS

k,k′ | can then be computed using Eq. (10) for
the optical deformation potential scattering.

Figures 6(a)–6(c) show the 2D cross-section views of the
first Brillouin zone for electrons (red) and phonons (blue),
where the six CBM are depicted by the green ellipsoids. The

g-type and the f -type processes are illustrated in Figs. 6(a)
and 6(b), respectively. The transitions involved in these two
processes have different strengths. The corresponding matrix
elements for electrons versus the phonon wave vector q with
initial electronic state k at the CBM are shown in Figs. 6(d)–
6(f), respectively.

For the g process we consider the initial and final states
at (0, 0, 0.8375) and (0, 0, −0.8375) [72,73], i.e., the el-
lipsoids in the [001] and [001] directions which are located
across each other. The matrix elements in the �-X direc-
tion in Fig. 6(d), indicate a strong intravalley scattering LA
phonon contribution (red line) and a strong intervalley LO
phonon contribution (black line) representing the g process.
The lines that connect to the Brillouin zone of Fig. 6(a)
clearly show that the g process is associated with LO-caused
transitions in the equivalent ellipsoid of the 2nd Brillouin
zone in the extended �-X direction, i.e., 32.5% of half Bril-
louin zone length away. It is also interesting to see that
the matrix element associated with the LA mode collapses
for transitions into the 2nd Brillouin zone, while that of
the LO phonon has significant values only for transitions
into the 2nd Brillouin zone. Note again that only the values
around the � point and the g-labelled point are of importance
to transport, as only those involve energetically favorable
electrons.

For the f process we consider the valleys at (0, 0, 0.8375)
and (0, 0.8375, 0) [63] (in the [001] and [010] directions).
Here they are the TO (green line) and secondary the LA (red
line) modes that dominate, as indicated by the f -labelled point
in Fig. 6(e). Note that in this case, the final states are the CBM
states in the �-K direction with 116% of half Brillouin zone
length away. The matrix elements near the � point, indicating
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TABLE III. The intravalley acoustic deformation potential DADP (eV) and intravalley optical deformation potential DODP (eV/Å) with the
corresponding phonon frequency (meV) for holes, the dilatation deformation potential �d (eV), uniaxial shear deformation potential �u (eV),
acoustic deformation potential (eV) for LA and TA phonons, overall intravalley acoustic deformation potential DADP (eV) and the intervalley
deformation potential (eV/Å) for electrons in Si. Comparison is made with the deformation potentials and phonon frequencies found in the
literature.

This paper Previous works

Holes, intravalley DADP (eV) 5.48 5.0a,p, 2.2b, 3.1n, 6.2q, 7.12r

DODP (eV/Å) 10.45 6a, 5.0b, 13.24e, 9.05n, 10.5o

Phonon frequency (meV) 62.08 63a

Electrons, intravalley �d (eV) 1.01 1.1e, 1.2k, 1.13l

�u (eV) 8.84 10.5e, 8.86f, 8.47g, 9.16h, 9.29i, 8.0j, 8.6t

DLA (eV) 6.27 6.39m

DTA (eV) 3.13 3.01m

DADP (eV) 8.21 9.5a, 9.0c, 7.8s

Electrons, intervalley g-type, LO (eV/Å) 3.86 11a, 3c, 4.73d

Phonon frequency (meV) 61.06 62.16a, 62c, 60d

f -type, LA (eV/Å) 1.83 2.0a, 3.4c, 2.51d

Phonon frequency (meV) 46.67 47a, 43c, 47.73d

f -type, TO (eV/Å) 3.55 2.0a, 4c, 4.44d

Phonon frequency (meV) 56.40 59a, 54c, 57.69d

aReference [26]; bReference [75]; cReference [71]; dReference [78]; eReference [37]; fReference [80]; gReference [82]; hReference [84];
iReference [74]; jReference [76]; kReference [77]; lReference [79]; mReference [21]; nReference [81]; oReference [83]; pReference [85];
qReference [86]; rReference [87]; sReference [88]; tReference [89].

the intravalley scattering, have strong contributions from the
acoustic phonon modes as also shown in Fig. 5(h), and the
TA1 and LA are both contributing, with a weaker contribution
from the TA2. The increase in the TA contributions in this
�-K compared to the �-X direction, is a signature of the shear
mode component that is now important. In Fig. 6(f) we also
show the matrix elements in the �-L direction. In this case,
the transitions only involve the intravalley scattering, where
the only important ones are located around the � point.

It is worth noting that also experimentally, the g-type scat-
tering is identified to be caused by LO phonons, while the
f -type scattering to be caused by LA and TO phonons [95].
Early reports mentioned that low-energy LA phonons can also
be involved in g-type scattering [96,97]. However, electron-
phonon coupling selection rules [66,98] do not allow g-type
scattering by LA phonons, as can be verified by the matrix
elements in Fig. 6(d). This means that in the modeling of Si
electrons transport, acoustic phonon scattering is exclusively
considered for intravalley scattering, LO phonon scattering
exclusively for intervalley g processes, and TO and LA scat-
tering for intervalley f processes.

For f -type scattering, apart from scattering with the final
states in the same Brillouin zone, we also consider scatter-
ing into the adjacent Brillouin zone (see Appendix F). It
is found that the dominant modes keep the same for both
the g-type and f -type scattering into the same or different
Brillouin zones, where the values of deformation potentials
of intervalley transitions are also comparable, even though
the wave vectors are different. For the f -type scattering, the
extracted deformation potential values of both the LA and
TO modes, which are the dominant phonons, have less than
2% difference for the scattering into the same or different
Brillouin zone. For scattering into the same Brillouin zone, the
intervalley deformation potentials for LA and TO modes are
1.86 and 3.59 eV/Å, respectively, while the values for transi-

tions into the second Brillouin zone are 1.83 and 3.55 eV/Å,
respectively.

IV. TRANSPORT PROPERTIES

Considering all the possible e-ph scattering processes, we
compute the transport properties of Si. For holes, we consider
ADP and ODP, while for electrons we consider ADP and IVS.
The values of deformation potential used for ADP (eV), ODP
(eV/Å), IVS (eV/Å) and phonon frequencies (meV) are listed
in Table III. All the transport calculations are conducted using
our own-developed Boltzmann transport equation simulator
ElecTra [99], whose details can be found in the previous
papers [20,43,44,100], which discretizes the 3D dispersion
and constructs scattering times for every transport state using
the derived deformation potentials.

To obtain an indication of the phonon-limited scattering
rates, we combine different scattering processes for all bands
with band index i into one global rate (at room temperature)
by averaging the rates with the band density of states as

|Sk,k′ | =
∣∣Si

k,k′
∣∣gi

k′∑
gi

k′
, (23)

where gi
k′ is the density of states for band i. Figure 7(a)

shows the contributions of ADP and ODP to the scattering
of holes versus energy. At low energies both ADP and ODP
influence the rate, whereas at energies above 0.064 eV the
ODP scattering rate greatly increases, as the phonon emis-
sion process is activated for energies above h̄ω. Figure 7(b)
shows the contributions of ADP and IVS to the scattering of
electrons. IVS in this case behaves like ODP since the phonon
momentum required is large for the intervalley phonon energy
to be assumed constant. We observe that the emission energy
for IVS of electrons is lower than that for ODP in the case of
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FIG. 7. Scattering rate of Si at 300 K vs energy for (a) holes under ADP and ODP scattering, (b) electrons under ADP and IVS scattering.
The total scattering rates for (c) holes and (d) electrons in comparison with other ab initio results from Refs. [64,65,90] and empirical results
from Refs. [91–94].

holes. This is because near the zone boundary the energies of
both acoustic and optical phonons that take part are compa-
rable and are somewhat smaller than the longitudinal optical
phonon energy at �. The calculated total scattering rates of
holes and electrons are very similar to the EPW calculations
by Ma et al. [64], as seen in Figs. 7(c) and 7(d), except for
holes at higher energies that our results deviate somewhat,
although they follow the same trend. Our scattering rates are
also comparable to those of other ab initio calculations [65,90]
and empirical results as well [91–94].

Figures 8(a) and 8(b) show the comparison between our
calculated mobilities (solid blue and dotted lines) and the
measured ones at 300 K, as well as that from ab initio calcu-
lations using EPW [32], as a function of carrier concentration
between 1014 and 1020 cm−3. In this case, in addition to the
ab initio e-ph scattering, the Brooks and Herring model [85]
is used to describe the elastic scattering rate due to ionized
dopants. We compare our calculations to multiple experiments
over a range of doping levels. The scattering rate due to the
ionized impurity scattering (IIS) is then given by

∣∣SIIS
k,k′

∣∣ = 2π

h̄

Z2e4

ε2
r ε

2
0

Nimp(|k − k′|2 + 1
L2

D

)2 gk′ , (24)

where Z is the electric charge of the ionized impurity, εr

and ε0 are the relative and vacuum permittivities, Nimp is the
density of the ionized impurities, and LD is the screening
length defined as

LD =
√

εrε0

e

(
∂EF

∂n

)
, (25)

where EF is the Fermi level and n is the carrier density.

For holes, the phonon-limited mobility (blue solid line)
at low densities (the left side of Fig. 8) is calculated to be
536 cm2/V s. Despite this value being somewhat higher than
measured [25,105,106], it is known that ab initio calcula-
tions in general overestimate the Si hole mobility, and in
fact the EPW results are significantly higher [32]. For elec-
trons, our calculated phonon-limited mobility is 1327 cm2/V s
(blue solid line), in good agreement with previous works and
measurements [18,25,32,64,65,105–107] (see Appendix G for
comparison to other results). Overall, our calculated mobil-
ities from the deformation potentials we derived agree well
with that measured in experiment. A slight overestimation
of our phonon plus IIS-limited results compared to measure-
ments is observed at high carrier concentrations, where our
calculated mobilities with IIS are somewhat larger than the
measured ones for both holes and electrons. This is consistent
with the previous works [108,109] using the same Brooks-
Herring model. On the other hand, the mobilities with IIS
in the EPW work [32] are lower than the measured ones at
high carrier concentrations because semi-empirical models
are used to account for IIS to match the mobility trend. In gen-
eral, at those carrier densities, it is possible and claimed that
the electron-electron scattering, as well as additional dopant-
specific considerations about IIS, which is not included in
the Brooks-Herring model, provides an additional scattering
mechanism to reduce the mobility even further to map exper-
iments better [110,111].

V. DISCUSSION

The primary material focus of this paper was the well-
established Si. However, the intent of this paper stretches far
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FIG. 8. (a) Mobility for holes in Si at 300 K calculated in this
paper with solid (phonon-limited) and circled (phonon plus IIS)
lines, compared to that using EPW for e-ph scattering from Ref. [32],
in which IIS is described using a phenomenological ad hoc equation
in the effective mass approximation. Comparison is also made with
experimental mobility values from Refs. [101–104]. (b) Mobility for
electrons in Si at 300 K calculated in this paper with solid (phonon-
limited) and circled (phonon plus IIS) lines, compared to that using
EPW for e-ph scattering from Ref. [32] and experiments from Refs.
[25,103,104]. For the case of the blue circled lines (phonon plus IIS),
we use the Brooks-Herring model to compute IIS. Notice that one
blue circle for the case of phonon plus IIS at low carrier concentra-
tions is slightly higher compared to the phonon-limited mobility due
to the usual large amount of numerical noise associated with the IIS
scattering rates [65].

beyond Si, and it is to present a computationally efficient
method (much more efficient compared to the fully first-
principles calculations of the matrix elements) for mobility
calculations, still with adequate first-principles accuracy. The
fact that Si was the material of choice is the vast availability of
deformation potential values and mobility data to benchmark
our calculations on. The method developed in this paper can
be applied to semiconductors with more complicated band
structures, lower symmetry, and larger unit cells compared
to Si, in which cases the computational savings can be quite
significant. The numerical cost of using this method is much
smaller than computing a huge number of matrix elements
throughout the Brillouin zone (e.g., requiring 40 × 40 × 40
= 64 000 phonon q points [32]) as in common fully ab
initio methods like EPW. Our method only needs a limited
number of matrix elements (requiring a few q points, i.e.,
∼100 only) around the VBM/CBM to derive deformation
potentials, no matter the structure of the bands, whether that
being a simple material with high symmetry and a few phonon

modes, or a complicated material with a lot of optical phonon
modes. For acoustic phonons in a more complex material
the process still requires one LA and two TA branches as
in Si (and all other semiconductor materials), although the
numerical cost is slightly higher than Si due to the possibly
larger number of initial/final bands. The number of optical
matrix elements will increase if more optical phonon modes
are present, but still, only a few matrix elements are needed
per phonon mode (and in the case where the modes are not
flat, a few more might be needed to provide an acceptable
average), which makes it computationally feasible to carry on
the calculation for all initial/final states and phonon branches
for both intra/intervalley transitions, even without consider-
ing symmetries to reduce computation. Of course, it will be
convenient in that case to devise an automated way to identify
all VBM/CBM and phonon modes to avoid manual band
structure exploration, and this is something we are currently
investigating.

We note that our method is based on the deformation po-
tential theory, which is proposed by Bardeen and Shockley
[27] for nonpolar semiconductors and insulators and recently
extended to polar materials by excluding the Fröhlich inter-
actions from the overall matrix elements [31]. In the case of
calculating the electronic conductivity of metals, on the other
hand, the usual method is using the Eliashberg function (or
spectral distribution function of electron-phonon interaction),
which is essentially the phonon density of states weighted by
the electron-phonon coupling matrix element [112–114]. As
in the case of semiconductors, this is not an easy computa-
tion and it involves similar electron/phonon dispersions and
calculations throughout the Brillouin zone, again the limiting
factor being the number of q points included in the computa-
tion. However, the matrix elements can also be used to define
deformation potentials under certain approximations, at least
for the long-wavelength acoustic phonons, as described in the
literature [115,116]. A formalism that exchanges the matrix
elements in the spectral distribution function by effective de-
formation potentials could reduce the computation cost to the
levels that we describe in this paper, as similarly it will not be
necessary to compute all matrix elements throughout all the
Brillouin zone.

One case where matrix elements in a larger part of the
Brillouin zone could be needed, is high-field transport. Defor-
mation potentials are used for high-field transport in common
semiconductor devices for decades now with very good ac-
curacy [38,39]. In that case a more expanded set of matrix
elements can be used to extract deformation potentials to
increase accuracy. However, the computational cost will still
be lower compared to computing matrix elements across the
Brillouin zone.

Finally, we note that as in every DFT simulation, the
outcome depends (sometimes sensitively) on the pseudopo-
tentials and exchange correlation functionals. Prior works
have quantified that for Si the intrinsic mobilities at 300 K
differ by 16% between LDA and GGA for electrons, but
much less for holes by 3% [32]. However, closer inspection
showed that these differences arise primarily from the opti-
mized lattice parameters obtained within these functionals,
rather than the functionals themselves [32]. In particular, if the
same lattice parameter is used in combination with different
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functionals, then the differences in the mobility are insignifi-
cant at 0.4% for electrons and 2% for holes [32]. To confirm
this we have calculated and compared the matrix elements
using the GGA-PBE-norm-conserving (the most commonly
employed in EPW), GGA-PBE-PAW, GGA-PBEsol-PAW,
and LDA-PZ-PAW pseudopotentials [117]. Using a common
relaxed lattice parameter 5.479 Å from the GGA-PBE-
norm-conserving, the deviation of matrix elements between
different pseudopotentials and exchange-correlation function-
als is at most 4% for LA and 1% for LO phonons (see
Table IV in Appendix B), leading to mobility variations of
a few percentage units only. This is consistent with the claim
[32] that the choice of exchange and correlation is not critical
to the mobility as long as accurate lattice parameters are
employed.

VI. CONCLUSIONS

Based on density-functional theory (DFT) and density-
functional perturbation theory (DFPT), we have developed
a first-principles framework to extract acoustic, optical,
and intervalley deformation potentials from the short-range
electron-phonon (e-ph) matrix elements, for incorporation
with the Boltzmann transport equation (BTE). Using the BTE
based on a numerical simulator that allows for the incor-
poration of e-ph scattering and ionized impurity scattering
(IIS), we are able to compute a comparable mobility with
results from advanced first-principle calculations. The method
we present would be the middle ground computationally be-
tween the constant relaxation time (CRT) approximation and
ab initio relaxation time extraction with ultradense grids,
while providing first principles accuracy. Although we have
used Si as the material of investigation, the method can be
generalized and applied to other solid-state semiconductors
and insulators, with much higher computational efficiency
compared to fully ab initio simulations.
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APPENDIX A: MATRIX ELEMENTS FROM DFPT
CALCULATIONS

From DFPT [118], the displacement vector of the atoms
with mass mk , which are displaced from their equilibrium
positions due to a phonon with mode ν and crystal momentum
q, is given by

uνq
lkα

= 1√
mk

eiq·Rl ekα
νq, (A1)

where l labels the unit cell, α is the atom label, and ekα
νq are

the phonon eigenvectors. At each position r, the �νqV (r),

TABLE IV. Mν
mn(k, q) (in eV/Å) for the HH-HH transition of the

VBM with q = (0.1, 0.1, 0.1) for the LA and LO phonon modes using
different pseudopotentials and exchange-correlation functionals.

Pseudopotentials LA LO

GGA-PBE-norm-conserving 0.533 3.723
GGA-PBE-PAW 0.529 3.727
GGA-PBEsol-PAW 0.527 3.696
LDA-PZ-PAW 0.512 3.697

which is the perturbing potential due to phonon vibration, is
calculated as

�νqV (r) =
∑
lkα

uνq
lkα

∂Rl ,kαV (r) (A2)

=
∑
kα

1√
mk

ekα
νq∂q,kαV (r), (A3)

where ∂q,kαV (r) is a term proportional to the derivatives of
the Kohn-Sham potential V (r) with respect to changes in the
atomic positions Rl,kα located at lattice vector Rl as

∂q,kαV (r) =
∑
Rl

eiq·Rl ∂Rl ,kαV (r), (A4)

where

∂Rl ,kαV (r) = ∂V (r)

∂ulkα

. (A5)

APPENDIX B: CHOICE OF PSEUDOPOTENTIALS
AND EXCHANGE-CORRELATION FUNCTIONALS

Taking q = (0.1, 0.1, 0.1) as an example, Table IV lists
the Mν

mn(k, q) for the HH-HH transition of the VBM for the
LA and LO phonon modes using different pseudopotentials
and exchange-correlation functionals. The same lattice param-
eter 5.479 Å relaxed from the GGA-PBE-norm-conserving
pseudopotential is used. The difference of Mν

mn(k, q) using
different pseudopotentials is at most 4% for the LA and 1%
for the LO modes.

APPENDIX C: COUPLING MATRIX OF TRANSVERSE
MODES FOR HOLES

Figure 9 shows the coupling matrix elements Mν
mn(k, q)

for longitudinal and transverse modes of holes for scattering
into the HH in Si near the � point. Here the transverse modes
consider both branches.

APPENDIX D: DEFORMATION POTENTIALS
USING THE LARGEST SINGULAR VALUE

In the finite-dimensional case, a matrix M can be de-
composed in the form U�V T, where U and V T are unitary
matrices and � is a diagonal matrix with the singular values
residing on the diagonal. This procedure is called singular
value decomposition (SVD). The diagonal entries σi = Sii are
known as the singular values of M. The SVD is not unique
and it is always possible to choose the decomposition so that
the singular values σi are in descending/ascending order. In
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FIG. 9. The coupling matrix elements for LO, TO, LA, and TA
modes near the � point of holes for scattering into the HH of Si.

this case, we can identify the largest singular value σ1. For
example, for the VBM of Si, there are three degenerate bands.
Thus, we can use a 3 × 3 matrix for the nine deformation
potential components that couple the three initial and three
final bands. We define the initial and final bases as 〈a|, 〈b|, 〈c|,
|d〉, |e〉, | f 〉, respectively, and thus the deformation potentials
matrix is

M =
⎡
⎣Daa Dab Dac

Dba Dbb Dbc

Dca Dcb Dcc

⎤
⎦. (D1)

After performing the singular value decomposition, we find
the 3 × 3 matrices U , S, and V :

U =
⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦, (D2)

� =
⎡
⎣S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤
⎦, (D3)

V =
⎡
⎣V11 V12 V13

V21 V22 V23

V31 V32 V33

⎤
⎦. (D4)

The singular values are the overall deformation potentials of
the degenerate bands. In this case the overall deformation
potential can be defined as the largest singular value σ1 = S11

(the others turn out to be zero). The original and new initial
and final bases obey the following relations (where the primed
vectors refer to the new basis):

〈a| = V11〈a′| + V12〈b′| + V13〈c′|,
〈b| = V21〈a′| + V22〈b′| + V23〈c′|,
〈c| = V31〈a′| + V32〈b′| + V33〈c′|,
|d〉 = U11|d ′〉 + U12|e′〉 + U13| f ′〉,
|e〉 = U21|d ′〉 + U22|e′〉 + U23| f ′〉,
| f 〉 = U31|d ′〉 + U32|e′〉 + U33| f ′〉. (D5)

Considering the ADP from � → � + q process as an ex-
ample for hole scattering, and using the corresponding values

from Table I, we can define

M =
⎡
⎣0.5270 2.3398 2.3398

0.5270 2.3398 2.3398
0.5270 2.3398 2.3398

⎤
⎦. (D6)

After performing the singular value decomposition (for exam-
ple, using the svd command in Matlab), We find U , S, and V
to be

U =
⎡
⎣−0.5774 0.8165 0

−0.5774 −0.4082 −0.7071
−0.5774 −0.4082 0.7071

⎤
⎦, (D7)

� =
⎡
⎣5.8035 0 0

0 0 0
0 0 0

⎤
⎦, (D8)

V =
⎡
⎣−0.1573 0.9876 0

−0.6983 −0.1112 −0.7071
−0.6983 −0.1112 0.7071

⎤
⎦. (D9)

The largest singular value is 5.8035, which will be used as the
overall deformation potential for acoustic phonon transitions
in the valence band. The original and new initial and final
bases then become

〈a| = −0.1573〈a′| + 0.9876〈b′|,
〈b| = −0.6983〈a′| − 0.1112〈b′| − 0.7071〈c′|,
〈c| = −0.6983〈a′| − 0.1112〈b′| + 0.7071〈c′|,
|d〉 = −0.5774|d ′〉 + 0.8165|e′〉,
|e〉 = −0.5774|d ′〉 − 0.4082|e′〉 − 0.7071| f ′〉,
| f 〉 = −0.5774|d ′〉 − 0.4082|e′〉 + 0.7071| f ′〉. (D10)

On the other hand, for the � − q/2 → � + q/2 process,
using the corresponding values from Table I, for LA we can
define

M =
⎡
⎣1.8482 0 0

0 2.5825 2.5825
0 2.5825 2.5825

⎤
⎦. (D11)

We find U , S, and V to be

U =
⎡
⎣ 0 1 0

−0.7071 0 −0.7071
−0.7071 0 0.7071

⎤
⎦, (D12)

� =
⎡
⎣5.165 0 0

0 1.8482 0
0 0 0

⎤
⎦, (D13)

V =
⎡
⎣ 0 1 0

−0.7071 0 −0.7071
−0.7071 0 0.7071

⎤
⎦. (D14)
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The original and new initial and final bases then become

〈a| = 〈b′|,
〈b| = −0.7071〈a′| − 0.7071〈c′|,
〈c| = −0.7071〈a′| + 0.7071〈c′|,
|d〉 = |e′〉,
|e〉 = −0.7071|d ′〉 − 0.7071| f ′〉,
| f 〉 = −0.7071|d ′〉 + 0.7071| f ′〉. (D15)

From S, we find two singular values, 5.165 and 1.8482. The
largest singular value from 〈a′| and |d ′〉 is related to 〈b|, 〈c|,
|e〉, and | f 〉, which are related to the HH. The second-largest
singular value is associated with the 〈b′| and |e′〉, which are
the same as the 〈a| and |d〉, and are related to the transition
process from LH to LH. Compared to the � → � + q, the
� − q/2 → � + q/2 has different values of coupling matrix
elements for the transitions of different processes, especially
for the values between the HH and LH transitions. These
are finite and zero for the two processes, respectively. Using
the largest singular value for the overall process, however,
interestingly the overall deformation potentials are similar
for both � → � + q and � − q/2 → � + q/2 processes. It
is also interesting to observe that the second-largest value
remains unchanged after singular value decomposition and it
is equal to the LH-LH matrix element for the � − q/2 →
� + q/2 process [see Eqs. (D11) and (D13)]. As observed
from Eq. (D11) the two subspaces of LH and HH are inde-
pendent and no transitions are allowed between them (zero
off-diagonal elements connecting them).

APPENDIX E: DEFORMATION POTENTIAL WITH SOC

The VBM of Si has three degenerate bands, when spin-
orbit coupling (SOC) is omitted. If we label them as 1, 2,
and 3, then we can find nine coupling matrix elements for all
intertransitions Mi j and form a global matrix as

M =
⎡
⎣M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦. (E1)

Taking a phonon wave vector q = (0.1, 0, 0) as an example,
we can compute M (without SOC) for LA and LO modes as

LA =
⎡
⎣0.105 0.22 0.22

0.105 0.22 0.22
0.105 0.22 0.22

⎤
⎦, (E2)

LO =
⎡
⎣0 4.26 4.26

0 4.26 4.26
0 4.26 4.26

⎤
⎦. (E3)

In the case where we consider SOC, the coupling matrices
Mi j are computed as

√
(Mi j )2

↑↑ + (Mi j )2
↓↓ and are found to be

LA =
⎡
⎣0.05 0.325 0

0.13 0.133 0.268
0.13 0.133 0.268

⎤
⎦, (E4)

LO =
⎡
⎣ 0 0 6.02

0.928 5.13 3
0.928 5.13 3

⎤
⎦. (E5)

g

f f

(a)

(b)

FIG. 10. The (a) g and (b) f processes shown in 3D Brillouin
zones to identify the wave vectors of the phonons involved. The wave
vectors to the same and different Brillouin zones are illustrated with
the dashed and solid lines, respectively.

Using singular value decomposition to choose the linear
combinations of the spacial wave functions, we find the largest
singular values to be 0.569 eV/Å and 10.435 eV/Å for LA
and LO without SOC, respectively. With SOC, we find two
singular values for each of the LA and LO, and the square root
of the sum of the squares are 0.567 eV/Å and 10.420 eV/Å
for LA and LO, respectively. Since the values with and
without SOC are very similar, for simplicity, we use the three
generate bands at VBM without SOC to derive the deforma-
tion potentials.

TABLE V. The phonon-limited mobility (cm2/V s) of holes and
electrons for Si at 300 K in comparison to previous ab initio calcula-
tions and experiments.

Holes Mobility

This paper calc. 536
Ma et al. [64] calc. 569
Pónce et al. [32] calc. 658
Ludwig et al. [105] exp. 480
Jacoboni et al. [25] exp. 450
Cronemeyer et al. [106] exp. 510

Electrons Mobility
This paper calc. 1327
Ma et al. [64] calc. 1915
Li et al. [18] calc. 1860
Qiu et al. [65] calc. 1500
Pónce et al. [32] calc. 1366
Ludwig et al. [105] exp. 1350
Jacoboni et al. [25] exp. 1450
Li et al. [107] exp. 1430
Cronemeyer et al. [106] exp. 1360
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APPENDIX F: INTERVALLEY SCATTERING
FOR THE CONDUCTION BAND

From geometrical considerations, the g and f scattering
can happen between adjacent Brillouin zones [72,73]. There
are in total one g-type and four f -type scattering transitions,
considering all the neighboring CBM valleys in the different
Brillouin zones and symmetry restrictions. The wave vec-
tors involved in these two types of electron transitions are
illustrated in Fig. 10, where the dashed and solid lines show
transitions with the final states residing in the same and differ-
ent Brillouin zones, respectively. Here we set the vector for f
scattering as (0.1625, 0.1625, 1), which is nearly 13 degrees
off the [001] direction.

It is found that the LO mode for g-type scattering, and LA
and TO modes for f -type scattering, are always the dominant

phonon modes no matter if we choose the wave vectors for
the transitions towards the same or different Brillouin zones.
The values of deformation potentials of intervalley transitions
in the same or different Brillouin zones are also comparable,
even though the wave vectors are different. For example, for g-
type scattering within the same Brillouin zone, the intervalley
deformation potentials for LO mode are 3.87 eV/Å, while
the values for transitions into the second Brillouin zone are
3.86 eV/Å.

APPENDIX G: PHONON-LIMITED MOBILITY

Table V lists the phonon-limited mobility for holes and
electrons of Si, where our calculated mobility is compared
with other first-principles calculations [18,32,64,65] and ex-
periments [25,105–107].
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